Binary Arithmetics. Binary Sequences

Robert Milewski
University of Białystok

MML Identifier: BINARI_3.

The notation and terminology used here are introduced in the following papers: [10], [9], [7], [3], [2], [4], [12], [6], [5], [14], [1], [8], [15], [11], and [13].

1. Binary Arithmetics

The following propositions are true:
(1) For every non empty natural number n and for every tuple F of n and Boolean holds $\operatorname{Absval}(F)<$ the n-th power of 2 .
(2) For every non empty natural number n and for all tuples F_{1}, F_{2} of n and Boolean such that $\operatorname{Absval}\left(F_{1}\right)=\operatorname{Absval}\left(F_{2}\right)$ holds $F_{1}=F_{2}$.
(3) For all finite sequences t_{1}, t_{2} such that $\operatorname{Rev}\left(t_{1}\right)=\operatorname{Rev}\left(t_{2}\right)$ holds $t_{1}=t_{2}$.
(4) For every natural number n holds $\langle\underbrace{0, \ldots, 0}_{n+1}\rangle=\langle\underbrace{0, \ldots, 0}_{n}\rangle^{\wedge}\langle 0\rangle$.
(5) For every natural number n holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in$ Boolean *.
(6) For every natural number n and for every tuple y of n and Boolean such that $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $\neg y=n \mapsto 1$.
(7) For every non empty natural number n and for every tuple F of n and Boolean such that $F=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $\operatorname{Absval}(F)=0$.
(8) Let n be a non empty natural number and F be a tuple of n and Boolean. If $F=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, then $\operatorname{Absval}(\neg F)=($ the n-th power of 2$)-1$.
(9) For every natural number n holds $\operatorname{Rev}(\langle\underbrace{0, \ldots, 0}_{n}\rangle)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(10) For every natural number n and for every tuple y of n and Boolean such that $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $\operatorname{Rev}(\neg y)=\neg y$.
(11) $\operatorname{Bin} 1(1)=\langle$ true \rangle.
(12) For every non empty natural number n holds $\operatorname{Absval}(\operatorname{Bin} 1(n))=1$.
(13) For all elements x, y of Boolean holds $x \vee y=$ true iff $x=$ true or $y=$ true and $x \vee y=$ false iff $x=$ false and $y=$ false.
(14) For all elements x, y of Boolean holds add_ovfl $(\langle x\rangle,\langle y\rangle)=$ true iff $x=$ true and $y=$ true.
(15) $\neg\langle$ false $\rangle=\langle$ true \rangle.
(16) $\neg\langle$ true $\rangle=\langle$ false \rangle.
(17) \langle false $\rangle+\langle$ false $\rangle=\langle$ false \rangle.
(18) \langle false $\rangle+\langle$ true $\rangle=\langle$ true \rangle and \langle true $\rangle+\langle$ false $\rangle=\langle$ true \rangle.
(19) \langle true $\rangle+\langle$ true $\rangle=\langle$ false \rangle.
(20) Let n be a non empty natural number and x, y be tuples of n and Boolean. Suppose $\pi_{n} x=$ true and $\pi_{n} \operatorname{carry}(x, \operatorname{Bin} 1(n))=$ true. Let k be a non empty natural number. If $k \neq 1$ and $k \leqslant n$, then $\pi_{k} x=$ true and $\pi_{k} \operatorname{carry}(x, \operatorname{Bin} 1(n))=$ true .
(21) For every non empty natural number n and for every tuple x of n and Boolean such that $\pi_{n} x=$ true and $\pi_{n} \operatorname{carry}(x, \operatorname{Bin} 1(n))=$ true holds $\operatorname{carry}(x, \operatorname{Bin} 1(n))=\neg \operatorname{Bin} 1(n)$.
(22) Let n be a non empty natural number and x, y be tuples of n and Boolean. If $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $\pi_{n} x=$ true and $\pi_{n} \operatorname{carry}(x, \operatorname{Bin} 1(n))=$ true, then $x=\neg y$.
(23) For every non empty natural number n and for every tuple y of n and Boolean such that $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds carry $(\neg y, \operatorname{Bin} 1(n))=\neg \operatorname{Bin} 1(n)$.
(24) Let n be a non empty natural number and x, y be tuples of n and Boolean. If $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, then add_ovfl $(x, \operatorname{Bin} 1(n))=$ true iff $x=\neg y$.
(25) For every non empty natural number n and for every tuple z of n and Boolean such that $z=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $\neg z+\operatorname{Bin} 1(n)=z$.

