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1. Preliminaries

One can verify that there exists a non empty category structure which is
transitive, associative, and strict and has units.

Let A be a non empty transitive category structure and let B be a non empty
category structure with units. One can verify that there exists a functor struc-
ture from A to B which is strict, comp-preserving, comp-reversing, precovariant,
precontravariant, and feasible.

Let A be a transitive non empty category structure with units and let B be
a non empty category structure with units. Observe that there exists a functor
structure from A to B which is strict, comp-preserving, comp-reversing, preco-
variant, precontravariant, feasible, and id-preserving.

Let A be a transitive non empty category structure with units and let B be
a non empty category structure with units. Observe that there exists a functor
from A to B which is strict, feasible, covariant, and contravariant.

Next we state several propositions:

(1) Let C be a category, o1, o2, o3, o4 be objects of C, a be a morphism from
o1 to o2, b be a morphism from o2 to o3, c be a morphism from o1 to o4,
and d be a morphism from o4 to o3. Suppose b ·a = d ·c and a ·a−1 = id(o2)
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and d−1 · d = id(o4) and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and 〈o2, o3〉 6= ∅ and
〈o3, o4〉 6= ∅ and 〈o4, o3〉 6= ∅. Then c · a−1 = d−1 · b.

(2) Let A be a non empty transitive category structure, B, C be non empty
category structures with units, F be a feasible precovariant functor struc-
ture from A to B, G be a functor structure from B to C, and o, o1 be
objects of A. Then Morph-MapG·F (o, o1) = Morph-MapG(F (o), F (o1)) ·
Morph-MapF (o, o1).

(3) Let A be a non empty transitive category structure, B, C be non empty
category structures with units, F be a feasible precontravariant functor
structure from A to B, G be a functor structure from B to C, and o, o1 be
objects of A. Then Morph-MapG·F (o, o1) = Morph-MapG(F (o1), F (o)) ·
Morph-MapF (o, o1).

(4) Let A be a non empty transitive category structure, B be a non empty
category structure with units, and F be a feasible precovariant functor
structure from A to B. Then idB · F = the functor structure of F .

(5) Let A be a transitive non empty category structure with units, B be a
non empty category structure with units, and F be a feasible precovariant
functor structure from A to B. Then F · idA = the functor structure of F .

For simplicity, we use the following convention: A denotes a non empty cate-
gory structure, B, C denote non empty reflexive category structures, F denotes
a feasible precovariant functor structure from A to B, G denotes a feasible pre-
covariant functor structure from B to C, M denotes a feasible precontravariant
functor structure from A to B, N denotes a feasible precontravariant functor
structure from B to C, o1, o2 denote objects of A, and m denotes a morphism
from o1 to o2.

The following four propositions are true:

(6) If 〈o1, o2〉 6= ∅, then (G · F )(m) = G(F (m)).

(7) If 〈o1, o2〉 6= ∅, then (N ·M)(m) = N(M(m)).

(8) If 〈o1, o2〉 6= ∅, then (N · F )(m) = N(F (m)).

(9) If 〈o1, o2〉 6= ∅, then (G ·M)(m) = G(M(m)).

Let A be a non empty transitive category structure, let B be a transitive non
empty category structure with units, let C be a non empty category structure
with units, let F be a feasible precovariant comp-preserving functor structure
from A to B, and let G be a feasible precovariant comp-preserving functor
structure from B to C. One can check that G · F is comp-preserving.

Let A be a non empty transitive category structure, let B be a transitive non
empty category structure with units, let C be a non empty category structure
with units, let F be a feasible precontravariant comp-reversing functor structure
from A to B, and let G be a feasible precontravariant comp-reversing functor
structure from B to C. One can check that G · F is comp-preserving.
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Let A be a non empty transitive category structure, let B be a transitive non
empty category structure with units, let C be a non empty category structure
with units, let F be a feasible precovariant comp-preserving functor structure
from A to B, and let G be a feasible precontravariant comp-reversing functor
structure from B to C. One can verify that G · F is comp-reversing.

Let A be a non empty transitive category structure, let B be a transitive non
empty category structure with units, let C be a non empty category structure
with units, let F be a feasible precontravariant comp-reversing functor structure
from A to B, and let G be a feasible precovariant comp-preserving functor
structure from B to C. One can verify that G · F is comp-reversing.

Let A, B be transitive non empty category structures with units, let C be
a non empty category structure with units, let F be a covariant functor from
A to B, and let G be a covariant functor from B to C. Then G · F is a strict
covariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a
non empty category structure with units, let F be a contravariant functor from
A to B, and let G be a contravariant functor from B to C. Then G ·F is a strict
covariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a
non empty category structure with units, let F be a covariant functor from A

to B, and let G be a contravariant functor from B to C. Then G · F is a strict
contravariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a
non empty category structure with units, let F be a contravariant functor from
A to B, and let G be a covariant functor from B to C. Then G · F is a strict
contravariant functor from A to C.

For simplicity, we adopt the following convention: A, B, C, D are transitive
non empty category structures with units, F1, F2, F3 are covariant functors from
A to B, G1, G2, G3 are covariant functors from B to C, H1, H2 are covariant
functors from C to D, p is a transformation from F1 to F2, p1 is a transformation
from F2 to F3, q is a transformation from G1 to G2, q1 is a transformation from
G2 to G3, and r is a transformation from H1 to H2.

The following proposition is true

(10) If F1 is transformable to F2 and G1 is transformable to G2, then G1 ·F1

is transformable to G2 · F2.

2. The Composition of Functors with Transformations

Let A, B, C be transitive non empty category structures with units, let F1,
F2 be covariant functors from A to B, let t be a transformation from F1 to
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F2, and let G be a covariant functor from B to C. Let us assume that F1 is
transformable to F2. The functor G · t yields a transformation from G · F1 to
G · F2 and is defined as follows:

(Def. 1) For every object o of A holds (G · t)(o) = G(t[o]).
Next we state the proposition

(11) For every object o of A such that F1 is transformable to F2 holds (G1 ·
p)[o] = G1(p[o]).

Let A, B, C be transitive non empty category structures with units, let G1,
G2 be covariant functors from B to C, let F be a covariant functor from A

to B, and let s be a transformation from G1 to G2. Let us assume that G1 is
transformable to G2. The functor s ·F yielding a transformation from G1 ·F to
G2 · F is defined by:

(Def. 2) For every object o of A holds (s · F )(o) = s[F (o)].
Next we state a number of propositions:

(12) For every object o of A such that G1 is transformable to G2 holds (q ·
F1)[o] = q[F1(o)].

(13) If F1 is transformable to F2 and F2 is transformable to F3, then G1 · (p1
◦

p) = G1 · p1
◦ G1 · p.

(14) If G1 is transformable to G2 and G2 is transformable to G3, then (q1
◦

q) · F1 = q1 · F1
◦ q · F1.

(15) If H1 is transformable to H2, then (r ·G1) · F1 = r · (G1 · F1).
(16) If G1 is transformable to G2, then (H1 · q) · F1 = H1 · (q · F1).
(17) If F1 is transformable to F2, then (H1 ·G1) · p = H1 · (G1 · p).
(18) id(G1) ·F1 = idG1·F1 .

(19) G1 · id(F1) = idG1·F1 .

(20) If F1 is transformable to F2, then idB · p = p.

(21) If G1 is transformable to G2, then q · idB = q.

3. The Composition of Transformations

Let A, B, C be transitive non empty category structures with units, let F1,
F2 be covariant functors from A to B, let G1, G2 be covariant functors from B

to C, let t be a transformation from F1 to F2, and let s be a transformation
from G1 to G2. The functor s t yielding a transformation from G1 ·F1 to G2 ·F2

is defined as follows:

(Def. 3) s t = s · F2
◦ G1 · t.

The following propositions are true:
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(22) Let q be a natural transformation from G1 to G2. Suppose F1 is trans-
formable to F2 and G1 is naturally transformable to G2. Then q p =
G2 · p ◦ q · F1.

(23) If F1 is transformable to F2, then ididB
p = p.

(24) If G1 is transformable to G2, then q ididB
= q.

(25) If F1 is transformable to F2, then G1 · p = id(G1) p.

(26) If G1 is transformable to G2, then q · F1 = q id(F1) .

We use the following convention: A, B, C, D are categories, F1, F2, F3 are
covariant functors from A to B, and G1, G2, G3 are covariant functors from B

to C.
One can prove the following proposition

(27) Let H1, H2 be covariant functors from C to D, t be a transformation from
F1 to F2, s be a transformation from G1 to G2, and u be a transformation
from H1 to H2. Suppose F1 is transformable to F2 and G1 is transformable
to G2 and H1 is transformable to H2. Then (u s) t = u (s t).

In the sequel t denotes a natural transformation from F1 to F2, s denotes a
natural transformation from G1 to G2, and s1 denotes a natural transformation
from G2 to G3.

One can prove the following propositions:

(28) If F1 is naturally transformable to F2, then G1 · t is a natural transfor-
mation from G1 · F1 to G1 · F2.

(29) If G1 is naturally transformable to G2, then s · F1 is a natural transfor-
mation from G1 · F1 to G2 · F1.

(30) Suppose F1 is naturally transformable to F2 and G1 is naturally trans-
formable to G2. Then G1 ·F1 is naturally transformable to G2 ·F2 and s t

is a natural transformation from G1 · F1 to G2 · F2.

(31) Let t be a transformation from F1 to F2 and t1 be a transformation from
F2 to F3. Suppose that

(i) F1 is naturally transformable to F2,
(ii) F2 is naturally transformable to F3,
(iii) G1 is naturally transformable to G2, and
(iv) G2 is naturally transformable to G3.

Then (s1
◦ s) (t1 ◦ t) = s1 t1 ◦ s t.

4. Natural Equivalences

One can prove the following proposition

(32) Suppose F1 is naturally transformable to F2 and F2 is transformable to
F1 and for every object a of A holds t[a] is iso. Then
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(i) F2 is naturally transformable to F1, and
(ii) there exists a natural transformation f from F2 to F1 such that for

every object a of A holds f(a) = t[a]−1 and f [a] is iso.

Let A, B be categories and let F1, F2 be covariant functors from A to B. We
say that F1, F2 are naturally equivalent if and only if the conditions (Def. 4)
are satisfied.

(Def. 4)(i) F1 is naturally transformable to F2,
(ii) F2 is transformable to F1, and
(iii) there exists a natural transformation t from F1 to F2 such that for

every object a of A holds t[a] is iso.

Let us notice that the predicate F1, F2 are naturally equivalent is reflexive and
symmetric.

Let A, B be categories and let F1, F2 be covariant functors from A to B.
Let us assume that F1, F2 are naturally equivalent. A natural transformation
from F1 to F2 is said to be a natural equivalence of F1 and F2 if:

(Def. 5) For every object a of A holds it[a] is iso.

In the sequel e is a natural equivalence of F1 and F2, e1 is a natural equiva-
lence of F2 and F3, and f is a natural equivalence of G1 and G2.

One can prove the following propositions:

(33) Suppose F1, F2 are naturally equivalent and F2, F3 are naturally equ-
ivalent. Then F1, F3 are naturally equivalent.

(34) Suppose F1, F2 are naturally equivalent and F2, F3 are naturally equ-
ivalent. Then e1

◦ e is a natural equivalence of F1 and F3.

(35) Suppose F1, F2 are naturally equivalent. Then G1·F1, G1·F2 are naturally
equivalent and G1 · e is a natural equivalence of G1 · F1 and G1 · F2.

(36) Suppose G1, G2 are naturally equivalent. Then G1 ·F1, G2 ·F1 are natu-
rally equivalent and f · F1 is a natural equivalence of G1 · F1 and G2 · F1.

(37) Suppose F1, F2 are naturally equivalent and G1, G2 are naturally equ-
ivalent. Then G1 ·F1, G2 ·F2 are naturally equivalent and f e is a natural
equivalence of G1 · F1 and G2 · F2.

Let A, B be categories, let F1, F2 be covariant functors from A to B, and
let e be a natural equivalence of F1 and F2. Let us assume that F1, F2 are
naturally equivalent. The functor e−1 yielding a natural equivalence of F2 and
F1 is defined as follows:

(Def. 6) For every object a of A holds e−1(a) = e[a]−1.

The following propositions are true:

(38) For every object o of A such that F1, F2 are naturally equivalent holds
e−1[o] = e[o]−1.

(39) If F1, F2 are naturally equivalent, then e ◦ e−1 = id(F2) .
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(40) If F1, F2 are naturally equivalent, then e−1 ◦ e = id(F1) .

Let A, B be categories and let F be a covariant functor from A to B. Then
idF is a natural equivalence of F and F .

The following three propositions are true:

(41) If F1, F2 are naturally equivalent, then (e−1)−1 = e.

(42) Let k be a natural equivalence of F1 and F3. Suppose k = e1
◦ e and

F1, F2 are naturally equivalent and F2, F3 are naturally equivalent. Then
k−1 = e−1 ◦ e1

−1.

(43) (id(F1))−1 = id(F1) .
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1. Preliminaries

The following propositions are true:

(1) For every sup-semilattice L and for all elements x, y of L holds d−eL(↑x∩
↑y) = x t y.

(2) For every semilattice L and for all elements x, y of L holds
⊔

L(↓x∩↓y) =
x u y.

(3) Let L be a non empty relational structure and x, y be elements of L. If
x is maximal in (the carrier of L) \ ↑y, then ↑x \ {x} = ↑x ∩ ↑y.

(4) Let L be a non empty relational structure and x, y be elements of L. If
x is minimal in (the carrier of L) \ ↓y, then ↓x \ {x} = ↓x ∩ ↓y.

(5) Let L be a poset with l.u.b.’s, X, Y be subsets of L, and X ′, Y ′ be
subsets of Lop. If X = X ′ and Y = Y ′, then X t Y = X ′ u Y ′.

(6) Let L be a poset with g.l.b.’s, X, Y be subsets of L, and X ′, Y ′ be
subsets of Lop. If X = X ′ and Y = Y ′, then X u Y = X ′ t Y ′.

(7) For every non empty reflexive transitive relational structure L holds
Filt(L) = Ids(Lop).

1This work has been supported by KBN Grant 8 T11C 018 12.
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(8) For every non empty reflexive transitive relational structure L holds
Ids(L) = Filt(Lop).

2. Free Generation Set

Let S, T be complete non empty posets. A map from S into T is said to be
a CLHomomorphism of S, T if:

(Def. 1) It is directed-sups-preserving and infs-preserving.

Let S be a continuous complete non empty poset and let A be a subset of
S. We say that A is a free generator set if and only if the condition (Def. 2) is
satisfied.

(Def. 2) Let T be a continuous complete non empty poset and f be a function
from A into the carrier of T . Then there exists a CLHomomorphism h of
S, T such that h¹A = f and for every CLHomomorphism h′ of S, T such
that h′¹A = f holds h′ = h.

Let L be an upper-bounded non empty poset. One can check that Filt(L) is
non empty.

The following propositions are true:

(9) For every set X and for every non empty subset Y of 〈Filt(2X
⊆ ),⊆〉 holds⋂

Y is a filter of 2X
⊆ .

(10) For every set X and for every non empty subset Y of 〈Filt(2X
⊆ ),⊆〉 holds

inf Y exists in 〈Filt(2X
⊆ ),⊆〉 and d−e(〈Filt(2X

⊆ ),⊆〉)Y =
⋂

Y.

(11) For every set X holds 2X is a filter of 2X
⊆ .

(12) For every set X holds {X} is a filter of 2X
⊆ .

(13) For every set X holds 〈Filt(2X
⊆ ),⊆〉 is upper-bounded.

(14) For every set X holds 〈Filt(2X
⊆ ),⊆〉 is lower-bounded.

(15) For every set X holds >〈Filt(2X
⊆ ),⊆〉 = 2X .

(16) For every set X holds ⊥〈Filt(2X
⊆ ),⊆〉 = {X}.

(17) For every non empty set X and for every non empty subset Y of 〈X,⊆〉
such that sup Y exists in 〈X,⊆〉 holds

⋃
Y ⊆ sup Y.

(18) For every upper-bounded semilattice L holds 〈Filt(L),⊆〉 is complete.

Let L be an upper-bounded semilattice. Note that 〈Filt(L),⊆〉 is complete.

3. Completely-Irreducible Elements

Let L be a non empty relational structure and let p be an element of L. We
say that p is completely-irreducible if and only if:
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(Def. 3) Min ↑p \ {p} exists in L.

We now state the proposition

(19) Let L be a non empty relational structure and p be an element of L. If
p is completely-irreducible, then d−eL(↑p \ {p}) 6= p.

Let L be a non empty relational structure. The functor Irr L yielding a subset
of L is defined by:

(Def. 4) For every element x of L holds x ∈ Irr L iff x is completely-irreducible.

The following propositions are true:

(20) Let L be a non empty poset and p be an element of L. Then p is
completely-irreducible if and only if there exists an element q of L such
that p < q and for every element s of L such that p < s holds q ¬ s and
↑p = {p} ∪ ↑q.

(21) For every upper-bounded non empty poset L holds >L /∈ Irr L.

(22) For every semilattice L holds Irr L ⊆ IRR(L).
(23) For every semilattice L and for every element x of L such that x is

completely-irreducible holds x is irreducible.

(24) Let L be a non empty poset and x be an element of L. Suppose x is
completely-irreducible. Let X be a subset of L. If inf X exists in L and
x = inf X, then x ∈ X.

(25) For every non empty poset L and for every subset X of L such that X

is order-generating holds Irr L ⊆ X.

(26) Let L be a complete lattice and p be an element of L. Given an element k

of L such that p is maximal in (the carrier of L)\↑k. Then p is completely-
irreducible.

(27) Let L be a transitive antisymmetric relational structure with l.u.b.’s and
p, q, u be elements of L. Suppose p < q and for every element s of L such
that p < s holds q ¬ s and u 6¬ p. Then p t u = q t u.

(28) Let L be a distributive lattice and p, q, u be elements of L. Suppose
p < q and for every element s of L such that p < s holds q ¬ s and u 6¬ p.

Then u u q 6¬ p.

(29) Let L be a distributive complete lattice. Suppose Lop is meet-continuous.
Let p be an element of L. Suppose p is completely-irreducible. Then (the
carrier of L) \ ↓p is an open filter of L.

(30) Let L be a distributive complete lattice. Suppose Lop is meet-continuous.
Let p be an element of L. Suppose p is completely-irreducible. Then there
exists an element k of L such that k ∈ the carrier of CompactSublatt(L)
and p is maximal in (the carrier of L) \ ↑k.

(31) Let L be a lower-bounded algebraic lattice and x, y be elements of
L. Suppose y 6¬ x. Then there exists an element p of L such that p is
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completely-irreducible and x ¬ p and y 6¬ p.

