Full Trees

Robert Milewski
University of Białystok

MML Identifier: BINTREE2.

The articles [13], [12], [6], [17], [1], [15], [11], [5], [7], [10], [8], [18], [2], [19], [14], [16], [3], [4], and [9] provide the terminology and notation for this paper.

1. Trees and Binary Trees

One can prove the following propositions:
(1) For every set D and for every finite sequence p and for every natural number n such that $p \in D^{*}$ holds $p \upharpoonright \operatorname{Seg} n \in D^{*}$.
(2) For every binary tree T holds every element of T is a finite sequence of elements of Boolean.

Let T be a binary tree. We see that the element of T is a finite sequence of elements of Boolean.

Next we state several propositions:
(3) For every tree T such that $T=\{0,1\}^{*}$ holds T is binary.
(4) For every tree T such that $T=\{0,1\}^{*}$ holds Leaves $(T)=\emptyset$.
(5) Let T be a binary tree, n be a natural number, and t be an element of T. If $t \in T$-level (n), then t is a tuple of n and Boolean.
(6) For every tree T such that for every element t of T holds succ $t=\left\{t^{\wedge}\right.$ $\left.\langle 0\rangle, t^{\frown}\langle 1\rangle\right\}$ holds Leaves $(T)=\emptyset$.
(7) For every tree T such that for every element t of T holds $\operatorname{succ} t=\left\{t^{\wedge}\right.$ $\left.\langle 0\rangle, t^{\frown}\langle 1\rangle\right\}$ holds T is binary.
(8) For every tree T holds $T=\{0,1\}^{*}$ iff for every element t of T holds $\operatorname{succ} t=\left\{t^{\frown}\langle 0\rangle, t^{\frown}\langle 1\rangle\right\}$.

In this article we present several logical schemes. The scheme DecoratedBinTreeEx deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

There exists a binary tree D decorated with elements of \mathcal{A} such that $\operatorname{dom} D=\{0,1\}^{*}$ and $D(\varepsilon)=\mathcal{B}$ and for every node x of D holds $\mathcal{P}\left[D(x), D\left(x^{\wedge}\langle 0\rangle\right), D\left(x^{\wedge}\langle 1\rangle\right)\right]$
provided the following requirement is met:

- For every element a of \mathcal{A} there exist elements b, c of \mathcal{A} such that $\mathcal{P}[a, b, c]$.
The scheme DecoratedBinTreeEx1 deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and two binary predicates \mathcal{P}, \mathcal{Q}, and states that:

There exists a binary tree D decorated with elements of \mathcal{A} such that $\operatorname{dom} D=\{0,1\}^{*}$ and $D(\varepsilon)=\mathcal{B}$ and for every node x of D holds $\mathcal{P}\left[D(x), D\left(x^{\wedge}\langle 0\rangle\right)\right]$ and $\mathcal{Q}\left[D(x), D\left(x^{\wedge}\langle 1\rangle\right)\right]$
provided the following requirements are met:

- For every element a of \mathcal{A} there exists an element b of \mathcal{A} such that $\mathcal{P}[a, b]$, and
- For every element a of \mathcal{A} there exists an element b of \mathcal{A} such that $\mathcal{Q}[a, b]$.
Let T be a binary tree and let n be a non empty natural number. The functor $\operatorname{NumberOnLevel}(n, T)$ yields a function from T-level (n) into \mathbb{N} and is defined as follows:
(Def. 1) For every element t of T such that $t \in T-\operatorname{level}(n)$ and for every tuple F of n and Boolean such that $F=\operatorname{Rev}(t)$ holds $(\operatorname{NumberOnLevel}(n, T))(t)=$ $\operatorname{Absval}(F)+1$.
Let T be a binary tree and let n be a non empty natural number. Note that NumberOnLevel (n, T) is one-to-one.

2. Full Trees

Let T be a tree. We say that T is full if and only if:
(Def. 2) $\quad T=\{0,1\}^{*}$.
We now state three propositions:
(9) $\{0,1\}^{*}$ is a tree.
(10) For every tree T such that $T=\{0,1\}^{*}$ and for every natural number n holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in T-\operatorname{level}(n)$.
(11) Let T be a tree. Suppose $T=\{0,1\}^{*}$. Let n be a non empty natural number and y be a tuple of n and Boolean. Then $y \in T$-level (n).

Let T be a binary tree and let n be a natural number. Observe that T-level (n) is finite.

One can check that every tree which is full is also binary.
One can verify that there exists a tree which is full.
One can prove the following proposition
(12) For every full tree T and for every non empty natural number n holds $\operatorname{Seg}($ the n-th power of 2$) \subseteq \operatorname{rng} \operatorname{NumberOnLevel}(n, T)$.
Let T be a full tree and let n be a non empty natural number. The functor FinSeqLevel (n, T) yielding a finite sequence of elements of T-level (n) is defined by:
(Def. 3) $\quad \operatorname{FinSeqLevel}(n, T)=(\operatorname{NumberOnLevel}(n, T))^{-1}$.
Let T be a full tree and let n be a non empty natural number. Note that FinSeqLevel (n, T) is one-to-one.

Next we state a number of propositions:
(13) For every full tree T and for every non empty natural number n holds $(\operatorname{NumberOnLevel}(n, T))(\langle\underbrace{0, \ldots, 0}_{n}\rangle)=1$.
(14) Let T be a full tree, n be a non empty natural number, and y be a tuple of n and Boolean. If $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, then $(\operatorname{NumberOnLevel}(n, T))(\neg y)=$ the n-th power of 2 .
(15) For every full tree T and for every non empty natural number n holds $(\operatorname{FinSeqLevel}(n, T))(1)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(16) Let T be a full tree, n be a non empty natural number, and y be a tuple of n and Boolean. If $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, then (FinSeqLevel (n, T)) (the n-th power of 2$)=\neg y$.
(17) Let T be a full tree, n be a non empty natural number, and i be a natural number. If $i \in \operatorname{Seg}($ the n-th power of 2$)$, then $(\operatorname{FinSeqLevel}(n, T))(i)=$ $\operatorname{Rev}\left(n\right.$-BinarySequence $\left.\left(i-{ }^{\prime} 1\right)\right)$.
(18) For every full tree T and for every natural number n holds $\overline{T \text {-level }(n)}=$ the n-th power of 2 .
(19) For every full tree T and for every non empty natural number n holds len $\operatorname{FinSeq} \operatorname{Level}(n, T)=$ the n-th power of 2 .
(20) For every full tree T and for every non empty natural number n holds dom FinSeqLevel $(n, T)=\operatorname{Seg}$ (the n-th power of 2).
(21) For every full tree T and for every non empty natural number n holds rng FinSeqLevel $(n, T)=T$-level (n).
(22) For every full tree T holds $(\operatorname{FinSeqLevel}(1, T))(1)=\langle 0\rangle$.
(23) For every full tree T holds (FinSeqLevel $(1, T))(2)=\langle 1\rangle$.
(24) Let T be a full tree and n, i be non empty natural numbers. Suppose $i \leqslant$ the $(n+1)$-th power of 2 . Let F be a tuple of n and Boolean. If $F=(\operatorname{FinSeqLevel}(n, T))((i+1) \div 2)$, then $(\operatorname{FinSeqLevel}(n+1, T))(i)=$ $F \frown\langle(i+1) \bmod 2\rangle$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formalized Mathematics, 5(1):9-13, 1996.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, 7(1):23-26, 1998.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449452, 1991.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[18] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 25, 1998