2. Binary Sequences

Let n, k be natural numbers. The functor n-BinarySequence (k) yielding a tuple of n and Boolean is defined by:
(Def. 1) For every natural number i such that $i \in \operatorname{Seg} n$ holds $\pi_{i}(n$-BinarySequence $(k))=\left(\left(k \div\left(\right.\right.\right.$ the $\left(i-^{\prime} 1\right)$-th power of 2$\left.)\right) \bmod 2=$ $0 \rightarrow$ false, true).
One can prove the following propositions:
(26) For every natural number n holds n-BinarySequence $(0)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(27) For all natural numbers n, k such that $k<$ the n-th power of 2 holds $((n+1)$-BinarySequence $(k))(n+1)=$ false.
(28) Let n be a non empty natural number and k be a natural number. If $k<$ the n-th power of 2 , then $(n+1)$-BinarySequence $(k)=$ (n-BinarySequence $(k))^{\wedge}\langle$ false \rangle.
(29) For every non empty natural number n holds ($n+1$)-BinarySequence(the n-th power of 2) $=\langle\underbrace{0, \ldots, 0}_{n}\rangle^{\wedge}\langle$ true \rangle.
(30) Let n be a non empty natural number and k be a natural number. Suppose the n-th power of $2 \leqslant k$ and $k<$ the $(n+1)$-th power of 2 . Then $((n+1)$-BinarySequence $(k))(n+1)=$ true.
(31) Let n be a non empty natural number and k be a natural number. Suppose the n-th power of $2 \leqslant k$ and $k<$ the $(n+1)$-th power of 2 . Then $(n+1)$-BinarySequence $(k)=\left(n\right.$-BinarySequence $\left(k-^{\prime}\right.$ (the n-th power of 2))) $\langle\langle$ true \rangle.
(32) Let n be a non empty natural number and k be a natural number. Suppose $k<$ the n-th power of 2 . Let x be a tuple of n and Boolean. If $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, then n-BinarySequence $(k)=\neg x$ iff $k=$ (the n-th power of 2) -1 .
(33) Let n be a non empty natural number and k be a natural number. If $k+$ $1<$ the n-th power of 2 , then add_ovfl $(n$-BinarySequence $(k), \operatorname{Bin} 1(n))=$ false.
(34) Let n be a non empty natural number and k be a natural number. If $k+1<$ the n-th power of 2 , then n-BinarySequence $(k+1)=$ $(n$-BinarySequence $(k))+\operatorname{Bin} 1(n)$.
(35) For all natural numbers n, i holds $(n+1)$-BinarySequence $(i)=\langle i \bmod$ $2\rangle^{\wedge}(n$-BinarySequence $(i \div 2))$.
(36) For every non empty natural number n and for every natural number k
such that $k<$ the n-th power of 2 holds $\operatorname{Absval}(n$ - $\operatorname{BinarySequence}(k))=$ k.
(37) For every non empty natural number n and for every tuple x of n and Boolean holds n-BinarySequence $(\operatorname{Absval}(x))=x$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Yasuho Mizuhara and Takaya Nishiyama. Binary arithmetics, addition and subtraction of integers. Formalized Mathematics, 5(1):27-29, 1996.
[10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[11] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449452, 1991.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 24, 1998