(32) Let L be a lower-bounded algebraic lattice. Then Irr L is order-generating
and for every subset X of L such that X is order-generating holds Irr L ⊆
X.

(33) For every lower-bounded algebraic lattice L and for every element s of
L holds s = d−eL(↑s ∩ Irr L).

(34) Let L be a complete non empty poset, X be a subset of L, and p be an
element of L. If p is completely-irreducible and p = inf X, then p ∈ X.

(35) Let L be a complete algebraic lattice and p be an element of L. Suppose
p is completely-irreducible. Then p = d−eL{x; x ranges over elements of L:
x ∈ ↑p ∧ ∨

k : element of L (k ∈ the carrier of CompactSublatt(L) ∧ x is
maximal in (the carrier of L) \ ↑k)}.

(36) Let L be a complete algebraic lattice and p be an element of L.
Then there exists an element k of L such that k ∈ the carrier of
CompactSublatt(L) and p is maximal in (the carrier of L) \ ↑k if and
only if p is completely-irreducible.
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1. Preliminaries

Let S be a non empty set and let a, b be elements of S. The functor a, b, ...

yields a function from N into S and is defined by the condition (Def. 1).

(Def. 1) Let i be a natural number. Then
(i) if there exists a natural number k such that i = 2 ·k, then (a, b, ...)(i) =

a, and
(ii) if it is not true that there exists a natural number k such that i = 2 ·k,

then (a, b, ...)(i) = b.

We now state two propositions:

(1) Let S, T be non empty reflexive relational structures, f be a map from
S into T , and P be a lower subset of T . If f is monotone, then f−1(P ) is
lower.

(2) Let S, T be non empty reflexive relational structures, f be a map from
S into T , and P be an upper subset of T . If f is monotone, then f−1(P )
is upper.

1This work has been supported by KBN Grant 8 T11C 018 12.
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Let T be an up-complete lattice and let S be an inaccessible subset of T .
Note that −S is directly closed.

Next we state the proposition

(3) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T . If f is directed-sups-preserving, then f is
monotone.

Let S, T be reflexive antisymmetric non empty relational structures. Observe
that every map from S into T which is directed-sups-preserving is also monotone.

Next we state the proposition

(4) Let S, T be up-complete Scott top-lattices and f be a map from S into
T . If f is continuous, then f is monotone.

2. Poset of Continuous Maps

Let S be a set and let T be a reflexive relational structure. One can verify
that S 7−→ T is reflexive-yielding.

Let S be a non empty set and let T be a complete lattice. Observe that TS

is complete.
Let S, T be up-complete Scott top-lattices. The functor SCMaps(S, T ) yields

a strict full relational substructure of MonMaps(S, T ) and is defined by:

(Def. 2) For every map f from S into T holds f ∈ the carrier of SCMaps(S, T )
iff f is continuous.

Let S, T be up-complete Scott top-lattices. Note that SCMaps(S, T ) is non
empty.

3. Some Special Nets

Let S be a non empty relational structure and let a, b be elements of the
carrier of S. The functor NetStr(a, b) yields a strict non empty net structure
over S and is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of NetStr(a, b) = N,

(ii) the mapping of NetStr(a, b) = a, b, ..., and
(iii) for all elements i, j of the carrier of NetStr(a, b) and for all natural

numbers i′, j′ such that i = i′ and j = j′ holds i ¬ j iff i′ ¬ j′.
Let S be a non empty relational structure and let a, b be elements of the

carrier of S. Note that NetStr(a, b) is reflexive transitive directed and antisym-
metric.

We now state four propositions:
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(5) Let S be a non empty relational structure, a, b be elements of the
carrier of S, and i be an element of the carrier of NetStr(a, b). Then
(NetStr(a, b))(i) = a or (NetStr(a, b))(i) = b.

(6) Let S be a non empty relational structure, a, b be elements of the carrier
of S, i, j be elements of the carrier of NetStr(a, b), and i′, j′ be natural
numbers such that i′ = i and j′ = i′ + 1 and j′ = j. Then

(i) if (NetStr(a, b))(i) = a, then (NetStr(a, b))(j) = b, and
(ii) if (NetStr(a, b))(i) = b, then (NetStr(a, b))(j) = a.

(7) For every poset S with g.l.b.’s and for all elements a, b of the carrier of
S holds lim inf NetStr(a, b) = a u b.

(8) Let S, T be posets with g.l.b.’s, a, b be elements of the carrier of S, and
f be a map from S into T . Then lim inf(f ·NetStr(a, b)) = f(a) u f(b).

Let S be a non empty relational structure and let D be a non empty subset
of S. The functor NetStr(D) yielding a strict net structure over S is defined by:

(Def. 4) NetStr(D) = 〈D, (the internal relation of S) |2 D, idthe carrier of S¹D〉.
We now state the proposition

(9) Let S be a non empty reflexive relational structure and D be a non
empty subset of S. Then NetStr(D) = NetStr(D, idthe carrier of S¹D).

Let S be a non empty reflexive relational structure and let D be a directed
non empty subset of S. Note that NetStr(D) is non empty directed and reflexive.

Let S be a non empty reflexive transitive relational structure and let D be
a directed non empty subset of S. One can check that NetStr(D) is transitive.

Let S be a non empty reflexive relational structure and let D be a directed
non empty subset of S. Observe that NetStr(D) is monotone.

We now state the proposition

(10) For every up-complete lattice S and for every directed non empty subset
D of S holds lim inf NetStr(D) = sup D.

4. Monotone Maps

We now state several propositions:

(11) Let S, T be lattices and f be a map from S into T . If for every net N

in S holds f(lim inf N) ¬ lim inf(f ·N), then f is monotone.

(12) Let S, T be continuous lower-bounded lattices and f be a map from S

into T . Suppose f is directed-sups-preserving. Let x be an element of S.
Then f(x) =

⊔
T {f(w);w ranges over elements of S: w � x}.

(13) Let S be a lattice, T be an up-complete lower-bounded lattice, and f be
a map from S into T . Suppose that for every element x of S holds f(x) =⊔

T {f(w);w ranges over elements of S: w � x}. Then f is monotone.
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(14) Let S be an up-complete lower-bounded lattice, T be a continuous lower-
bounded lattice, and f be a map from S into T . Suppose that for every
element x of S holds f(x) =

⊔
T {f(w);w ranges over elements of S: w �

x}. Let x be an element of S and y be an element of T . Then y � f(x) if
and only if there exists an element w of S such that w � x and y � f(w).

(15) Let S, T be non empty relational structures, D be a subset of S, and f

be a map from S into T . Suppose that

(i) sup D exists in S and sup f◦D exists in T , or

(ii) S is complete and antisymmetric and T is complete and antisymmetric.

If f is monotone, then sup(f◦D) ¬ f(sup D).

(16) Let S, T be non empty reflexive antisymmetric relational structures, D

be a directed non empty subset of S, and f be a map from S into T .
Suppose sup D exists in S and sup f◦D exists in T or S is up-complete
and T is up-complete. If f is monotone, then sup(f◦D) ¬ f(sup D).

(17) Let S, T be non empty relational structures, D be a subset of S, and f

be a map from S into T . Suppose that

(i) inf D exists in S and inf f◦D exists in T , or

(ii) S is complete and antisymmetric and T is complete and antisymmetric.

If f is monotone, then f(inf D) ¬ inf(f◦D).

(18) Let S, T be up-complete lattices, f be a map from S into T , and N be
a monotone non empty net structure over S. If f is monotone, then f ·N
is monotone.

Let S, T be up-complete lattices, let f be a monotone map from S into T ,
and let N be a monotone non empty net structure over S. Observe that f ·N
is monotone.

The following two propositions are true:

(19) Let S, T be up-complete lattices and f be a map from S into T . Suppose
that for every net N in S holds f(lim inf N) ¬ lim inf(f ·N). Let D be a
directed non empty subset of S. Then sup(f◦D) = f(sup D).

(20) Let S, T be complete lattices, f be a map from S into T , N be a net in
S, j be an element of the carrier of N , and j′ be an element of the carrier
of f · N. Suppose j′ = j. Suppose f is monotone. Then f(d−eS{N(k); k
ranges over elements of the carrier of N : k  j}) ¬ d−eT {(f ·N)(l); l ranges
over elements of the carrier of f ·N : l  j′}.
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5. Necessary and Sufficient Conditions of Scott-continuity

We now state two propositions:

(21) Let S, T be complete Scott top-lattices and f be a map from S into
T . Then f is continuous if and only if for every net N in S holds
f(lim inf N) ¬ lim inf(f ·N).

(22) Let S, T be complete Scott top-lattices and f be a map from S into T .
Then f is continuous if and only if f is directed-sups-preserving.

Let S, T be complete Scott top-lattices. Observe that every map from S into
T which is continuous is also directed-sups-preserving and every map from S

into T which is directed-sups-preserving is also continuous.
One can prove the following propositions:

(23) Let S, T be continuous complete Scott top-lattices and f be a map from
S into T . Then f is continuous if and only if for every element x of S and
for every element y of T holds y � f(x) iff there exists an element w of S

such that w � x and y � f(w).
(24) Let S, T be continuous complete Scott top-lattices and f be a map from

S into T . Then f is continuous if and only if for every element x of S holds
f(x) =

⊔
T {f(w);w ranges over elements of S: w � x}.

(25) Let S be a lattice, T be a complete lattice, and f be a map from S into
T . Suppose that for every element x of S holds f(x) =

⊔
T {f(w);w ranges

over elements of S: w ¬ x ∧ w is compact}. Then f is monotone.

(26) Let S, T be complete Scott top-lattices and f be a map from S into T .
Suppose that for every element x of S holds f(x) =

⊔
T {f(w);w ranges

over elements of S: w ¬ x ∧ w is compact}. Let x be an element of S.
Then f(x) =

⊔
T {f(w);w ranges over elements of S: w � x}.

(27) Let S, T be complete Scott top-lattices and f be a map from S into
T . Suppose S is algebraic and T is algebraic. Then f is continuous if and
only if for every element x of S and for every element k of T such that
k ∈ the carrier of CompactSublatt(T ) holds k ¬ f(x) iff there exists an
element j of S such that j ∈ the carrier of CompactSublatt(S) and j ¬ x

and k ¬ f(j).
(28) Let S, T be complete Scott top-lattices and f be a map from S into T .

Suppose S is algebraic and T is algebraic. Then f is continuous if and only
if for every element x of S holds f(x) =

⊔
T {f(w);w ranges over elements

of S: w ¬ x ∧ w is compact}.
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The papers [6], [4], [2], [7], [1], [3], [5], and [8] provide the terminology and
notation for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme NonUniqRe-
cExD deals with a non empty set A, an element B of A, and a ternary predicate
P, and states that:

There exists a function f from N into A such that f(0) = B and
for every element n of N holds P[n, f(n), f(n + 1)]

provided the following condition is satisfied:
• For every natural number n and for every element x of A there

exists an element y of A such that P[n, x, y].
The scheme NonUniqFinRecExD deals with a non empty set A, an element

B of A, a natural number C, and a ternary predicate P, and states that:
There exists a finite sequence p of elements of A such that len p =
C but p(1) = B or C = 0 but for every natural number n such
that 1 ¬ n and n ¬ C − 1 holds P[n, p(n), p(n + 1)]

provided the parameters meet the following requirement:
• Let n be a natural number. Suppose 1 ¬ n and n ¬ C − 1. Let

x be an element of A. Then there exists an element y of A such
that P[n, x, y].

The scheme NonUniqPiFinRecExD deals with a non empty setA, an element
B of A, a natural number C, and a ternary predicate P, and states that:
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There exists a finite sequence p of elements of A such that len p =
C but π1p = B or C = 0 but for every natural number n such that
1 ¬ n and n ¬ C − 1 holds P[n, πnp, πn+1p]

provided the following condition is met:
• Let n be a natural number. Suppose 1 ¬ n and n ¬ C − 1. Let

x be an element of A. Then there exists an element y of A such
that P[n, x, y].

The following two propositions are true:

(1) For every real number x holds x < bxc+ 1.

(2) For all real numbers x, y such that x  0 and y > 0 holds x
bx

y
c+1 < y.

2. Division and Rest of Division

The following propositions are true:

(3) For every natural number n holds n is empty iff n = 0.

(4) For every natural number n holds 0÷ n = 0.

(5) For every non empty natural number n holds n÷ n = 1.

(6) For every natural number n holds n÷ 1 = n.

(7) For all natural numbers i, j, k, l such that i ¬ j and k ¬ j holds if
i = (j −′ k) + l, then k = (j −′ i) + l.

(8) For all natural numbers i, n such that i ∈ Seg n holds (n−′ i)+1 ∈ Seg n.

(9) For all natural numbers i, j such that j < i holds (i−′ (j+1))+1 = i−′ j.
(10) For all natural numbers i, j such that i  j holds j −′ i = 0.

(11) For all non empty natural numbers i, j holds i−′ j < i.

(12) Let n, k be natural numbers. Suppose k ¬ n. Then the n-th power of 2
= (the k-th power of 2) ·(the (n−′ k)-th power of 2).

(13) For all natural numbers n, k such that k ¬ n holds the k-th power of 2
| the n-th power of 2.

(14) For all natural numbers n, k such that k > 0 and n÷k = 0 holds n < k.

(15) For all natural numbers n, k such that k > 0 and k ¬ n holds n÷k  1.

(16) For all natural numbers n, k such that k 6= 0 holds (n+k)÷k = (n÷k)+1.

(17) For all natural numbers n, k, i such that k | n and 1 ¬ n and 1 ¬ i and
i ¬ k holds (n−′ i)÷ k = (n÷ k)− 1.

(18) Let n, k be natural numbers. Suppose k ¬ n. Then (the n-th power of
2) ÷(the k-th power of 2) = the (n−′ k)-th power of 2.

(19) For every natural number n such that n > 0 holds (the n-th power of 2)
mod 2 = 0.
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(20) For every natural number n such that n > 0 holds n mod 2 = 0 iff
(n−′ 1) mod 2 = 1.

(21) For every non empty natural number n such that n 6= 1 holds n > 1.

(22) For all natural numbers n, k such that n ¬ k and k < n + n holds
k ÷ n = 1.

(23) For every natural number n holds n is even iff n mod 2 = 0.
(24) For every natural number n holds n is odd iff n mod 2 = 1.

(25) For all natural numbers n, k, t such that 1 ¬ t and k ¬ n and 2 · t | k
holds n÷ t is even iff (n−′ k)÷ t is even.

(26) For all natural numbers n, m, k such that n ¬ m holds n÷ k ¬ m÷ k.

(27) For all natural numbers n, k such that k ¬ 2 · n holds (k + 1)÷ 2 ¬ n.

(28) For every even natural number n holds n÷ 2 = (n + 1)÷ 2.

(29) For all natural numbers n, k, i holds n÷ k ÷ i = n÷ k · i.
Let n be a natural number. We say that n is non trivial if and only if:

(Def. 1) n 6= 0 and n 6= 1.

One can verify that every natural number which is non trivial is also non
empty.

One can check that there exists a natural number which is non trivial.
The following two propositions are true:

(30) For every natural number k holds k is non trivial iff k is non empty and
k 6= 1.

(31) For every non trivial natural number k holds k  2.

The scheme Ind from 2 concerns a unary predicate P, and states that:
For every non trivial natural number k holds P[k]

provided the following conditions are met:
• P[2], and
• For every non trivial natural number k such that P[k] holds P[k+

1].
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The notation and terminology used here are introduced in the following papers:
[10], [9], [7], [3], [2], [4], [12], [6], [5], [14], [1], [8], [15], [11], and [13].

1. Binary Arithmetics

The following propositions are true:

(1) For every non empty natural number n and for every tuple F of n and
Boolean holds Absval(F ) < the n-th power of 2.

(2) For every non empty natural number n and for all tuples F1, F2 of n

and Boolean such that Absval(F1) = Absval(F2) holds F1 = F2.

(3) For all finite sequences t1, t2 such that Rev(t1) = Rev(t2) holds t1 = t2.

(4) For every natural number n holds 〈0, . . . , 0︸ ︷︷ ︸
n+1

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 a 〈0〉.

(5) For every natural number n holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ Boolean∗.

(6) For every natural number n and for every tuple y of n and Boolean such
that y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds ¬y = n 7→ 1.

(7) For every non empty natural number n and for every tuple F of n and
Boolean such that F = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds Absval(F ) = 0.

(8) Let n be a non empty natural number and F be a tuple of n and Boolean.
If F = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then Absval(¬F ) = (the n-th power of 2)−1.
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(9) For every natural number n holds Rev(〈0, . . . , 0︸ ︷︷ ︸
n

〉) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(10) For every natural number n and for every tuple y of n and Boolean such
that y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds Rev(¬y) = ¬y.

(11) Bin1(1) = 〈true〉.
(12) For every non empty natural number n holds Absval(Bin1(n)) = 1.

(13) For all elements x, y of Boolean holds x ∨ y = true iff x = true or
y = true and x ∨ y = false iff x = false and y = false.

(14) For all elements x, y of Boolean holds add ovfl(〈x〉, 〈y〉) = true iff x =
true and y = true.

(15) ¬〈false〉 = 〈true〉.
(16) ¬〈true〉 = 〈false〉.
(17) 〈false〉+ 〈false〉 = 〈false〉.
(18) 〈false〉+ 〈true〉 = 〈true〉 and 〈true〉+ 〈false〉 = 〈true〉.
(19) 〈true〉+ 〈true〉 = 〈false〉.
(20) Let n be a non empty natural number and x, y be tuples of n and

Boolean. Suppose πnx = true and πn carry(x, Bin1(n)) = true. Let k be
a non empty natural number. If k 6= 1 and k ¬ n, then πkx = true and
πk carry(x, Bin1(n)) = true.

(21) For every non empty natural number n and for every tuple x of n and
Boolean such that πnx = true and πn carry(x, Bin1(n)) = true holds
carry(x, Bin1(n)) = ¬Bin1(n).

(22) Let n be a non empty natural number and x, y be tuples of n and
Boolean. If y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 and πnx = true and πn carry(x, Bin1(n)) = true,

then x = ¬y.

(23) For every non empty natural number n and for every tuple y of n and
Boolean such that y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds carry(¬y, Bin1(n)) = ¬Bin1(n).

(24) Let n be a non empty natural number and x, y be tuples of n and
Boolean. If y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then add ovfl(x, Bin1(n)) = true iff x = ¬y.

(25) For every non empty natural number n and for every tuple z of n and
Boolean such that z = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 holds ¬z + Bin1(n) = z.
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2. Binary Sequences

Let n, k be natural numbers. The functor n -BinarySequence(k) yielding a
tuple of n and Boolean is defined by:

(Def. 1) For every natural number i such that i ∈ Seg n holds
πi(n -BinarySequence(k)) = ((k ÷ (the (i −′ 1)-th power of 2)) mod 2 =
0→ false, true).

One can prove the following propositions:

(26) For every natural number n holds n -BinarySequence(0) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(27) For all natural numbers n, k such that k < the n-th power of 2 holds
((n + 1) -BinarySequence(k))(n + 1) = false.

(28) Let n be a non empty natural number and k be a natural num-
ber. If k < the n-th power of 2, then (n + 1) -BinarySequence(k) =
(n -BinarySequence(k)) a 〈false〉.

(29) For every non empty natural number n holds (n+1) -BinarySequence(the
n-th power of 2) = 〈0, . . . , 0︸ ︷︷ ︸

n

〉 a 〈true〉.

(30) Let n be a non empty natural number and k be a natural number.
Suppose the n-th power of 2 ¬ k and k < the (n + 1)-th power of 2. Then
((n + 1) -BinarySequence(k))(n + 1) = true.

(31) Let n be a non empty natural number and k be a natural number.
Suppose the n-th power of 2 ¬ k and k < the (n + 1)-th power of 2. Then
(n + 1) -BinarySequence(k) = (n -BinarySequence(k −′ (the n-th power of
2)))a〈true〉.

(32) Let n be a non empty natural number and k be a natural number.
Suppose k < the n-th power of 2. Let x be a tuple of n and Boolean. If
x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then n -BinarySequence(k) = ¬x iff k = (the n-th power of

2)−1.

(33) Let n be a non empty natural number and k be a natural number. If k+
1 < the n-th power of 2, then add ovfl(n -BinarySequence(k), Bin1(n)) =
false.

(34) Let n be a non empty natural number and k be a natural num-
ber. If k + 1 < the n-th power of 2, then n -BinarySequence(k + 1) =
(n -BinarySequence(k)) + Bin1(n).

(35) For all natural numbers n, i holds (n + 1) -BinarySequence(i) = 〈i mod
2〉 a (n -BinarySequence(i÷ 2)).

(36) For every non empty natural number n and for every natural number k
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such that k < the n-th power of 2 holds Absval(n -BinarySequence(k)) =
k.

(37) For every non empty natural number n and for every tuple x of n and
Boolean holds n -BinarySequence(Absval(x)) = x.
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The articles [13], [12], [6], [17], [1], [15], [11], [5], [7], [10], [8], [18], [2], [19], [14],
[16], [3], [4], and [9] provide the terminology and notation for this paper.

1. Trees and Binary Trees

One can prove the following propositions:

(1) For every set D and for every finite sequence p and for every natural
number n such that p ∈ D∗ holds p¹ Seg n ∈ D∗.

(2) For every binary tree T holds every element of T is a finite sequence of
elements of Boolean.

Let T be a binary tree. We see that the element of T is a finite sequence of
elements of Boolean.

Next we state several propositions:

(3) For every tree T such that T = {0, 1}∗ holds T is binary.

(4) For every tree T such that T = {0, 1}∗ holds Leaves(T ) = ∅.
(5) Let T be a binary tree, n be a natural number, and t be an element of

T . If t ∈ T -level(n), then t is a tuple of n and Boolean.

(6) For every tree T such that for every element t of T holds succ t = {t a

〈0〉, t a 〈1〉} holds Leaves(T ) = ∅.
(7) For every tree T such that for every element t of T holds succ t = {t a

〈0〉, t a 〈1〉} holds T is binary.

(8) For every tree T holds T = {0, 1}∗ iff for every element t of T holds
succ t = {t a 〈0〉, t a 〈1〉}.
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In this article we present several logical schemes. The scheme Decorated-
BinTreeEx deals with a non empty set A, an element B of A, and a ternary
predicate P, and states that:

There exists a binary tree D decorated with elements of A such
that dom D = {0, 1}∗ and D(ε) = B and for every node x of D

holds P[D(x), D(x a 〈0〉), D(x a 〈1〉)]
provided the following requirement is met:
• For every element a of A there exist elements b, c of A such that
P[a, b, c].

The scheme DecoratedBinTreeEx1 deals with a non empty set A, an element
B of A, and two binary predicates P, Q, and states that:

There exists a binary tree D decorated with elements of A such
that dom D = {0, 1}∗ and D(ε) = B and for every node x of D

holds P[D(x), D(x a 〈0〉)] and Q[D(x), D(x a 〈1〉)]
provided the following requirements are met:
• For every element a of A there exists an element b of A such that
P[a, b], and

• For every element a of A there exists an element b of A such that
Q[a, b].

Let T be a binary tree and let n be a non empty natural number. The functor
NumberOnLevel(n, T ) yields a function from T -level(n) into N and is defined
as follows:

(Def. 1) For every element t of T such that t ∈ T -level(n) and for every tuple F of
n and Boolean such that F = Rev(t) holds (NumberOnLevel(n, T ))(t) =
Absval(F ) + 1.

Let T be a binary tree and let n be a non empty natural number. Note that
NumberOnLevel(n, T ) is one-to-one.

2. Full Trees

Let T be a tree. We say that T is full if and only if:

(Def. 2) T = {0, 1}∗.
We now state three propositions:

(9) {0, 1}∗ is a tree.

(10) For every tree T such that T = {0, 1}∗ and for every natural number n

holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ T -level(n).

(11) Let T be a tree. Suppose T = {0, 1}∗. Let n be a non empty natural
number and y be a tuple of n and Boolean. Then y ∈ T -level(n).
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Let T be a binary tree and let n be a natural number. Observe that T -level(n)
is finite.

One can check that every tree which is full is also binary.
One can verify that there exists a tree which is full.
One can prove the following proposition

(12) For every full tree T and for every non empty natural number n holds
Seg (the n-th power of 2) ⊆ rng NumberOnLevel(n, T ).

Let T be a full tree and let n be a non empty natural number. The functor
FinSeqLevel(n, T ) yielding a finite sequence of elements of T -level(n) is defined
by:

(Def. 3) FinSeqLevel(n, T ) = (NumberOnLevel(n, T ))−1.

Let T be a full tree and let n be a non empty natural number. Note that
FinSeqLevel(n, T ) is one-to-one.

Next we state a number of propositions:

(13) For every full tree T and for every non empty natural number n holds
(NumberOnLevel(n, T ))(〈0, . . . , 0︸ ︷︷ ︸

n

〉) = 1.

(14) Let T be a full tree, n be a non empty natural number, and y be a tuple of
n and Boolean. If y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then (NumberOnLevel(n, T ))(¬y) = the

n-th power of 2.

(15) For every full tree T and for every non empty natural number n holds
(FinSeqLevel(n, T ))(1) = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

(16) Let T be a full tree, n be a non empty natural number, and y be a
tuple of n and Boolean. If y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, then (FinSeqLevel(n, T ))(the

n-th power of 2) = ¬y.

(17) Let T be a full tree, n be a non empty natural number, and i be a natural
number. If i ∈ Seg (the n-th power of 2), then (FinSeqLevel(n, T ))(i) =
Rev(n -BinarySequence(i−′ 1)).

(18) For every full tree T and for every natural number n holds T -level(n) =
the n-th power of 2.

(19) For every full tree T and for every non empty natural number n holds
len FinSeqLevel(n, T ) = the n-th power of 2.

(20) For every full tree T and for every non empty natural number n holds
dom FinSeqLevel(n, T ) = Seg (the n-th power of 2).

(21) For every full tree T and for every non empty natural number n holds
rng FinSeqLevel(n, T ) = T -level(n).

(22) For every full tree T holds (FinSeqLevel(1, T ))(1) = 〈0〉.
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(23) For every full tree T holds (FinSeqLevel(1, T ))(2) = 〈1〉.
(24) Let T be a full tree and n, i be non empty natural numbers. Suppose

i ¬ the (n + 1)-th power of 2. Let F be a tuple of n and Boolean. If
F = (FinSeqLevel(n, T ))((i + 1) ÷ 2), then (FinSeqLevel(n + 1, T ))(i) =
F a 〈(i + 1) mod 2〉.
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Summary. This article contains a definition of T1 reflex of a topological
space as a quotient space which is T1 and fulfils the condition that every conti-
nuous map f from a topological space T into S being T1 space can be considered
as a superposition of two continuous maps: the first from T onto its T1 reflex and
the last from T1 reflex of T into S.

MML Identifier: T 1TOPSP.

The articles [11], [9], [7], [2], [3], [6], [12], [5], [10], [8], [4], and [1] provide the
notation and terminology for this paper.

In this paper X denotes a non empty set and w denotes a set.
One can prove the following propositions:

(1) For every set y and for all functions f , g holds (f ·g)−1(y) = g−1(f−1(y)).
(2) Let T be a non empty topological space, A be a non empty partition

of the carrier of T , and y be a subset of the carrier of the decomposition
space of A. Then (the projection onto A)−1(y) =

⋃
y.

(3) For every non empty set X and for every partition S of X and for every
subset A of S holds

⋃
S \⋃

A =
⋃

(S \A).
(4) For every non empty set X and for every subset A of X and for every

partition S of X such that A ∈ S holds
⋃

(S \ {A}) = X \A.

(5) Let T be a non empty topological space, S be a non empty partition of
the carrier of T , A be a subset of the decomposition space of S, and B be
a subset of T . If B =

⋃
A, then A is closed iff B is closed.

Let X be a non empty set, let x be an element of X, and let S1 be a partition
of X. The functor EqClass(x, S1) yielding a subset of X is defined by:

(Def. 1) x ∈ EqClass(x, S1) and EqClass(x, S1) ∈ S1.

Next we state two propositions:
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(6) For all partitions S1, S2 of X such that for every element x of X holds
EqClass(x, S1) = EqClass(x, S2) holds S1 = S2.

(7) For every non empty set X holds {X} is a partition of X.

Let X be a set. Partition family of X is defined by:

(Def. 2) For every set S such that S ∈ it holds S is a partition of X.

Let X be a non empty set. One can check that there exists a partition of X

which is non empty.
One can prove the following proposition

(8) For every set X and for every partition p of X holds {p} is a partition
family of X.

Let X be a set. One can check that there exists a partition family of X which
is non empty.

Next we state two propositions:

(9) For every partition S1 of X and for all elements x, y of X

such that EqClass(x, S1) meets EqClass(y, S1) holds EqClass(x, S1) =
EqClass(y, S1).

(10) Let A be a set, X be a non empty set, and S be a partition of X. If
A ∈ S, then there exists an element x of X such that A = EqClass(x, S).

Let X be a non empty set and let F be a non empty partition family of X.
The functor Intersection F yields a non empty partition of X and is defined as
follows:

(Def. 3) For every element x of X holds EqClass(x, Intersection F ) =⋂{EqClass(x, S);S ranges over partitions of X: S ∈ F}.
In the sequel T denotes a non empty topological space.
One can prove the following proposition

(11) {A; A ranges over partitions of the carrier of T : A is closed} is a partition
family of the carrier of T .

Let us consider T . The functor ClosedPartitions T yields a non empty par-
tition family of the carrier of T and is defined by:

(Def. 4) ClosedPartitions T = {A; A ranges over partitions of the carrier of T : A

is closed}.
Let T be a non empty topological space. The functor T1-reflex T yields a

topological space and is defined as follows:

(Def. 5) T1-reflex T = the decomposition space of Intersection ClosedPartitions T.

Let us consider T . Note that T1-reflex T is strict and non empty.
Next we state the proposition

(12) For every non empty topological space T holds T1-reflex T is a T1 space.

Let T be a non empty topological space. The functor T1-reflect T yielding a
continuous map from T into T1-reflex T is defined as follows:
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(Def. 6) T1-reflect T = the projection onto Intersection ClosedPartitions T.

The following four propositions are true:

(13) Let T , T1 be non empty topological spaces and f be a continuous map
from T into T1. Suppose T1 is a T1 space. Then

(i) {f−1({z}); z ranges over elements of T1: z ∈ rng f} is a partition of the
carrier of T , and

(ii) for every subset A of T such that A ∈ {f−1({z}); z ranges over elements
of T1: z ∈ rng f} holds A is closed.

(14) Let T , T1 be non empty topological spaces and f be a continuous map
from T into T1. Suppose T1 is a T1 space. Let given w and x be an
element of T . If w = EqClass(x, Intersection ClosedPartitions T ), then w ⊆
f−1({f(x)}).

(15) Let T , T1 be non empty topological spaces and f be a continuous map
from T into T1. Suppose T1 is a T1 space. Let given w. Suppose w ∈ the
carrier of T1-reflex T. Then there exists an element z of T1 such that
z ∈ rng f and w ⊆ f−1({z}).

(16) Let T , T1 be non empty topological spaces and f be a continuous map
from T into T1. Suppose T1 is a T1 space. Then there exists a continuous
map h from T1-reflex T into T1 such that f = h · T1-reflect T.

Let T , S be non empty topological spaces and let f be a continuous map
from T into S. The functor T1-reflex f yields a continuous map from T1-reflex T

into T1-reflex S and is defined as follows:

(Def. 7) T1-reflect S · f = T1-reflex f · T1-reflect T.
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The notation and terminology used in this paper are introduced in the following
articles: [18], [14], [11], [7], [1], [13], [16], [10], [4], [19], [9], [17], [12], [6], [15], [3],
[8], [2], and [5].

1. Subsets as Nets

Let A be a set and let B be a non empty set. Observe that BA is non empty.
In this article we present several logical schemes. The scheme FraenkelInvo-

lution deals with a non empty set A, subsets B, C of A, and a unary functor F
yielding an element of A, and states that:

B = {F(a); a ranges over elements of A : a ∈ C}
provided the parameters have the following properties:
• C = {F(a); a ranges over elements of A : a ∈ B}, and
• For every element a of A holds F(F(a)) = a.

The scheme FraenkelComplement1 deals with a non empty relational struc-
ture A, a family B of subsets of A, a set C, and a unary functor F yielding a
subset of A, and states that:

Bc = {−F(a); a ranges over elements of A : a ∈ C}
provided the parameters meet the following requirement:
• B = {F(a); a ranges over elements of A : a ∈ C}.

The scheme FraenkelComplement2 deals with a non empty relational struc-
ture A, a family B of subsets of A, a set C, and a unary functor F yielding a
subset of A, and states that:

Bc = {F(a); a ranges over elements of A : a ∈ C}
1This work has been supported by KBN Grant 8 T11C 018 12.
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provided the parameters meet the following requirement:
• B = {−F(a); a ranges over elements of A : a ∈ C}.

We now state several propositions:

(1) For every non empty relational structure R and for all elements x, y of
R holds y ∈ −↑x iff x 6¬ y.

(2) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, f

be a map from S into T , and X be a subset of the carrier of T . Then
−f−1(X) = f−1(−X).

(3) For every 1-sorted structure T and for every family F of subsets of T

holds F c = {−a; a ranges over subsets of T : a ∈ F}.
(4) Let R be a non empty relational structure and F be a subset of R. Then
↑F =

⋃{↑x; x ranges over elements of R: x ∈ F} and ↓F =
⋃{↓x; x

ranges over elements of R: x ∈ F}.
(5) Let R be a non empty relational structure, A be a family of subsets of

R, and F be a subset of R. If A = {−↑x; x ranges over elements of R:
x ∈ F}, then Intersect(A) = −↑F.

Let us mention that there exists a FR-structure which is strict, trivial, re-
flexive, non empty, discrete, and finite.

One can check that there exists a top-lattice which is strict, complete, and
trivial.

Let S be a non empty relational structure and let T be an upper-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is sups-preserving.

Let R, S be 1-sorted structures. Let us assume that the carrier of S ⊆ the
carrier of R. The functor incl(S, R) yields a map from S into R and is defined
as follows:

(Def. 1) incl(S,R) = idthe carrier of S .

Let R be a non empty relational structure and let S be a non empty relational
substructure of R. One can check that incl(S,R) is monotone.

Let R be a non empty relational structure and let X be a non empty subset
of the carrier of R. Note that sub(X) is non empty.

Let R be a non empty relational structure and let X be a non empty subset
of the carrier of R. The functor 〈X; id〉 yielding a strict non empty net structure
over R is defined as follows:

(Def. 2) 〈X; id〉 = incl(sub(X), R) · 〈sub(X); id〉.
The functor 〈Xop; id〉 yielding a strict non empty net structure over R is defined
as follows:
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(Def. 3) 〈Xop; id〉 = incl(sub(X), R) · 〈(sub(X))op; id〉.
One can prove the following propositions:

(6) Let R be a non empty relational structure and X be a non empty subset
of R. Then

(i) the carrier of 〈X; id〉 = X,

(ii) 〈X; id〉 is a full relational substructure of R, and
(iii) for every element x of 〈X; id〉 holds 〈X; id〉(x) = x.

(7) Let R be a non empty relational structure and X be a non empty subset
of R. Then

(i) the carrier of 〈Xop; id〉 = X,

(ii) 〈Xop; id〉 is a full relational substructure of Rop, and
(iii) for every element x of 〈Xop; id〉 holds 〈Xop; id〉(x) = x.

Let R be a non empty reflexive relational structure and let X be a non empty
subset of R. One can check that 〈X; id〉 is reflexive and 〈Xop; id〉 is reflexive.

Let R be a non empty transitive relational structure and let X be a non
empty subset of R. Observe that 〈X; id〉 is transitive and 〈Xop; id〉 is transitive.

Let R be a non empty reflexive relational structure and let I be a directed
subset of R. Note that sub(I) is directed.

Let R be a non empty reflexive relational structure and let I be a directed
non empty subset of R. Note that 〈I; id〉 is directed.

Let R be a non empty reflexive relational structure and let F be a filtered
non empty subset of R. One can verify that 〈(sub(F ))op; id〉 is directed.

Let R be a non empty reflexive relational structure and let F be a filtered
non empty subset of R. Note that 〈F op; id〉 is directed.

2. Operations on Families of Open Sets

One can prove the following propositions:

(8) For every topological space T such that T is empty holds the topology
of T = {∅}.

(9) Let T be a trivial non empty topological space. Then
(i) the topology of T = 2the carrier of T , and
(ii) for every point x of T holds the carrier of T = {x} and the topology of

T = {∅, {x}}.
(10) Let T be a trivial non empty topological space. Then {the carrier of T}

is a basis of T and ∅ is a prebasis of T and {∅} is a prebasis of T .

(11) For all sets X, Y and for every family A of subsets of X such that
A = {Y } holds FinMeetCl(A) = {Y,X} and UniCl(A) = {Y, ∅}.
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(12) For every set X and for all families A, B of subsets of X such that
A = B ∪ {X} or B = A \ {X} holds Intersect(A) = Intersect(B).

(13) For every set X and for all families A, B of subsets of X such that
A = B ∪ {X} or B = A \ {X} holds FinMeetCl(A) = FinMeetCl(B).

(14) Let X be a set and A be a family of subsets of X. Suppose X ∈ A. Let
x be a set. Then x ∈ FinMeetCl(A) if and only if there exists a finite non
empty family Y of subsets of X such that Y ⊆ A and x = Intersect(Y ).

(15) For every set X and for every family A of subsets of X holds
UniCl(UniCl(A)) = UniCl(A).

(16) For every set X and for every empty family A of subsets of X holds
UniCl(A) = {∅}.

(17) For every set X and for every empty family A of subsets of X holds
FinMeetCl(A) = {X}.

(18) For every set X and for every family A of subsets of X such that A =
{∅, X} holds UniCl(A) = A and FinMeetCl(A) = A.

(19) Let X, Y be sets, A be a family of subsets of X, and B be a family of
subsets of Y . Then

(i) if A ⊆ B, then UniCl(A) ⊆ UniCl(B), and
(ii) if A = B, then UniCl(A) = UniCl(B).

(20) Let X, Y be sets, A be a family of subsets of X, and B be a family of
subsets of Y . If A = B and X ∈ A and X ⊆ Y, then FinMeetCl(B) =
{Y } ∪ FinMeetCl(A).

(21) For every set X and for every family A of subsets of X holds
UniCl(FinMeetCl(UniCl(A))) = UniCl(FinMeetCl(A)).

3. Bases

Next we state a number of propositions:

(22) Let T be a topological space and K be a family of subsets of T . Then
the topology of T = UniCl(K) if and only if K is a basis of T .

(23) Let T be a topological space and K be a family of subsets of the carrier
of T . Then K is a prebasis of T if and only if FinMeetCl(K) is a basis of
T .

(24) Let T be a non empty topological space and B be a family of subsets of
T . If UniCl(B) is a prebasis of T , then B is a prebasis of T .

(25) Let T1, T2 be topological spaces and B be a basis of T1. Suppose the
carrier of T1 = the carrier of T2 and B is a basis of T2. Then the topology
of T1 = the topology of T2.
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(26) Let T1, T2 be topological spaces and P be a prebasis of T1. Suppose
the carrier of T1 = the carrier of T2 and P is a prebasis of T2. Then the
topology of T1 = the topology of T2.

(27) For every topological space T holds every basis of T is open and is a
prebasis of T .

(28) For every topological space T holds every prebasis of T is open.

(29) Let T be a non empty topological space and B be a prebasis of T . Then
B ∪ {the carrier of T} is a prebasis of T .

(30) For every topological space T and for every basis B of T holds B ∪ {the
carrier of T} is a basis of T .

(31) Let T be a topological space, B be a basis of T , and A be a subset of T .
Then A is open if and only if for every point p of T such that p ∈ A there
exists a subset a of T such that a ∈ B and p ∈ a and a ⊆ A.

(32) Let T be a topological space and B be a family of subsets of T . Suppose
that

(i) B ⊆ the topology of T , and
(ii) for every subset A of T such that A is open and for every point p of T

such that p ∈ A there exists a subset a of T such that a ∈ B and p ∈ a

and a ⊆ A.

Then B is a basis of T .

(33) Let S be a topological space, T be a non empty topological space, K be
a basis of T , and f be a map from S into T . Then f is continuous if and
only if for every subset A of T such that A ∈ K holds f−1(−A) is closed.

(34) Let S be a topological space, T be a non empty topological space, K be
a basis of T , and f be a map from S into T . Then f is continuous if and
only if for every subset A of T such that A ∈ K holds f−1(A) is open.

(35) Let S be a topological space, T be a non empty topological space, K be
a prebasis of T , and f be a map from S into T . Then f is continuous if
and only if for every subset A of T such that A ∈ K holds f−1(−A) is
closed.

(36) Let S be a topological space, T be a non empty topological space, K be
a prebasis of T , and f be a map from S into T . Then f is continuous if
and only if for every subset A of T such that A ∈ K holds f−1(A) is open.

(37) Let T be a non empty topological space, x be a point of T , X be a subset
of T , and K be a basis of T . Suppose that for every subset A of T such
that A ∈ K and x ∈ A holds A meets X. Then x ∈ X.

(38) Let T be a non empty topological space, x be a point of T , X be a subset
of T , and K be a prebasis of T . Suppose that for every finite family Z

of subsets of T such that Z ⊆ K and x ∈ Intersect(Z) holds Intersect(Z)
meets X. Then x ∈ X.
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(39) Let T be a non empty topological space, K be a prebasis of T , x be a
point of T , and N be a net in T . Suppose that for every subset A of T

such that A ∈ K and x ∈ A holds N is eventually in A. Let S be a subset
of T . If rng netmap(N, T ) ⊆ S, then x ∈ S.

4. Product Topologies

The following four propositions are true:

(40) Let T1, T2 be non empty topological spaces, B1 be a basis of T1, and B2

be a basis of T2. Then {[: a, b :]; a ranges over subsets of T1, b ranges over
subsets of T2: a ∈ B1 ∧ b ∈ B2} is a basis of [:T1, T2 :].

(41) Let T1, T2 be non empty topological spaces, B1 be a prebasis of T1, and
B2 be a prebasis of T2. Then {[: the carrier of T1, b :]; b ranges over subsets
of T2: b ∈ B2}∪{[: a, the carrier of T2 :]; a ranges over subsets of T1: a ∈ B1}
is a prebasis of [:T1, T2 :].

(42) Let X1, X2 be sets, A be a family of subsets of [:X1, X2 :], A1 be a non
empty family of subsets of X1, and A2 be a non empty family of subsets
of X2. Suppose A = {[: a, b :]; a ranges over subsets of X1, b ranges over
subsets of X2: a ∈ A1 ∧ b ∈ A2}. Then Intersect(A) = [: Intersect(A1),
Intersect(A2) :].

(43) Let T1, T2 be non empty topological spaces, B1 be a prebasis of T1, and
B2 be a prebasis of T2. Suppose

⋃
B1 = the carrier of T1 and

⋃
B2 = the

carrier of T2. Then {[: a, b :]; a ranges over subsets of T1, b ranges over
subsets of T2: a ∈ B1 ∧ b ∈ B2} is a prebasis of [:T1, T2 :].

5. Topological Augmentations

Let R be a relational structure. A FR-structure is called a topological au-
gmentation of R if:

(Def. 4) The relational structure of it = the relational structure of R.

Let R be a relational structure and let T be a topological augmentation of
R. We introduce T is correct as a synonym of T is topological space-like.

Let R be a relational structure. Note that there exists a topological augmen-
tation of R which is correct, discrete, and strict.

We now state three propositions:

(44) Every FR-structure T is a topological augmentation of T .

(45) Let S be a FR-structure and T be a topological augmentation of S. Then
S is a topological augmentation of T .
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(46) Let R be a relational structure and T1 be a topological augmentation of
R. Then every topological augmentation of T1 is a topological augmenta-
tion of R.

Let R be a non empty relational structure. One can check that every topo-
logical augmentation of R is non empty.

Let R be a reflexive relational structure. Note that every topological au-
gmentation of R is reflexive.

Let R be a transitive relational structure. One can check that every topolo-
gical augmentation of R is transitive.

Let R be an antisymmetric relational structure. One can verify that every
topological augmentation of R is antisymmetric.

Let R be a complete non empty relational structure. Observe that every
topological augmentation of R is complete.

We now state three propositions:

(47) Let S be a complete reflexive antisymmetric non empty relational struc-
ture and T be a non empty reflexive relational structure. Suppose the
relational structure of S = the relational structure of T . Let A be a subset
of S and C be a subset of T . If A = C and A is inaccessible, then C is
inaccessible.

(48) Let S be a non empty reflexive relational structure and T be a topological
augmentation of S. If the topology of T = σ(S), then T is correct.

(49) Let S be a complete lattice and T be a topological augmentation of S.
If the topology of T = σ(S), then T is Scott.

Let R be a complete lattice. One can verify that there exists a topological
augmentation of R which is Scott, strict, and correct.

The following three propositions are true:

(50) Let S, T be complete Scott non empty reflexive transitive antisymme-
tric FR-structures. Suppose the relational structure of S = the relational
structure of T . Let F be a subset of S and G be a subset of T . If F = G,

then if F is open, then G is open.

(51) For every complete lattice S and for every Scott topological augmenta-
tion T of S holds the topology of T = σ(S).

(52) Let S, T be complete lattices. Suppose the relational structure of S = the
relational structure of T . Then σ(S) = σ(T ).

Let R be a complete lattice. Observe that every topological augmentation
of R which is Scott is also correct.
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6. Refinements

Let T be a topological structure. A topological space is said to be a topolo-
gical extension of T if:

(Def. 5) The carrier of T = the carrier of it and the topology of T ⊆ the topology
of it.

One can prove the following proposition

(53) Let S be a topological structure. Then there exists a topological exten-
sion T of S such that T is strict and the topology of S is a prebasis of
T .

Let T be a topological structure. Note that there exists a topological exten-
sion of T which is strict and discrete.

Let T1, T2 be topological structures. A topological space is said to be a
refinement of T1 and T2 if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it = (the carrier of T1) ∪ (the carrier of T2), and
(ii) (the topology of T1) ∪ (the topology of T2) is a prebasis of it.

Let T1 be a non empty topological structure and let T2 be a topological
structure. Observe that every refinement of T1 and T2 is non empty and every
refinement of T2 and T1 is non empty.

The following propositions are true:

(54) Let T1, T2 be topological structures and T , T ′ be refinements of T1 and
T2. Then the topological structure of T = the topological structure of T ′.

(55) For all topological structures T1, T2 holds every refinement of T1 and T2

is a refinement of T2 and T1.

(56) Let T1, T2 be topological structures, T be a refinement of T1 and T2, and
X be a family of subsets of T . Suppose X = (the topology of T1) ∪ (the
topology of T2). Then the topology of T = UniCl(FinMeetCl(X)).

(57) Let T1, T2 be topological structures. Suppose the carrier of T1 = the
carrier of T2. Then every refinement of T1 and T2 is a topological extension
of T1 and a topological extension of T2.

(58) Let T1, T2 be non empty topological spaces, T be a refinement of T1 and
T2, B1 be a prebasis of T1, and B2 be a prebasis of T2. Then B1∪B2∪{the
carrier of T1, the carrier of T2} is a prebasis of T .

(59) Let T1, T2 be non empty topological spaces, B1 be a basis of T1, B2 be
a basis of T2, and T be a refinement of T1 and T2. Then B1∪B2∪B1 eB2

is a basis of T .

(60) Let T1, T2 be non empty topological spaces. Suppose the carrier of T1 =
the carrier of T2. Let T be a refinement of T1 and T2. Then (the topology
of T1) e (the topology of T2) is a basis of T .
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(61) Let L be a non empty relational structure, T1, T2 be correct topologi-
cal augmentations of L, and T be a refinement of T1 and T2. Then (the
topology of T1) e (the topology of T2) is a basis of T .
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The articles [14], [1], [13], [12], [3], [5], [9], [4], [10], [11], [2], [7], and [8] provide
the notation and terminology for this paper.

1. On the Elements of Product of Relational Structures

Let S, T be non empty upper-bounded relational structures. One can check
that [:S, T :] is upper-bounded.

Let S, T be non empty lower-bounded relational structures. Observe that
[:S, T :] is lower-bounded.

The following propositions are true:

(1) Let S, T be non empty relational structures. If [: S, T :] is upper-bounded,
then S is upper-bounded and T is upper-bounded.

(2) Let S, T be non empty relational structures. If [:S, T :] is lower-bounded,
then S is lower-bounded and T is lower-bounded.

(3) For all upper-bounded antisymmetric non empty relational structures S,
T holds >[: S, T :] = 〈〈>S , >T 〉〉.

(4) For all lower-bounded antisymmetric non empty relational structures S,
T holds ⊥[: S, T :] = 〈〈⊥S , ⊥T 〉〉.
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(5) Let S, T be lower-bounded antisymmetric non empty relational structu-
res and D be a subset of [:S, T :]. If [:S, T :] is complete or sup D exists in
[:S, T :], then sup D = 〈〈 sup π1(D), sup π2(D)〉〉.

(6) Let S, T be upper-bounded antisymmetric non empty relational struc-
tures and D be a subset of [:S, T :]. If [:S, T :] is complete or inf D exists
in [:S, T :], then inf D = 〈〈 inf π1(D), inf π2(D)〉〉.

(7) Let S, T be non empty relational structures and x, y be elements of [:S,

T :]. Then x ¬ {y} if and only if the following conditions are satisfied:
(i) x1 ¬ {y1}, and
(ii) x2 ¬ {y2}.
(8) Let S, T be non empty relational structures and x, y, z be elements

of [:S, T :]. Then x ¬ {y, z} if and only if the following conditions are
satisfied:

(i) x1 ¬ {y1, z1}, and
(ii) x2 ¬ {y2, z2}.
(9) Let S, T be non empty relational structures and x, y be elements of [:S,

T :]. Then x  {y} if and only if the following conditions are satisfied:
(i) x1  {y1}, and
(ii) x2  {y2}.

(10) Let S, T be non empty relational structures and x, y, z be elements
of [:S, T :]. Then x  {y, z} if and only if the following conditions are
satisfied:

(i) x1  {y1, z1}, and
(ii) x2  {y2, z2}.

(11) Let S, T be non empty antisymmetric relational structures and x, y

be elements of [:S, T :]. Then inf {x, y} exists in [:S, T :] if and only if inf
{x1, y1} exists in S and inf {x2, y2} exists in T .

(12) Let S, T be non empty antisymmetric relational structures and x, y be
elements of [:S, T :]. Then sup {x, y} exists in [:S, T :] if and only if sup
{x1, y1} exists in S and sup {x2, y2} exists in T .

(13) Let S, T be antisymmetric relational structures with g.l.b.’s and x, y be
elements of [:S, T :]. Then (x u y)1 = x1 u y1 and (x u y)2 = x2 u y2.

(14) Let S, T be antisymmetric relational structures with l.u.b.’s and x, y be
elements of [:S, T :]. Then (x t y)1 = x1 t y1 and (x t y)2 = x2 t y2.

(15) Let S, T be antisymmetric relational structures with g.l.b.’s, x1, y1 be
elements of S, and x2, y2 be elements of T . Then 〈〈x1 u y1, x2 u y2〉〉 = 〈〈x1,

x2〉〉 u 〈〈y1, y2〉〉.
(16) Let S, T be antisymmetric relational structures with l.u.b.’s, x1, y1 be

elements of S, and x2, y2 be elements of T . Then 〈〈x1 t y1, x2 t y2〉〉 = 〈〈x1,

x2〉〉 t 〈〈y1, y2〉〉.
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Let S be an antisymmetric relational structure with l.u.b.’s and g.l.b.’s and
let x, y be elements of S. Let us note that the predicate y is a complement of x

is symmetric.
One can prove the following propositions:

(17) Let S, T be bounded antisymmetric relational structures with l.u.b.’s
and g.l.b.’s and x, y be elements of [:S, T :]. Then x is a complement of y

if and only if x1 is a complement of y1 and x2 is a complement of y2.

(18) Let S, T be antisymmetric up-complete non empty reflexive relational
structures, a, c be elements of S, and b, d be elements of T . If 〈〈a, b〉〉 � 〈〈c,
d〉〉, then a� c and b� d.

(19) Let S, T be up-complete non empty posets, a, c be elements of S, and b,
d be elements of T . Then 〈〈a, b〉〉 � 〈〈c, d〉〉 if and only if a� c and b� d.

(20) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and x, y be elements of [:S, T :]. If x � y, then x1 � y1 and
x2 � y2.

(21) Let S, T be up-complete non empty posets and x, y be elements of [:S,

T :]. Then x� y if and only if the following conditions are satisfied:
(i) x1 � y1, and
(ii) x2 � y2.

(22) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and x be an element of [:S, T :]. If x is compact, then x1 is
compact and x2 is compact.

(23) Let S, T be up-complete non empty posets and x be an element of [:S,

T :]. If x1 is compact and x2 is compact, then x is compact.

2. On the Subsets of Product of Relational Structures

The following propositions are true:

(24) Let S, T be antisymmetric relational structures with g.l.b.’s and X, Y

be subsets of [:S, T :]. Then π1(X uY ) = π1(X)u π1(Y ) and π2(X uY ) =
π2(X) u π2(Y ).

(25) Let S, T be antisymmetric relational structures with l.u.b.’s and X, Y

be subsets of [:S, T :]. Then π1(X tY ) = π1(X)t π1(Y ) and π2(X tY ) =
π2(X) t π2(Y ).

(26) For all relational structures S, T and for every subset X of [:S, T :] holds
↓X ⊆ [: ↓π1(X), ↓π2(X) :].

(27) For all relational structures S, T and for every subset X of S and for
every subset Y of T holds [: ↓X, ↓Y :] = ↓[:X, Y :].



48 artur korniłowicz

(28) For all relational structures S, T and for every subset X of [:S, T :] holds
π1(↓X) ⊆ ↓π1(X) and π2(↓X) ⊆ ↓π2(X).

(29) Let S be a relational structure, T be a reflexive relational structure, and
X be a subset of [:S, T :]. Then π1(↓X) = ↓π1(X).

(30) Let S be a reflexive relational structure, T be a relational structure, and
X be a subset of [:S, T :]. Then π2(↓X) = ↓π2(X).

(31) For all relational structures S, T and for every subset X of [:S, T :] holds
↑X ⊆ [: ↑π1(X), ↑π2(X) :].

(32) For all relational structures S, T and for every subset X of S and for
every subset Y of T holds [: ↑X, ↑Y :] = ↑[:X, Y :].

(33) For all relational structures S, T and for every subset X of [:S, T :] holds
π1(↑X) ⊆ ↑π1(X) and π2(↑X) ⊆ ↑π2(X).

(34) Let S be a relational structure, T be a reflexive relational structure, and
X be a subset of [:S, T :]. Then π1(↑X) = ↑π1(X).

(35) Let S be a reflexive relational structure, T be a relational structure, and
X be a subset of [:S, T :]. Then π2(↑X) = ↑π2(X).

(36) Let S, T be non empty relational structures, s be an element of S, and
t be an element of T . Then [: ↓s, ↓t :] = ↓〈〈s, t〉〉.

(37) For all non empty relational structures S, T and for every element x of
[:S, T :] holds π1(↓x) ⊆ ↓(x1) and π2(↓x) ⊆ ↓(x2).

(38) Let S be a non empty relational structure, T be a non empty reflexive
relational structure, and x be an element of [:S, T :]. Then π1(↓x) = ↓(x1).

(39) Let S be a non empty reflexive relational structure, T be a non empty
relational structure, and x be an element of [:S, T :]. Then π2(↓x) = ↓(x2).

(40) Let S, T be non empty relational structures, s be an element of S, and
t be an element of T . Then [: ↑s, ↑t :] = ↑〈〈s, t〉〉.

(41) For all non empty relational structures S, T and for every element x of
[:S, T :] holds π1(↑x) ⊆ ↑(x1) and π2(↑x) ⊆ ↑(x2).

(42) Let S be a non empty relational structure, T be a non empty reflexive
relational structure, and x be an element of [:S, T :]. Then π1(↑x) = ↑(x1).

(43) Let S be a non empty reflexive relational structure, T be a non empty
relational structure, and x be an element of [:S, T :]. Then π2(↑x) = ↑(x2).

(44) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: ↓↓s, ↓↓t :] = ↓↓〈〈s, t〉〉.
(45) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. Then π1(↓↓x) ⊆ ↓↓(x1) and
π2(↓↓x) ⊆ ↓↓(x2).

(46) Let S be an up-complete non empty poset, T be an up-complete lower-
bounded non empty poset, and x be an element of [:S, T :]. Then π1(↓↓x) =
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↓↓(x1).
(47) Let S be an up-complete lower-bounded non empty poset, T be an up-

complete non empty poset, and x be an element of [:S, T :]. Then π2(↓↓x) =
↓↓(x2).

(48) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: ↑↑s, ↑↑t :] = ↑↑〈〈s, t〉〉.
(49) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. Then π1(↑↑x) ⊆ ↑↑(x1) and
π2(↑↑x) ⊆ ↑↑(x2).

(50) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: compactbelow(s), compactbelow(t) :] =
compactbelow(〈〈s, t〉〉).

(51) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and x be an element of [:S, T :]. Then π1(compactbelow(x)) ⊆
compactbelow(x1) and π2(compactbelow(x)) ⊆ compactbelow(x2).

(52) Let S be an up-complete non empty poset, T be an up-complete
lower-bounded non empty poset, and x be an element of [:S, T :]. Then
π1(compactbelow(x)) = compactbelow(x1).

(53) Let S be an up-complete lower-bounded non empty poset, T be an
up-complete non empty poset, and x be an element of [: S, T :]. Then
π2(compactbelow(x)) = compactbelow(x2).

Let S be a non empty reflexive relational structure. One can verify that
every subset of S which is empty is also open.

The following propositions are true:

(54) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and X be a subset of [:S, T :]. If X is open, then π1(X) is open
and π2(X) is open.

(55) Let S, T be up-complete non empty posets, X be a subset of S, and Y

be a subset of T . If X is open and Y is open, then [:X, Y :] is open.

(56) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and X be a subset of [:S, T :]. If X is inaccessible, then π1(X)
is inaccessible and π2(X) is inaccessible.

(57) Let S, T be antisymmetric up-complete non empty reflexive relational
structures, X be an upper subset of S, and Y be an upper subset of T . If
X is inaccessible and Y is inaccessible, then [:X, Y :] is inaccessible.

(58) Let S, T be antisymmetric up-complete non empty reflexive relational
structures, X be a subset of S, and Y be a subset of T such that [:X, Y :]
is directly closed. Then

(i) if Y 6= ∅, then X is directly closed, and
(ii) if X 6= ∅, then Y is directly closed.
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(59) Let S, T be antisymmetric up-complete non empty reflexive relational
structures, X be a subset of S, and Y be a subset of T . Suppose X is
directly closed and Y is directly closed. Then [:X, Y :] is directly closed.

(60) Let S, T be antisymmetric up-complete non empty reflexive relational
structures and X be a subset of [:S, T :]. If X has the property (S), then
π1(X) has the property (S) and π2(X) has the property (S).

(61) Let S, T be up-complete non empty posets, X be a subset of S, and Y

be a subset of T . If X has the property (S) and Y has the property (S),
then [:X, Y :] has the property (S).

3. On the Products of Relational Structures

We now state the proposition

(62) Let S, T be non empty reflexive relational structures. Suppose the rela-
tional structure of S = the relational structure of T and S is inf-complete.
Then T is inf-complete.

Let S be an inf-complete non empty reflexive relational structure. Observe
that the relational structure of S is inf-complete.

Let S, T be inf-complete non empty reflexive relational structures. Observe
that [:S, T :] is inf-complete.

The following proposition is true

(63) Let S, T be non empty reflexive relational structures. If [:S, T :] is inf-
complete, then S is inf-complete and T is inf-complete.

Let S, T be complemented bounded antisymmetric non empty relational
structures with g.l.b.’s and l.u.b.’s. Observe that [:S, T :] is complemented.

Next we state the proposition

(64) Let S, T be bounded antisymmetric relational structures with g.l.b.’s
and l.u.b.’s. If [:S, T :] is complemented, then S is complemented and T is
complemented.

Let S, T be distributive antisymmetric non empty relational structures with
g.l.b.’s and l.u.b.’s. Observe that [:S, T :] is distributive.

The following propositions are true:

(65) Let S be an antisymmetric relational structure with g.l.b.’s and l.u.b.’s
and T be a reflexive antisymmetric relational structure with g.l.b.’s and
l.u.b.’s. If [:S, T :] is distributive, then S is distributive.

(66) Let S be a reflexive antisymmetric relational structure with g.l.b.’s and
l.u.b.’s and T be an antisymmetric relational structure with g.l.b.’s and
l.u.b.’s. If [:S, T :] is distributive, then T is distributive.
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Let S, T be meet-continuous semilattices. Observe that [:S, T :] satisfies MC.
We now state the proposition

(67) For all semilattices S, T such that [:S, T :] is meet-continuous holds S is
meet-continuous and T is meet-continuous.

Let S, T be up-complete inf-complete non empty posets satisfying axiom of
approximation. Note that [:S, T :] satisfies axiom of approximation.

Let S, T be continuous inf-complete non empty posets. Observe that [:S, T :]
is continuous.

Next we state the proposition

(68) Let S, T be up-complete lower-bounded non empty posets. If [:S, T :] is
continuous, then S is continuous and T is continuous.

Let S, T be up-complete lower-bounded sup-semilattices satisfying axiom
K. Note that [:S, T :] satisfies axiom K.

Let S, T be complete algebraic lower-bounded sup-semilattices. Note that
[:S, T :] is algebraic.

The following proposition is true

(69) For all lower-bounded non empty posets S, T such that [:S, T :] is alge-
braic holds S is algebraic and T is algebraic.

Let S, T be arithmetic lower-bounded lattices. Note that [:S, T :] is arithme-
tic.

Next we state the proposition

(70) For all lower-bounded lattices S, T such that [:S, T :] is arithmetic holds
S is arithmetic and T is arithmetic.
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The papers [8], [5], [1], [7], [6], [3], [4], and [2] provide the notation and termi-
nology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) 3 = {0, 1, 2}.
(2) 2 \ 1 = {1}.
(3) 3 \ 1 = {1, 2}.
(4) 3 \ 2 = {2}.
(5) Let L be an antisymmetric reflexive relational structure with g.l.b.’s and

l.u.b.’s and a, b be elements of L. Then a u b = b if and only if a t b = a.

(6) For every lattice L and for all elements a, b, c of L holds (aub)t(auc) ¬
a u (b t c).

(7) For every lattice L and for all elements a, b, c of L holds a t (b u c) ¬
(a t b) u (a t c).

1This work has been supported by KBN Grant 8 T11C 018 12.
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(8) For every lattice L and for all elements a, b, c of L such that a ¬ c holds
a t (b u c) ¬ (a t b) u c.

2. Diamond and Pentagon

The relational structure N5 is defined as follows:

(Def. 1) N5 = 〈{0, 3 \ 1, 2, 3 \ 2, 3},⊆〉.
Let us note that N5 is strict reflexive transitive and antisymmetric and N5

has g.l.b.’s and l.u.b.’s.
The relational structure M3 is defined by:

(Def. 2) M3 = 〈{0, 1, 2 \ 1, 3 \ 2, 3},⊆〉.
Let us note that M3 is strict reflexive transitive and antisymmetric and M3

has g.l.b.’s and l.u.b.’s.
One can prove the following two propositions:

(9) Let L be a lattice. Then the following statements are equivalent
(i) there exists a full sublattice K of L such that N5 and K are isomorphic,
(ii) there exist elements a, b, c, d, e of L such that a 6= b and a 6= c and

a 6= d and a 6= e and b 6= c and b 6= d and b 6= e and c 6= d and c 6= e and
d 6= e and au b = a and au c = a and cu e = c and du e = d and bu c = a

and b u d = b and c u d = a and b t c = e and c t d = e.

(10) Let L be a lattice. Then the following statements are equivalent
(i) there exists a full sublattice K of L such that M3 and K are isomorphic,
(ii) there exist elements a, b, c, d, e of L such that a 6= b and a 6= c and

a 6= d and a 6= e and b 6= c and b 6= d and b 6= e and c 6= d and c 6= e and
d 6= e and au b = a and au c = a and aud = a and bu e = b and cu e = c

and du e = d and bu c = a and bu d = a and cu d = a and bt c = e and
b t d = e and c t d = e.

Let L be a non empty relational structure. We say that L is modular if and
only if:

(Def. 3) For all elements a, b, c of L such that a ¬ c holds at (bu c) = (at b)u c.

Let us note that every non empty antisymmetric reflexive relational structure
with g.l.b.’s which is distributive is also modular.

Next we state two propositions:

(11) Let L be a lattice. Then L is modular if and only if it is not true that
there exists a full sublattice K of L such that N5 and K are isomorphic.

(12) Let L be a lattice. Suppose L is modular. Then L is distributive if and
only if it is not true that there exists a full sublattice K of L such that
M3 and K are isomorphic.
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3. Intervals of a Lattice

Let L be a non empty relational structure and let a, b be elements of L. The
functor [a, b] yielding a subset of L is defined as follows:

(Def. 4) For every element c of L holds c ∈ [a, b] iff a ¬ c and c ¬ b.

Let L be a non empty relational structure and let I1 be a subset of L. We
say that I1 is interval if and only if:

(Def. 5) There exist elements a, b of L such that I1 = [a, b].
Let L be a non empty reflexive transitive relational structure. One can check

that every subset of L which is non empty and interval is also directed and every
subset of L which is non empty and interval is also filtered.

Let L be a non empty relational structure and let a, b be elements of L.
Observe that [a, b] is interval.

Next we state the proposition

(13) For every non empty reflexive transitive relational structure L and for
all elements a, b of L holds [a, b] = ↑a ∩ ↓b.

Let L be a poset with g.l.b.’s and let a, b be elements of L. Observe that
sub([a, b]) is meet-inheriting.

Let L be a poset with l.u.b.’s and let a, b be elements of L. Note that
sub([a, b]) is join-inheriting.

One can prove the following proposition

(14) Let L be a lattice and a, b be elements of L. If L is modular, then
sub([b, a t b]) and sub([a u b, a]) are isomorphic.

Let us mention that there exists a lattice which is finite and non empty.
Let us note that every semilattice which is finite is also lower-bounded.
Let us note that every lattice which is finite is also complete.
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The notation and terminology used in this paper have been introduced in the
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[15], [8], [22], [18], [2], [3], [9], [21], and [4].

1. Product Topologies

The following propositions are true:

(1) Let x, y, z, Z be sets. Then Z ⊆ {x, y, z} if and only if one of the
following conditions is satisfied:

(i) Z = ∅, or
(ii) Z = {x}, or
(iii) Z = {y}, or
(iv) Z = {z}, or
(v) Z = {x, y}, or
(vi) Z = {y, z}, or
(vii) Z = {x, z}, or
(viii) Z = {x, y, z}.

(2) For every set X and for all families A, B of subsets of X such that
B = A \ {∅} or A = B ∪ {∅} holds UniCl(A) = UniCl(B).

(3) Let T be a topological space and K be a family of subsets of T . Then
K is a basis of T if and only if K \ {∅} is a basis of T .

Let F be a binary relation. We say that F is topological space yielding if
and only if:

1This work has been supported by KBN Grant 8 T11C 018 12.
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(Def. 1) For every set x such that x ∈ rng F holds x is a topological space.

One can verify that every function which is topological space yielding is also
1-sorted yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which
is topological space yielding.

Let I be a set. One can check that there exists a many sorted set indexed
by I which is topological space yielding and nonempty.

Let J be a non empty set, let A be a topological space yielding many sorted
set indexed by J , and let j be an element of J . Then A(j) is a topological space.

Let I be a set and let J be a topological space yielding many sorted set
indexed by I. The product prebasis for J is a family of subsets of

∏
(the support

of J) and is defined by the condition (Def. 2).

(Def. 2) Let x be a subset of
∏

(the support of J). Then x ∈ the product prebasis
for J if and only if there exists a set i and there exists a topological space
T and there exists a subset V of T such that i ∈ I and V is open and
T = J(i) and x =

∏
((the support of J) +· (i, V )).

Next we state the proposition

(4) For every set X and for every family A of subsets of X holds 〈X,

UniCl(FinMeetCl(A))〉 is topological space-like.

Let I be a set and let J be a topological space yielding nonempty many
sorted set indexed by I. The functor

∏
J yielding a strict topological space is

defined by:

(Def. 3) The carrier of
∏

J =
∏

(the support of J) and the product prebasis for
J is a prebasis of

∏
J.

Let I be a set and let J be a topological space yielding nonempty many
sorted set indexed by I. One can check that

∏
J is non empty.

Let I be a non empty set, let J be a topological space yielding nonempty
many sorted set indexed by I, and let i be an element of I. Then J(i) is a non
empty topological space.

Let I be a set and let J be a topological space yielding nonempty many
sorted set indexed by I. Observe that every element of the carrier of

∏
J is

function-like and relation-like.
Let I be a non empty set, let J be a topological space yielding nonempty

many sorted set indexed by I, let x be an element of the carrier of
∏

J, and let
i be an element of I. Then x(i) is an element of J(i).

Let I be a non empty set, let J be a topological space yielding nonempty
many sorted set indexed by I, and let i be an element of I. The functor proj(J, i)
yielding a map from

∏
J into J(i) is defined as follows:

(Def. 4) proj(J, i) = proj(the support of J , i).
One can prove the following propositions:
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(5) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and P be a subset of the
carrier of J(i). Then (proj(J, i))−1(P ) =

∏
((the support of J) +· (i, P )).

(6) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, and i be an element of I. Then proj(J, i) is
continuous.

(7) Let X be a non empty topological space, I be a non empty set, J be a
topological space yielding nonempty many sorted set indexed by I, and f

be a map from X into
∏

J. Then f is continuous if and only if for every
element i of I holds proj(J, i) · f is continuous.

2. Injective Spaces

Let Z be a topological structure. We say that Z is injective if and only if
the condition (Def. 5) is satisfied.

(Def. 5) Let X be a non empty topological space and f be a map from X into Z.
Suppose f is continuous. Let Y be a non empty topological space. Suppose
X is a subspace of Y . Then there exists a map g from Y into Z such that
g is continuous and g¹the carrier of X = f.

One can prove the following two propositions:

(8) Let I be a non empty set and J be a topological space yielding nonempty
many sorted set indexed by I. If for every element i of I holds J(i) is
injective, then

∏
J is injective.

(9) Let T be a non empty topological space. Suppose T is injective. Let S

be a non empty subspace of T . If S is a retract of T , then S is injective.

Let X be a 1-sorted structure, let Y be a topological structure, and let f be
a map from X into Y . The functor Im f yielding a subspace of Y is defined as
follows:

(Def. 6) Im f = Y ¹ rng f.

Let X be a non empty 1-sorted structure, let Y be a non empty topological
structure, and let f be a map from X into Y . Note that Im f is non empty.

One can prove the following proposition

(10) Let X be a 1-sorted structure, Y be a topological structure, and f be a
map from X into Y . Then the carrier of Im f = rng f.

Let X be a 1-sorted structure, let Y be a non empty topological structure,
and let f be a map from X into Y . The functor f◦ yielding a map from X into
Im f is defined by:

(Def. 7) f◦ = f.
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Next we state the proposition

(11) Let X, Y be non empty topological spaces and f be a map from X into
Y . If f is continuous, then f◦ is continuous.

Let X be a 1-sorted structure, let Y be a non empty topological structure,
and let f be a map from X into Y . One can verify that f◦ is onto.

Let X, Y be topological structures. We say that X is a topological retract
of Y if and only if:

(Def. 8) There exists a map f from Y into Y such that f is continuous and
f · f = f and Im f and X are homeomorphic.

The following proposition is true

(12) Let T , S be non empty topological spaces. Suppose T is injective. Let f

be a map from T into S. If f◦ is a homeomorphism, then T is a topological
retract of S.

The Sierpiński space is a strict topological structure and is defined by the
conditions (Def. 9).

(Def. 9)(i) The carrier of the Sierpiński space = {0, 1}, and
(ii) the topology of the Sierpiński space = {∅, {1}, {0, 1}}.
Let us note that the Sierpiński space is non empty and topological space-like.
One can check that the Sierpiński space is discernible.
Let us note that the Sierpiński space is injective.
Let I be a set and let S be a non empty 1-sorted structure. One can verify

that I 7−→ S is nonempty.
Let I be a set and let T be a topological space. One can check that I 7−→ T

is topological space yielding.
Let I be a set and let L be a reflexive relational structure. One can check

that I 7−→ L is reflexive-yielding.
Let I be a non empty set and let L be a non empty antisymmetric relational

structure. Note that
∏

(I 7−→ L) is antisymmetric.
Let I be a non empty set and let L be a non empty transitive relational

structure. One can check that
∏

(I 7−→ L) is transitive.
The following two propositions are true:

(13) Let T be a Scott topological augmentation of 21
⊆. Then the topology of

T = the topology of the Sierpiński space.

(14) Let I be a non empty set. Then {∏((the support of I 7−→ the Sierpiński
space)+·(i, {1})) : i ranges over elements of I} is a prebasis of

∏
(I 7−→ the

Sierpiński space).

Let I be a non empty set and let L be a complete lattice. One can check
that

∏
(I 7−→ L) is complete and has l.u.b.’s.

Let I be a non empty set and let X be an algebraic lower-bounded lattice.
One can check that

∏
(I 7−→ X) is algebraic.
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Next we state several propositions:

(15) Let X be a non empty set. Then there exists a map f from 2X
⊆ into∏

(X 7−→ 21
⊆) such that f is isomorphic and for every subset Y of X holds

f(Y ) = χY,X .

(16) Let I be a non empty set and T be a Scott topological augmentation
of

∏
(I 7−→ 21

⊆). Then the topology of T = the topology of
∏

(I 7−→ the
Sierpiński space).

(17) Let T , S be non empty topological spaces. Suppose the carrier of T = the
carrier of S and the topology of T = the topology of S and T is injective.
Then S is injective.

(18) For every non empty set I holds every Scott topological augmentation
of

∏
I 7−→ 21

⊆ is injective.

(19) Let T be a T0-space. Then there exists a non empty set M and there
exists a map f from T into

∏
(M 7−→ the Sierpiński space) such that f◦

is a homeomorphism.

(20) Let T be a T0-space. Suppose T is injective. Then there exists a non
empty set M such that T is a topological retract of

∏
(M 7−→ the Sier-

piński space).
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1. The Properties of Some Functions

In this paper A, B, X, Y denote sets.
Let X be an empty set. Note that

⋃
X is empty.

Next we state several propositions:

(1) (δX)◦A ⊆ [:A, A :].
(2) (δX)−1([:A, A :]) ⊆ A.

(3) For every subset A of X holds (δX)−1([:A, A :]) = A.

(4) dom〈π2(X×Y ), π1(X×Y )〉 = [:X, Y :] and rng〈π2(X×Y ), π1(X×Y )〉 =
[:Y, X :].

(5) 〈π2(X × Y ), π1(X × Y )〉◦[:A, B :] ⊆ [:B, A :].
(6) For every subset A of X and for every subset B of Y holds 〈π2(X ×

Y ), π1(X × Y )〉◦[:A, B :] = [:B, A :].
(7) 〈π2(X × Y ), π1(X × Y )〉 is one-to-one.

Let X, Y be sets. One can verify that 〈π2(X×Y ), π1(X×Y )〉 is one-to-one.
The following proposition is true

(8) 〈π2(X × Y ), π1(X × Y )〉−1 = 〈π2(Y ×X), π1(Y ×X)〉.

1This work has been supported by KBN Grant 8 T11C 018 12.
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2. The Properties of the Relational Structures

Next we state a number of propositions:

(9) Let L1 be a semilattice, L2 be a non empty relational structure, x, y

be elements of L1, and x1, y1 be elements of L2. Suppose the relational
structure of L1 = the relational structure of L2 and x = x1 and y = y1.

Then x u y = x1 u y1.

(10) Let L1 be a sup-semilattice, L2 be a non empty relational structure, x,
y be elements of L1, and x1, y1 be elements of L2. Suppose the relational
structure of L1 = the relational structure of L2 and x = x1 and y = y1.

Then x t y = x1 t y1.

(11) Let L1 be a semilattice, L2 be a non empty relational structure, X, Y

be subsets of L1, and X1, Y1 be subsets of L2. Suppose the relational
structure of L1 = the relational structure of L2 and X = X1 and Y = Y1.

Then X u Y = X1 u Y1.

(12) Let L1 be a sup-semilattice, L2 be a non empty relational structure, X,
Y be subsets of L1, and X1, Y1 be subsets of L2. Suppose the relational
structure of L1 = the relational structure of L2 and X = X1 and Y = Y1.

Then X t Y = X1 t Y1.

(13) Let L1 be an antisymmetric up-complete non empty reflexive relational
structure, L2 be a non empty reflexive relational structure, x be an element
of L1, and y be an element of L2. Suppose the relational structure of
L1 = the relational structure of L2 and x = y. Then ↓↓x = ↓↓y and ↑↑x = ↑↑y.

(14) Let L1 be a meet-continuous semilattice and L2 be a non empty reflexive
relational structure. Suppose the relational structure of L1 = the relational
structure of L2. Then L2 is meet-continuous.

(15) Let L1 be a continuous antisymmetric non empty reflexive relational
structure and L2 be a non empty reflexive relational structure. Suppose
the relational structure of L1 = the relational structure of L2. Then L2 is
continuous.

(16) Let L1, L2 be relational structures, A be a subset of L1, and J be a subset
of L2. Suppose the relational structure of L1 = the relational structure of
L2 and A = J. Then sub(A) = sub(J).

(17) Let L1, L2 be non empty relational structures, A be a relational sub-
structure of L1, and J be a relational substructure of L2. Suppose that

(i) the relational structure of L1 = the relational structure of L2,
(ii) the relational structure of A = the relational structure of J , and
(iii) A is meet-inheriting.

Then J is meet-inheriting.



on the characterization of hausdorff spaces 65

(18) Let L1, L2 be non empty relational structures, A be a relational sub-
structure of L1, and J be a relational substructure of L2. Suppose that

(i) the relational structure of L1 = the relational structure of L2,
(ii) the relational structure of A = the relational structure of J , and
(iii) A is join-inheriting.

Then J is join-inheriting.

(19) Let L1 be an up-complete antisymmetric non empty reflexive relational
structure, L2 be a non empty reflexive relational structure, X be a subset
of L1, and Y be a subset of L2 such that the relational structure of L1 = the
relational structure of L2 and X = Y and X has the property (S). Then
Y has the property (S).

(20) Let L1 be an up-complete antisymmetric non empty reflexive relational
structure, L2 be a non empty reflexive relational structure, X be a subset
of L1, and Y be a subset of L2. Suppose the relational structure of L1 = the
relational structure of L2 and X = Y and X is directly closed. Then Y is
directly closed.

(21) Let N be an antisymmetric relational structure with g.l.b.’s, D, E be
subsets of N , and X be an upper subset of N . If D ∩X = ∅, then (D u
E) ∩X = ∅.

(22) Let R be a reflexive non empty relational structure. Then
4the carrier of R ⊆ (the internal relation of R) ∩ (the internal relation of
R`).

(23) Let R be an antisymmetric relational structure. Then (the internal rela-
tion of R) ∩ (the internal relation of R`) ⊆ 4the carrier of R.

(24) Let R be an upper-bounded semilattice and X be a subset of [:R, R :].
If inf (uR)◦X exists in R, then uR preserves inf of X.

Let R be a complete semilattice. One can verify that uR is infs-preserving.
Next we state the proposition

(25) Let R be a lower-bounded sup-semilattice and X be a subset of [:R, R :].
If sup (tR)◦X exists in R, then tR preserves sup of X.

Let R be a complete sup-semilattice. Note that tR is sups-preserving.
One can prove the following propositions:

(26) For every semilattice N and for every subset A of N such that sub(A)
is meet-inheriting holds A is filtered.

(27) For every sup-semilattice N and for every subset A of N such that sub(A)
is join-inheriting holds A is directed.

(28) Let N be a transitive relational structure and A, J be subsets of N . If
A is coarser than ↑J, then ↑A ⊆ ↑J.

(29) For every transitive relational structure N and for all subsets A, J of N

such that A is finer than ↓J holds ↓A ⊆ ↓J.
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(30) Let N be a non empty reflexive relational structure, x be an element of
N , and X be a subset of N . If x ∈ X, then ↑x ⊆ ↑X.

(31) Let N be a non empty reflexive relational structure, x be an element of
N , and X be a subset of N . If x ∈ X, then ↓x ⊆ ↓X.

3. On the Hausdorff Spaces

In the sequel R, S, T denote non empty topological spaces.
Let T be a non empty topological structure. One can verify that the topo-

logical structure of T is non empty.
Let T be a topological space. Observe that the topological structure of T is

topological space-like.
Next we state three propositions:

(32) Let S, T be topological structures and B be a basis of S. Suppose the
topological structure of S = the topological structure of T . Then B is a
basis of T .

(33) Let S, T be topological structures and B be a prebasis of S. Suppose
the topological structure of S = the topological structure of T . Then B is
a prebasis of T .

(34) Every basis of T is non empty.

Let T be a non empty topological space. Note that every basis of T is non
empty.

The following proposition is true

(35) For every point x of T holds every basis of x is non empty.

Let T be a non empty topological space and let x be a point of T . One can
check that every basis of x is non empty.

Next we state a number of propositions:

(36) Let S1, T1, S2, T2 be non empty topological spaces, f be a map from S1

into S2, and g be a map from T1 into T2. Suppose that
(i) the topological structure of S1 = the topological structure of T1,
(ii) the topological structure of S2 = the topological structure of T2,
(iii) f = g, and
(iv) f is continuous.

Then g is continuous.

(37) 4the carrier of T = {p; p ranges over points of [:T, T :]: π1((the carrier of
T )× the carrier of T )(p) = π2((the carrier of T )× the carrier of T )(p)}.

(38) δthe carrier of T is a continuous map from T into [:T, T :].
(39) π1((the carrier of S) × the carrier of T ) is a continuous map from [:S,

T :] into S.
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(40) π2((the carrier of S) × the carrier of T ) is a continuous map from [:S,

T :] into T .

(41) Let f be a continuous map from T into S and g be a continuous map
from T into R. Then 〈f, g〉 is a continuous map from T into [:S, R :].

(42) 〈π2((the carrier of S)×the carrier of T ), π1((the carrier of S)×the carrier
of T )〉 is a continuous map from [:S, T :] into [:T, S :].

(43) Let f be a map from [:S, T :] into [:T, S :]. Suppose f = 〈π2((the carrier
of S)× the carrier of T ), π1((the carrier of S)× the carrier of T )〉. Then f

is a homeomorphism.

(44) [:S, T :] and [:T, S :] are homeomorphic.

(45) Let T be a Hausdorff non empty topological space and f , g be continuous
maps from S into T . Then

(i) for every subset X of S such that X = {p; p ranges over points of S:
f(p) 6= g(p)} holds X is open, and

(ii) for every subset X of S such that X = {p; p ranges over points of S:
f(p) = g(p)} holds X is closed.

(46) T is Hausdorff iff for every subset A of [:T, T :] such that A =
4the carrier of T holds A is closed.

Let S, T be topological structures. Note that there exists a refinement of S

and T which is strict.
Let S be a non empty topological structure and let T be a topological struc-

ture. Observe that there exists a refinement of S and T which is strict and non
empty and there exists a refinement of T and S which is strict and non empty.

We now state the proposition

(47) Let R, S, T be topological structures. Then R is a refinement of S and
T if and only if the topological structure of R is a refinement of S and T .

For simplicity, we adopt the following convention: S1, S2, T1, T2 are non
empty topological spaces, R is a refinement of [:S1, T1 :] and [:S2, T2 :], R1 is a
refinement of S1 and S2, and R2 is a refinement of T1 and T2.

The following three propositions are true:

(48) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the
carrier of T2. Then {[:U1, V1 :] ∩ [:U2, V2 :];U1 ranges over subsets of S1,
U2 ranges over subsets of S2, V1 ranges over subsets of T1, V2 ranges over
subsets of T2: U1 is open ∧ U2 is open ∧ V1 is open ∧ V2 is open} is a basis
of R.

(49) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the
carrier of T2. Then the carrier of [:R1, R2 :] = the carrier of R and the
topology of [:R1, R2 :] = the topology of R.

(50) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the
carrier of T2. Then [:R1, R2 :] is a refinement of [:S1, T1 :] and [:S2, T2 :].
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Summary. We introduce the field of quotients over an integral domain
following the well-known construction using pairs over integral domains. In ad-
dition we define ring homomorphisms and prove some basic facts about fields of
quotients including their universal property.

MML Identifier: QUOFIELD.

The papers [1], [13], [10], [2], [3], [7], [9], [11], [12], [5], [6], [8], and [4] provide
the terminology and notation for this paper.

1. Preliminaries

Let I be a non empty zero structure. The functor Q(I) is a subset of [: the
carrier of I, the carrier of I :] and is defined by:

(Def. 1) For every set u holds u ∈ Q(I) iff there exist elements a, b of the carrier
of I such that u = 〈〈a, b〉〉 and b 6= 0I .

Next we state the proposition

(1) For every non degenerated non empty multiplicative loop with zero struc-
ture I holds Q(I) is non empty.

The following two propositions are true:

(2) Let I be a non degenerated non empty multiplicative loop with zero
structure and u be an element of Q(I). Then u2 6= 0I .

(3) Let I be a non degenerated non empty multiplicative loop with zero
structure and u be an element of Q(I). Then u1 is an element of the
carrier of I and u2 is an element of the carrier of I.
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Let I be a non degenerated integral domain-like non empty double loop
structure and let u, v be elements of Q(I). The functor u+v yielding an element
of Q(I) is defined by:

(Def. 2) u + v = 〈〈u1 · v2 + v1 · u2, u2 · v2〉〉.
Let I be a non degenerated integral domain-like non empty double loop

structure and let u, v be elements of Q(I). The functor u · v yielding an element
of Q(I) is defined as follows:

(Def. 3) u · v = 〈〈u1 · v1, u2 · v2〉〉.
The following two propositions are true:

(4) Let I be a non degenerated integral domain-like associative commutative
Abelian add-associative distributive non empty double loop structure and
u, v, w be elements of Q(I). Then u+(v+w) = (u+v)+w and u+v = v+u.

(5) Let I be a non degenerated integral domain-like associative commutative
Abelian non empty double loop structure and u, v, w be elements of Q(I).
Then u · (v · w) = (u · v) · w and u · v = v · u.

Let I be a non degenerated integral domain-like associative commutative
Abelian add-associative distributive non empty double loop structure and let u,
v be elements of Q(I). Let us notice that the functor u + v is commutative.

Let I be a non degenerated integral domain-like associative commutative
Abelian non empty double loop structure and let u, v be elements of Q(I). Let
us note that the functor u · v is commutative.

Let I be a non degenerated non empty multiplicative loop with zero structure
and let u be an element of Q(I). The functor QClass(u) is a subset of Q(I) and
is defined as follows:

(Def. 4) For every element z of Q(I) holds z ∈ QClass(u) iff z1 · u2 = z2 · u1.

The following proposition is true

(6) Let I be a non degenerated commutative non empty multiplicative loop
with zero structure and u be an element of Q(I). Then u ∈ QClass(u).

Let I be a non degenerated commutative non empty multiplicative loop with
zero structure and let u be an element of Q(I). Observe that QClass(u) is non
empty.

Let I be a non degenerated non empty multiplicative loop with zero struc-
ture. The functor Quot(I) is a family of subsets of Q(I) and is defined by:

(Def. 5) For every subset A of Q(I) holds A ∈ Quot(I) iff there exists an element
u of Q(I) such that A = QClass(u).

Next we state the proposition

(7) For every non degenerated non empty multiplicative loop with zero struc-
ture I holds Quot(I) is non empty.

Next we state two propositions:
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(8) Let I be a non degenerated integral domain-like ring and u, v be elements
of Q(I). If there exists an element w of Quot(I) such that u ∈ w and v ∈ w,

then u1 · v2 = v1 · u2.

(9) For every non degenerated integral domain-like ring I and for all elements
u, v of Quot(I) such that u ∩ v 6= ∅ holds u = v.

2. Defining the Operations

Let I be a non degenerated integral domain-like ring and let u, v be elements
of Quot(I). The functor u +q v yielding an element of Quot(I) is defined by the
condition (Def. 6).

(Def. 6) Let z be an element of Q(I). Then z ∈ u +q v if and only if there exist
elements a, b of Q(I) such that a ∈ u and b ∈ v and z1 · (a2 · b2) =
z2 · (a1 · b2 + b1 · a2).

Let I be a non degenerated integral domain-like ring and let u, v be elements
of Quot(I). The functor u ·q v yielding an element of Quot(I) is defined by the
condition (Def. 7).

(Def. 7) Let z be an element of Q(I). Then z ∈ u ·q v if and only if there exist
elements a, b of Q(I) such that a ∈ u and b ∈ v and z1·(a2·b2) = z2·(a1·b1).

Next we state the proposition

(10) Let I be a non degenerated non empty multiplicative loop with zero
structure and u be an element of Q(I). Then QClass(u) is an element of
Quot(I).

We now state two propositions:

(11) For every non degenerated integral domain-like ring I and for all elements
u, v of Q(I) holds QClass(u) +q QClass(v) = QClass(u + v).

(12) For every non degenerated integral domain-like ring I and for all elements
u, v of Q(I) holds QClass(u) ·q QClass(v) = QClass(u · v).

Let I be a non degenerated integral domain-like ring. The functor 0q(I)
yielding an element of Quot(I) is defined by:

(Def. 8) For every element z of Q(I) holds z ∈ 0q(I) iff z1 = 0I .

Let I be a non degenerated integral domain-like ring. The functor 1q(I)
yielding an element of Quot(I) is defined as follows:

(Def. 9) For every element z of Q(I) holds z ∈ 1q(I) iff z1 = z2.

Let I be a non degenerated integral domain-like ring and let u be an element
of Quot(I). The functor −qu yielding an element of Quot(I) is defined by:

(Def. 10) For every element z of Q(I) holds z ∈ −qu iff there exists an element a

of Q(I) such that a ∈ u and z1 · a2 = z2 · −a1.
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Let I be a non degenerated integral domain-like ring and let u be an element
of Quot(I). Let us assume that u 6= 0q(I). The functor u−1

q yields an element of
Quot(I) and is defined by:

(Def. 11) For every element z of Q(I) holds z ∈ u−1
q iff there exists an element a

of Q(I) such that a ∈ u and z1 · a1 = z2 · a2.

The following propositions are true:

(13) Let I be a non degenerated integral domain-like ring and u, v, w be
elements of Quot(I). Then u+q(v+qw) = (u+qv)+qw and u+qv = v+qu.

(14) For every non degenerated integral domain-like ring I and for every
element u of Quot(I) holds u +q 0q(I) = u and 0q(I) +q u = u.

(15) Let I be a non degenerated integral domain-like ring and u, v, w be
elements of Quot(I). Then u ·q (v ·q w) = (u ·q v) ·q w and u ·q v = v ·q u.

(16) For every non degenerated integral domain-like ring I and for every
element u of Quot(I) holds u ·q 1q(I) = u and 1q(I) ·q u = u.

(17) For every non degenerated integral domain-like ring I and for all elements
u, v, w of Quot(I) holds (u +q v) ·q w = (u ·q w) +q (v ·q w).

(18) For every non degenerated integral domain-like ring I and for all elements
u, v, w of Quot(I) holds u ·q (v +q w) = (u ·q v) +q (u ·q w).

(19) For every non degenerated integral domain-like ring I and for every
element u of Quot(I) holds u +q −qu = 0q(I) and −qu +q u = 0q(I).

(20) Let I be a non degenerated integral domain-like ring and u be an element
of Quot(I). If u 6= 0q(I), then u ·q u−1

q = 1q(I) and u−1
q ·q u = 1q(I).

(21) For every non degenerated integral domain-like ring I holds 1q(I) 6=
0q(I).

Let I be a non degenerated integral domain-like ring. The functor +q(I)
yielding a binary operation on Quot(I) is defined as follows:

(Def. 12) For all elements u, v of Quot(I) holds (+q(I))(u, v) = u +q v.

Let I be a non degenerated integral domain-like ring. The functor ·q(I) yields
a binary operation on Quot(I) and is defined as follows:

(Def. 13) For all elements u, v of Quot(I) holds (·q(I))(u, v) = u ·q v.

Let I be a non degenerated integral domain-like ring. The functor −q(I)
yields a unary operation on Quot(I) and is defined as follows:

(Def. 14) For every element u of Quot(I) holds (−q(I))(u) = −qu.

Let I be a non degenerated integral domain-like ring. The functor −1
q (I)

yields a unary operation on Quot(I) and is defined as follows:

(Def. 15) For every element u of Quot(I) holds (−1
q (I))(u) = u−1

q .

We now state a number of propositions:
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(22) For every non degenerated integral domain-like ring I and for all ele-
ments u, v, w of Quot(I) holds (+q(I))((+q(I))(u, v), w) = (+q(I))(u,

(+q(I))(v, w)).
(23) For every non degenerated integral domain-like ring I and for all elements

u, v of Quot(I) holds (+q(I))(u, v) = (+q(I))(v, u).
(24) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds (+q(I))(u, 0q(I)) = u and (+q(I))(0q(I), u) =
u.

(25) For every non degenerated integral domain-like ring I and for all elements
u, v, w of Quot(I) holds (·q(I))((·q(I))(u, v), w) = (·q(I))(u, (·q(I))(v,

w)).
(26) For every non degenerated integral domain-like ring I and for all elements

u, v of Quot(I) holds (·q(I))(u, v) = (·q(I))(v, u).
(27) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds (·q(I))(u, 1q(I)) = u and (·q(I))(1q(I), u) = u.

(28) Let I be a non degenerated integral domain-like ring and u, v, w be
elements of Quot(I). Then (·q(I))((+q(I))(u, v), w) = (+q(I))((·q(I))(u,

w), (·q(I))(v, w)).
(29) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of Quot(I). Then (·q(I))(u, (+q(I))(v, w)) = (+q(I))((·q(I))(u,

v), (·q(I))(u, w)).
(30) Let I be a non degenerated integral domain-like ring and u be an element

of Quot(I). Then (+q(I))(u, (−q(I))(u)) = 0q(I) and (+q(I))((−q(I))(u),
u) = 0q(I).

(31) Let I be a non degenerated integral domain-like ring and u be an ele-
ment of Quot(I). If u 6= 0q(I), then (·q(I))(u, (−1

q (I))(u)) = 1q(I) and
(·q(I))((−1

q (I))(u), u) = 1q(I).

3. Defining the Field of Quotients

Let I be a non degenerated integral domain-like ring. The field of quotients
of I yields a strict double loop structure and is defined as follows:

(Def. 16) The field of quotients of I = 〈Quot(I),+q(I), ·q(I), 1q(I), 0q(I)〉.
Let I be a non degenerated integral domain-like ring. Observe that the field

of quotients of I is non empty.
The following propositions are true:

(32) Let I be a non degenerated integral domain-like ring. Then
(i) the carrier of the field of quotients of I = Quot(I),
(ii) the addition of the field of quotients of I = +q(I),



74 christoph schwarzweller

(iii) the multiplication of the field of quotients of I = ·q(I),
(iv) the zero of the field of quotients of I = 0q(I), and
(v) the unity of the field of quotients of I = 1q(I).

(33) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then (+q(I))(u, v) is an element
of the carrier of the field of quotients of I.

(34) Let I be a non degenerated integral domain-like ring and u be an element
of the carrier of the field of quotients of I. Then (−q(I))(u) is an element
of the carrier of the field of quotients of I.

(35) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then (·q(I))(u, v) is an element
of the carrier of the field of quotients of I.

(36) Let I be a non degenerated integral domain-like ring and u be an element
of the carrier of the field of quotients of I. Then (−1

q (I))(u) is an element
of the carrier of the field of quotients of I.

(37) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then u + v = (+q(I))(u, v).

Let I be a non degenerated integral domain-like ring. One can verify that the
field of quotients of I is add-associative right zeroed and right complementable.

Next we state a number of propositions:

(38) Let I be a non degenerated integral domain-like ring and u be an element
of the carrier of the field of quotients of I. Then −u = (−q(I))(u).

(39) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then u · v = (·q(I))(u, v).

(40) Let I be a non degenerated integral domain-like ring. Then
1the field of quotients of I = 1q(I) and 0the field of quotients of I = 0q(I).

(41) Let I be a non degenerated integral domain-like ring and u, v, w be
elements of the carrier of the field of quotients of I. Then (u + v) + w =
u + (v + w).

(42) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then u + v = v + u.

(43) Let I be a non degenerated integral domain-like ring and u be
an element of the carrier of the field of quotients of I. Then u +
0the field of quotients of I = u.

(44) Let I be a non degenerated integral domain-like ring and u be an
element of the carrier of the field of quotients of I. Then u + −u =
0the field of quotients of I .

(45) Let I be a non degenerated integral domain-like ring and u be an element
of the carrier of the field of quotients of I. Then 1the field of quotients of I ·u =
u.
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(46) Let I be a non degenerated integral domain-like ring and u, v be elements
of the carrier of the field of quotients of I. Then u · v = v · u.

(47) Let I be a non degenerated integral domain-like ring and u, v, w be
elements of the carrier of the field of quotients of I. Then (u · v) · w =
u · (v · w).

(48) Let I be a non degenerated integral domain-like ring and u be an
element of the carrier of the field of quotients of I. Suppose u 6=
0the field of quotients of I . Then there exists an element v of the carrier of
the field of quotients of I such that u · v = 1the field of quotients of I .

(49) Let I be a non degenerated integral domain-like ring. Then the field
of quotients of I is an add-associative right zeroed right complementa-
ble Abelian commutative associative left unital distributive field-like non
degenerated non empty double loop structure.

Let I be a non degenerated integral domain-like ring. Note that the field of
quotients of I is Abelian commutative associative left unital distributive field-
like and non degenerated.

Next we state the proposition

(50) Let I be a non degenerated integral domain-like ring and x be an
element of the carrier of the field of quotients of I. Suppose x 6=
0the field of quotients of I . Let a be an element of the carrier of I. Suppose
a 6= 0I . Let u be an element of Q(I). Suppose x = QClass(u) and u = 〈〈a,

1I〉〉. Let v be an element of Q(I). If v = 〈〈1I , a〉〉, then x−1 = QClass(v).
Let us observe that every add-associative right zeroed right complementable

commutative associative left unital distributive field-like non degenerated non
empty double loop structure is integral domain-like and right unital.

One can check that there exists a non empty double loop structure which
is add-associative, right zeroed, right complementable, Abelian, commutative,
associative, left unital, distributive, field-like, and non degenerated.

Let F be a commutative associative left unital distributive field-like non
empty double loop structure and let x, y be elements of the carrier of F . The
functor x

y yields an element of the carrier of F and is defined as follows:

(Def. 17) x
y = x · y−1.

One can prove the following propositions:

(51) Let F be a non degenerated field-like ring and a, b, c, d be elements of
the carrier of F . If b 6= 0F and d 6= 0F , then a

b · c
d = a·c

b·d .

(52) Let F be a non degenerated field-like ring and a, b, c, d be elements of
the carrier of F . If b 6= 0F and d 6= 0F , then a

b + c
d = a·d+c·b

b·d .
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4. Defining Ring Homomorphisms

Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring homomorphism if and only if:

(Def. 21)1 f is additive, multiplicative, and unity-preserving.

Let R, S be non empty double loop structures. One can verify that every map
from R into S which is ring homomorphism is also additive, multiplicative, and
unity-preserving and every map from R into S which is additive, multiplicative,
and unity-preserving is also a ring homomorphism.

Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring epimorphism if and only if:

(Def. 22) f is a ring homomorphism and rng f = the carrier of S.

We say that f is a ring monomorphism if and only if:

(Def. 23) f is a ring homomorphism and one-to-one.

We introduce f is an embedding as a synonym of f is a ring monomorphism.
Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring isomorphism if and only if:

(Def. 24) f is a ring monomorphism and a ring epimorphism.

Let R, S be non empty double loop structures. Note that every map from
R into S which is ring isomorphism is also a ring monomorphism and a ring
epimorphism and every map from R into S which is ring monomorphism and
ring epimorphism is also a ring isomorphism.

We now state several propositions:

(53) For all rings R, S and for every map f from R into S such that f is a
ring homomorphism holds f(0R) = 0S .

(54) Let R, S be rings and f be a map from R into S. Suppose f is a ring
monomorphism. Let x be an element of the carrier of R. Then f(x) = 0S

if and only if x = 0R.

(55) Let R, S be non degenerated field-like rings and f be a map from R into
S. Suppose f is a ring homomorphism. Let x be an element of the carrier
of R. If x 6= 0R, then f(x−1) = f(x)−1.

(56) Let R, S be non degenerated field-like rings and f be a map from R into
S. Suppose f is a ring homomorphism. Let x, y be elements of the carrier
of R. If y 6= 0R, then f(x · y−1) = f(x) · f(y)−1.

(57) Let R, S, T be rings and f be a map from R into S. Suppose f is
a ring homomorphism. Let g be a map from S into T . If g is a ring
homomorphism, then g · f is a ring homomorphism.

1The definitions (Def. 18)–(Def. 20) have been removed.
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(58) For every non empty double loop structure R holds idR is a ring homo-
morphism.

Let R, S be non empty double loop structures. We say that R is embedded
in S if and only if:

(Def. 25) There exists a map from R into S which is a ring monomorphism.

Let R, S be non empty double loop structures. We say that R is ring iso-
morphic to S if and only if:

(Def. 26) There exists a map from R into S which is a ring isomorphism.

Let us note that the predicate R is ring isomorphic to S is symmetric.

5. Some Further Properties

Let I be a non empty zero structure and let x, y be elements of the carrier
of I. Let us assume that y 6= 0I . The functor quotient(x, y) yielding an element
of Q(I) is defined as follows:

(Def. 27) quotient(x, y) = 〈〈x, y〉〉.
Let I be a non degenerated integral domain-like ring. The canonical homo-

morphism of I into quotient field is a map from I into the field of quotients of
I and is defined by the condition (Def. 28).

(Def. 28) Let x be an element of the carrier of I. Then (the canonical homomor-
phism of I into quotient field)(x) = QClass(quotient(x, 1I)).

Next we state four propositions:

(59) Let I be a non degenerated integral domain-like ring. Then the canonical
homomorphism of I into quotient field is a ring homomorphism.

(60) Let I be a non degenerated integral domain-like ring. Then the canonical
homomorphism of I into quotient field is an embedding.

(61) For every non degenerated integral domain-like ring I holds I is embed-
ded in the field of quotients of I.

(62) Let F be a non degenerated field-like integral domain-like ring. Then F

is ring isomorphic to the field of quotients of F .

Let I be a non degenerated integral domain-like ring. Note that the field of
quotients of I is integral domain-like right unital and right-distributive.

One can prove the following proposition

(63) Let I be a non degenerated integral domain-like ring. Then the field of
quotients of the field of quotients of I is ring isomorphic to the field of
quotients of I.

Let I be a non empty double loop structure, let F be a non empty double
loop structure, and let f be a map from I into F . We say that F is a field of
quotients for I via f if and only if the conditions (Def. 29) are satisfied.
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(Def. 29)(i) f is a ring monomorphism, and
(ii) for every add-associative right zeroed right complementable Abelian

commutative associative left unital distributive field-like non degenerated
non empty double loop structure F ′ and for every map f ′ from I into F ′

such that f ′ is a ring monomorphism there exists a map h from F into F ′

such that h is a ring homomorphism and h · f = f ′ and for every map h′

from F into F ′ such that h′ is a ring homomorphism and h′ · f = f ′ holds
h′ = h.

Next we state two propositions:

(64) Let I be a non degenerated integral domain-like ring. Then there exi-
sts an add-associative right zeroed right complementable Abelian com-
mutative associative left unital distributive field-like non degenerated non
empty double loop structure F and there exists a map f from I into F

such that F is a field of quotients for I via f .

(65) Let I be an integral domain-like ring, F , F ′ be add-associative right
zeroed right complementable Abelian commutative associative left unital
distributive field-like non degenerated non empty double loop structures,
f be a map from I into F , and f ′ be a map from I into F ′. Suppose F is
a field of quotients for I via f and F ′ is a field of quotients for I via f ′.
Then F is ring isomorphic to F ′.
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Summary. This article contains a definition of three classes of topological
spaces: first-countable, Frechet, and sequential. Next there are some facts about
them, that every first-countable space is Frechet and every Frechet space is se-
quential. Next section constains a formalized construction of topological space
which is Frechet but not first-countable. This article is based on [9, pp. 73–81].
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The notation and terminology used here are introduced in the following papers:
[19], [2], [15], [4], [5], [6], [11], [1], [13], [3], [12], [14], [10], [20], [21], [18], [16], [8],
[7], and [17].

1. Preliminaries

One can prove the following proposition

(1) For every non empty 1-sorted structure T and for every sequence S of T

holds rng S is a subset of T .

Let T be a non empty 1-sorted structure and let S be a sequence of T . Then
rng S is a subset of T .

The following propositions are true:

(2) Let T1 be a non empty 1-sorted structure, T2 be a 1-sorted structure, and
S be a sequence of T1. If rng S ⊆ the carrier of T2, then S is a sequence
of T2.

(3) For every non empty topological space T and for every point x of T and
for every basis B of x holds B 6= ∅.
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Let T be a non empty topological space and let x be a point of T . Note that
every basis of x is non empty.

We now state a number of propositions:

(4) For every topological space T and for all subsets A, B of T such that A

is open and B is closed holds A \B is open.

(5) Let T be a topological structure. Suppose that
(i) ∅T is closed,
(ii) ΩT is closed,
(iii) for all subsets A, B of T such that A is closed and B is closed holds

A ∪B is closed, and
(iv) for every family F of subsets of T such that F is closed holds

⋂
F is

closed.
Then T is a topological space.

(6) Let T be a topological space, S be a non empty topological structure,
and f be a map from T into S. Suppose that for every subset A of S holds
A is closed iff f−1(A) is closed. Then S is a topological space.

(7) Let x be a point of the metric space of real numbers and x′, r be real
numbers. If x′ = x and r > 0, then Ball(x, r) = ]x′ − r, x′ + r[.

(8) Let A be a subset of R1. Then A is open if and only if for every real
number x such that x ∈ A there exists a real number r such that r > 0
and ]x− r, x + r[ ⊆ A.

(9) For every sequence S of R1 such that for every natural number n holds
S(n) ∈ ]n− 1

4 , n + 1
4 [ holds rng S is closed.

(10) For every subset B of R1 such that B = N holds B is closed.

(11) Let M be a metric space, x be a point of Mtop, and x′ be a point of M .
Suppose x = x′. Then there exists a basis B of x such that

(i) B = {Ball(x′, 1
n);n ranges over natural numbers: n 6= 0},

(ii) B is countable, and
(iii) there exists a function f from N into B such that for every set n

such that n ∈ N there exists a natural number n′ such that n = n′ and
f(n) = Ball(x′, 1

n′+1).
(12) For all functions f , g holds rng(f+·g) = f◦(dom f \ dom g) ∪ rng g.

(13) For all sets A, B such that B ⊆ A holds (idA)◦B = B.

(14) For all sets B, x holds dom(B 7−→ x) = B.

(15) For all sets A, B, x holds dom(idA+·(B 7−→ x)) = A ∪B.

(16) For all sets A, B, x such that B 6= ∅ holds rng(idA+·(B 7−→ x)) =
(A \B) ∪ {x}.

(17) For all sets A, B, C, x such that C ⊆ A holds (idA+·(B 7−→ x))−1(C \
{x}) = C \B \ {x}.

(18) For all sets A, B, x such that x /∈ A holds (idA+·(B 7−→ x))−1({x}) = B.
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(19) For all sets A, B, C, x such that C ⊆ A and x /∈ A holds (idA+·(B 7−→
x))−1(C ∪ {x}) = C ∪B.

(20) For all sets A, B, C, x such that C ⊆ A and x /∈ A holds (idA+·(B 7−→
x))−1(C \ {x}) = C \B.

2. First-countable, Sequential, and Frechet Spaces

Let T be a non empty topological structure. We say that T is first-countable
if and only if:

(Def. 1) For every point x of T holds there exists a basis of x which is countable.

The following two propositions are true:

(21) For every metric space M holds Mtop is first-countable.

(22) R1 is first-countable.

Let us note that R1 is first-countable.
Let T be a topological structure, let S be a sequence of T , and let x be a

point of T . We say that S is convergent to x if and only if the condition (Def. 2)
is satisfied.

(Def. 2) Let U1 be a subset of T . Suppose U1 is open and x ∈ U1. Then there
exists a natural number n such that for every natural number m such that
n ¬ m holds S(m) ∈ U1.

The following proposition is true

(23) Let T be a non empty topological structure, x be a point of T , and S be
a sequence of T . If S = N 7−→ x, then S is convergent to x.

Let T be a topological structure and let S be a sequence of T . We say that
S is convergent if and only if:

(Def. 3) There exists a point x of T such that S is convergent to x.

Let T be a non empty topological structure and let S be a sequence of T .
The functor Lim S yields a subset of T and is defined as follows:

(Def. 4) For every point x of T holds x ∈ Lim S iff S is convergent to x.

Let T be a non empty topological structure. We say that T is Frechet if and
only if the condition (Def. 5) is satisfied.

(Def. 5) Let A be a subset of T and x be a point of T . If x ∈ A, then there exists
a sequence S of T such that rng S ⊆ A and x ∈ Lim S.

Let T be a non empty topological structure. We say that T is sequential if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Let A be a subset of T . Then A is closed if and only if for every sequence
S of T such that S is convergent and rng S ⊆ A holds Lim S ⊆ A.

The following proposition is true
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(24) For every non empty topological space T such that T is first-countable
holds T is Frechet.

Let us observe that every non empty topological space which is first-countable
is also Frechet.

We now state four propositions:

(25) R1 is Frechet.

(26) Let T be a non empty topological space and A be a subset of T . Suppose
A is closed. Let S be a sequence of T . If S is convergent and rng S ⊆ A,

then Lim S ⊆ A.

(27) Let T be a non empty topological space. Suppose that for every subset
A of T such that for every sequence S of T such that S is convergent and
rng S ⊆ A holds Lim S ⊆ A holds A is closed. Then T is sequential.

(28) For every non empty topological space T such that T is Frechet holds T

is sequential.

Let us mention that every non empty topological space which is Frechet is
also sequential.

Next we state the proposition

(29) R1 is sequential.

3. Counterexample of Frechet but Not First-countable Space

The strict non empty topological space R1
/N is defined by the conditions

(Def. 7).

(Def. 7)(i) The carrier of R1
/N = (R \ N) ∪ {R}, and

(ii) there exists a map f from R1 into R1
/N such that f = idR+·(N 7−→ R)

and for every subset A of R1
/N holds A is closed iff f−1(A) is closed.

We now state several propositions:

(30) R is a point of R1
/N.

(31) Let A be a subset of R1
/N. Then A is open and R ∈ A if and only

if there exists a subset O of R1 such that O is open and N ⊆ O and
A = (O \ N) ∪ {R}.

(32) For every set A holds A is a subset of R1
/N and R /∈ A iff A is a subset

of R1 and N ∩A = ∅.
(33) Let A be a subset of R1 and B be a subset of R1

/N. If A = B, then

N ∩A = ∅ and A is open iff R /∈ B and B is open.

(34) For every subset A of R1
/N such that A = {R} holds A is closed.
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(35) R1
/N is not first-countable.

(36) R1
/N is Frechet.

(37) It is not true that for every non empty topological space T such that T

is Frechet holds T is first-countable.

4. Auxiliary Theorems

Next we state three propositions:

(38) 1
4 > 0 and 1

4 < 1
2 .

(39) For every real number r there exists a natural number n such that r < n.

(40) For every real number r such that r > 0 there exists a natural number
n such that 1

n < r and n 6= 0.
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Summary. An attempt to use the Times macro, [2], was the origin of
writing this article. First, the semantics of the macro composition as developed
in [23, 3, 4] is extended to the case of macro instructions which are not always
halting. Next, several functors extending the memory handling for SCMFSA, [18],
are defined; they are convenient when writing more complicated programs. After
this preparatory work, we define a macro instruction computing the Fibonacci
sequence (see the SCM program computing the same sequence in [10]) and prove
its correctness. The semantics of the Times macro is given in [2] only for the case
when the iterated instruction is parahalting; this is remedied in [17].

MML Identifier: SFMASTR1.

The notation and terminology used in this paper are introduced in the following
papers: [16], [21], [19], [27], [5], [7], [15], [12], [14], [13], [11], [25], [6], [9], [28],
[23], [3], [4], [1], [24], [22], [8], [18], [26], and [20].

1. Good Instructions and Good Macro Instruction

Let i be an instruction of SCMFSA. We say that i is good if and only if:

(Def. 1) Macro(i) is good.

Let a be a read-write integer location and let b be an integer location. One
can check the following observations:

∗ a:=b is good,

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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∗ AddTo(a, b) is good,

∗ SubFrom(a, b) is good, and

∗ MultBy(a, b) is good.

Let us note that there exists an instruction of SCMFSA which is good and
parahalting.

Let a, b be read-write integer locations. Observe that Divide(a, b) is good.
Let l be an instruction-location of SCMFSA. One can verify that goto l is

good.
Let a be an integer location and let l be an instruction-location of SCMFSA.

Note that if a = 0 goto l is good and if a > 0 goto l is good.
Let a be an integer location, let f be a finite sequence location, and let b be

a read-write integer location. One can check that b:=fa is good.
Let f be a finite sequence location and let b be a read-write integer location.

One can verify that b:=lenf is good.
Let f be a finite sequence location and let a be an integer location. One can

check that f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉 is good. Let b be an integer location. Note that fa:=b

is good.
Let us note that there exists an instruction of SCMFSA which is good.
Let i be a good instruction of SCMFSA. Note that Macro(i) is good.
Let i, j be good instructions of SCMFSA. Note that i;j is good.
Let i be a good instruction of SCMFSA and let I be a good macro instruc-

tion. Note that i;I is good and I;i is good.
Let a, b be read-write integer locations. Note that swap(a, b) is good.
Let I be a good macro instruction and let a be a read-write integer location.

One can verify that Times(a, I) is good.
One can prove the following proposition

(1) For every integer location a and for every macro instruction I such that
a /∈ UsedIntLoc(I) holds I does not destroy a.

2. Composition of Non-parahalting Macro Instructions

For simplicity, we use the following convention: s, S denote states of SCMFSA,
I, J denote macro instructions, I1 denotes a good macro instruction, i denotes a
good parahalting instruction of SCMFSA, j denotes a parahalting instruction of
SCMFSA, a, b denote integer locations, and f denotes a finite sequence location.

We now state a number of propositions:

(2) (I+· Start-At(insloc(0)))¹D = ∅, where
D = Int-Locations∪FinSeq-Locations.
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(3) If I is halting on Initialize(S) and closed on Initialize(S) and J is closed
on IExec(I, S), then I;J is closed on Initialize(S).

(4) If I is halting on Initialize(S) and J is halting on IExec(I, S) and I is
closed on Initialize(S) and J is closed on IExec(I, S), then I;J is halting
on Initialize(S).

(5) Suppose I is closed on s and I+· Start-At(insloc(0)) ⊆ s and s is
halting. Let m be a natural number. Suppose m ¬ LifeSpan(s). Then
(Computation(s))(m) and (Computation(s+·(I;J)))(m) are equal outside
the instruction locations of SCMFSA.

(6) Suppose I1 is halting on Initialize(s) and J is halting on IExec(I1, s)
and I1 is closed on Initialize(s) and J is closed on IExec(I1, s).
Then LifeSpan(s+· Initialized(I1;J)) = LifeSpan(s+· Initialized(I1)) + 1 +
LifeSpan(Result(s+· Initialized(I1))+· Initialized(J)).

(7) Suppose I1 is halting on Initialize(s) and J is halting on IExec(I1, s)
and I1 is closed on Initialize(s) and J is closed on IExec(I1, s). Then
IExec(I1;J, s) = IExec(J, IExec(I1, s))+· Start-At(ICIExec(J,IExec(I1,s)) +
card I1).

(8) Suppose that
(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

and
(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).

Then (IExec(I1;J, s))(a) = (IExec(J, IExec(I1, s)))(a).
(9) Suppose that
(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

and
(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).

Then (IExec(I1;J, s))(f) = (IExec(J, IExec(I1, s)))(f).
(10) Suppose that

(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),
and

(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).
Then IExec(I1;J, s)¹D = IExec(J, IExec(I1, s))¹D, where D =
Int-Locations∪FinSeq-Locations.

(11) If I1 is parahalting, or closed on Initialize(s), or halting on
Initialize(s), then Initialize(IExec(I1, s))¹D = IExec(I1, s)¹D, where D =
Int-Locations∪FinSeq-Locations.

(12) If I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),
then (IExec(I1;j, s))(a) = (Exec(j, IExec(I1, s)))(a).

(13) If I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),
then (IExec(I1;j, s))(f) = (Exec(j, IExec(I1, s)))(f).
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(14) If I1 is parahalting, or halting on Initialize(s), or closed on
Initialize(s), then IExec(I1;j, s)¹D = Exec(j, IExec(I1, s))¹D, where D =
Int-Locations∪FinSeq-Locations.

(15) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on
Exec(i, Initialize(s)), then (IExec(i;J, s))(a) =
(IExec(J, Exec(i, Initialize(s))))(a).

(16) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on
Exec(i, Initialize(s)), then (IExec(i;J, s))(f) =
(IExec(J, Exec(i, Initialize(s))))(f).

(17) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on
Exec(i, Initialize(s)), then IExec(i;J, s)¹D = IExec(J, Exec(i, Initialize(s)))
¹D, where D = Int-Locations∪FinSeq-Locations.

3. Memory Allocation

In the sequel L is a finite subset of Int-Locations and m, n are natural
numbers.

Let d be an integer location. Then {d} is a subset of Int-Locations. Let e

be an integer location. Then {d, e} is a subset of Int-Locations. Let f be an
integer location. Then {d, e, f} is a subset of Int-Locations. Let g be an integer
location. Then {d, e, f, g} is a subset of Int-Locations.

Let L be a finite subset of Int-Locations. The functor RWNotIn-seq L yields
a function from N into 2N and is defined by the conditions (Def. 2).

(Def. 2)(i) (RWNotIn-seq L)(0) = {k; k ranges over natural numbers: intloc(k) /∈
L ∧ k 6= 0},

(ii) for every natural number i and for every non empty subset s1 of N
such that (RWNotIn-seq L)(i) = s1 holds (RWNotIn-seq L)(i + 1) = s1 \
{min s1}, and

(iii) for every natural number i holds (RWNotIn-seq L)(i) is infinite.

Let L be a finite subset of Int-Locations and let n be a natural number. Note
that (RWNotIn-seq L)(n) is non empty.

One can prove the following propositions:

(18) 0 /∈ (RWNotIn-seq L)(n) and for every m such that m ∈
(RWNotIn-seq L)(n) holds intloc(m) /∈ L.

(19) min(RWNotIn-seq L)(n) < min(RWNotIn-seq L)(n + 1).
(20) If n < m, then min(RWNotIn-seq L)(n) < min(RWNotIn-seq L)(m).

Let n be a natural number and let L be a finite subset of Int-Locations. The
functor nth-RWNotIn(L) yields an integer location and is defined as follows:

(Def. 3) nth-RWNotIn(L) = intloc(min(RWNotIn-seq L)(n)).
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We introduce 1st -RWNotIn(L), 2nd-RWNotIn(L), 3rd -RWNotIn(L) as syno-
nyms of nth-RWNotIn(L).

Let n be a natural number and let L be a finite subset of Int-Locations. One
can verify that nth-RWNotIn(L) is read-write.

We now state two propositions:

(21) nth-RWNotIn(L) /∈ L.

(22) If n 6= m, then nth-RWNotIn(L) 6= mth-RWNotIn(L).

Let n be a natural number and let p be a programmed finite partial state
of SCMFSA. The functor nth-NotUsed(p) yielding an integer location is defined
by:

(Def. 4) nth-NotUsed(p) = nth-RWNotIn(UsedIntLoc(p)).

We introduce 1st-NotUsed(p), 2nd-NotUsed(p), 3rd-NotUsed(p) as synonyms of
nth-NotUsed(p).

Let n be a natural number and let p be a programmed finite partial state of
SCMFSA. Observe that nth-NotUsed(p) is read-write.

4. A Macro for the Fibonacci Sequence

One can prove the following proposition

(23) a ∈ UsedIntLoc(swap(a, b)) and b ∈ UsedIntLoc(swap(a, b)).

Let N , r1 be integer locations. The functor Fib macro(N, r1) yielding a ma-
cro instruction is defined by:

(Def. 5) Fib macro(N, r1) =
(N1:=N);
SubFrom(r1, r1);
(n1:= intloc(0));
(a1:=N1);
Times(a1, AddTo(r1, n1); swap(r1, n1));
(N :=N1),
where N1 = 2nd-RWNotIn(UsedIntLoc(swap(r1, n1))), n1 = 1st -RWNotIn
({N, r1}), and a1 = 1st -RWNotIn(UsedIntLoc(swap(r1, n1))).

Next we state the proposition

(24) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be
a natural number. If n = s(N), then (IExec(Fib macro(N, r1), s))(r1) =
Fib(n) and (IExec(Fib macro(N, r1), s))(N) = s(N).
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Summary. An attempt to use the while macro, [14], was the origin of wri-
ting this article. The while semantics, as given by J.-C. Chen, is slightly extended
by weakening its correctness conditions and this forced a quite straightforward
remake of a number of theorems from [14]. Numerous additional properties of
the while macro are then proven. In the last section, we define a macro instruc-
tion computing the fusc function (see the SCM program computing the same
function in [10]) and prove its correctness.

MML Identifier: SCMFSA9A.

The papers [17], [15], [21], [19], [26], [7], [11], [12], [13], [24], [6], [29], [9], [27],
[28], [4], [5], [3], [1], [2], [23], [22], [14], [8], [16], [18], [25], and [20] provide the
notation and terminology for this paper.

1. Arithmetic Preliminaries

We follow the rules: k, m, n are natural numbers, i, j are integers, and r is
a real number.

The scheme MinPred deals with a unary functor F yielding a natural number
and a unary predicate P, and states that:

There exists k such that P[k] and for every n such that P[n] holds
k ¬ n

provided the parameters meet the following condition:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

91
c© 1998 University of Białystok

ISSN 1426–2630



92 piotr rudnicki

• For every k holds F(k + 1) < F(k) or P[k].
We now state several propositions:

(1) n is odd iff there exists a natural number k such that n = 2 · k + 1.

(2) If 0 ¬ r, then 0 ¬ brc.
(3) If 0 < n, then 0 ¬ (m qua integer) ÷n.

(4) If 0 < i and 1 < j, then i÷ j < i.

(5) If 0 < n, then (m qua integer) ÷n = m÷n and (m qua integer) modn =
m mod n.

2. SCMFSA Preliminaries

In the sequel l is an instruction-location of SCMFSA and i is an instruction
of SCMFSA.

Next we state several propositions:

(6) Let N be a non empty set with non empty elements, S be a hal-
ting von Neumann definite AMI over N , s be a state of S, and k

be a natural number. If CurInstr((Computation(s))(k)) = haltS , then
(Computation(s))(LifeSpan(s)) = (Computation(s))(k).

(7) UsedIntLoc(l 7−→. i) = UsedIntLoc(i).
(8) UsedInt∗ Loc(l 7−→. i) = UsedInt∗ Loc(i).
(9) UsedIntLoc(StopSCMFSA

) = ∅.
(10) UsedInt∗ Loc(StopSCMFSA

) = ∅.
(11) UsedIntLoc(Goto(l)) = ∅.
(12) UsedInt∗ Loc(Goto(l)) = ∅.

For simplicity, we use the following convention: s, s1, s2 are states of SCMFSA,
a is a read-write integer location, b is an integer location, f is a finite sequence
location, I, J are macro instructions, I1 is a good macro instruction, and i, j,
k are natural numbers.

The following four propositions are true:

(13) UsedIntLoc(if b = 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪
UsedIntLoc(J).

(14) For every integer location a holds UsedInt∗ Loc(if a = 0 then I else J) =
UsedInt∗ Loc(I) ∪UsedInt∗ Loc(J).

(15) UsedIntLoc(if b > 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪
UsedIntLoc(J).

(16) UsedInt∗ Loc(if b > 0 then I else J) = UsedInt∗ Loc(I)∪UsedInt∗ Loc(J).
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3. The while=0 Macro Instruction

Next we state two propositions:

(17) UsedIntLoc(while b = 0 do I) = {b} ∪UsedIntLoc(I).
(18) UsedInt∗ Loc(while b = 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let
I be a macro instruction. The predicate ProperBodyWhile=0(a, I, s) is defined
as follows:

(Def. 1) For every natural number k such that (StepWhile=0 (a, I, s))(k)(a) =
0 holds I is closed on (StepWhile=0 (a, I, s))(k) and halting on
(StepWhile=0 (a, I, s))(k).

The predicate WithVariantWhile=0(a, I, s) is defined by the condition (Def. 2).

(Def. 2) There exists a function f from
∏

(the object kind of SCMFSA) into N
such that for every natural number k holds f((StepWhile=0 (a, I, s))(k +
1)) < f((StepWhile=0 (a, I, s))(k)) or (StepWhile=0 (a, I, s))(k)(a) 6= 0.

We now state several propositions:

(19) For every parahalting macro instruction I holds
ProperBodyWhile=0(a, I, s).

(20) If ProperBodyWhile=0(a, I, s) and WithVariantWhile=0(a, I, s), then
while a = 0 do I is halting on s and while a = 0 do I is closed on s.

(21) For every parahalting macro instruction I such that
WithVariantWhile=0(a, I, s) holds while a = 0 do I is halting on s and
while a = 0 do I is closed on s.

(22) If (while a = 0 do I)+·S1 ⊆ s and s(a) 6= 0, then LifeSpan(s) = 4 and
for every natural number k holds (Computation(s))(k)¹D = s¹D, where
S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(23) If I is closed on s and halting on s and s(a) = 0, then
(Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +
3)¹D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))¹D, where
S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(24) If (StepWhile=0 (a, I, s))(k)(a) 6= 0, then (StepWhile=0 (a, I, s))(k +
1)¹D = (StepWhile=0 (a, I, s))(k)¹D,

where D = Int-Locations∪FinSeq-Locations.

(25) Suppose I is halting on Initialize((StepWhile=0 (a, I, s))(k)), closed on
Initialize((StepWhile=0 (a, I, s))(k)), and parahalting and
(StepWhile=0 (a, I, s))(k)(a) = 0 and (StepWhile=0 (a, I, s))(k)(intloc(0)) =
1. Then (StepWhile=0 (a, I, s))(k+1)¹D = IExec(I, (StepWhile=0 (a, I, s))
(k))¹D, where D = Int-Locations∪FinSeq-Locations.
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(26) If ProperBodyWhile=0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =
1, then for every k holds (StepWhile=0 (a, I1, s))(k)(intloc(0)) = 1.

(27) If ProperBodyWhile=0(a, I, s1) and s1¹D = s2¹D, then for every
k holds (StepWhile=0 (a, I, s1))(k)¹D = (StepWhile=0 (a, I, s2))(k)¹D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let
I be a macro instruction. Let us assume that ProperBodyWhile=0(a, I, s) or I is
parahalting and WithVariantWhile=0(a, I, s). The functor ExitsAtWhile=0 (a, I, s)
yielding a natural number is defined by the condition (Def. 3).

(Def. 3) There exists a natural number k such that
(i) ExitsAtWhile=0 (a, I, s) = k,

(ii) (StepWhile=0 (a, I, s))(k)(a) 6= 0,

(iii) for every natural number i such that (StepWhile=0 (a, I, s))(i)(a) 6= 0
holds k ¬ i, and

(iv) (Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·((while a =
0 do I)+·S1)))¹D = (StepWhile=0 (a, I, s))(k)¹D,

where S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

One can prove the following two propositions:

(28) If s(intloc(0)) = 1 and s(a) 6= 0, then IExec(while a = 0 do I, s)¹D =
s¹D, where D = Int-Locations∪FinSeq-Locations.

(29) If ProperBodyWhile=0(a, I, Initialize(s)) or I is parahalting and if
WithVariantWhile=0(a, I, Initialize(s)), then IExec(while a = 0 do I, s)¹D
= (StepWhile=0 (a, I, Initialize(s)))(ExitsAtWhile=0 (a, I, Initialize(s)))¹D,

where D = Int-Locations∪FinSeq-Locations.

4. The while>0 Macro Instruction

The following propositions are true:

(30) UsedIntLoc(while b > 0 do I) = {b} ∪UsedIntLoc(I).

(31) UsedInt∗ Loc(while b > 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let
I be a macro instruction. The predicate ProperBodyWhile>0(a, I, s) is defined
as follows:

(Def. 4) For every natural number k such that (StepWhile>0 (a, I, s))(k)(a) >

0 holds I is closed on (StepWhile>0 (a, I, s))(k) and halting on
(StepWhile>0 (a, I, s))(k).

The predicate WithVariantWhile>0(a, I, s) is defined by the condition (Def. 5).
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(Def. 5) There exists a function f from
∏

(the object kind of SCMFSA) into N
such that for every natural number k holds f((StepWhile>0 (a, I, s))(k +
1)) < f((StepWhile>0 (a, I, s))(k)) or (StepWhile>0 (a, I, s))(k)(a) ¬ 0.

Next we state several propositions:

(32) For every parahalting macro instruction I holds
ProperBodyWhile>0(a, I, s).

(33) If ProperBodyWhile>0(a, I, s) and WithVariantWhile>0(a, I, s), then
while a > 0 do I is halting on s and while a > 0 do I is closed on s.

(34) For every parahalting macro instruction I such that
WithVariantWhile>0(a, I, s) holds while a > 0 do I is halting on s and
while a > 0 do I is closed on s.

(35) If (while a > 0 do I)+·S1 ⊆ s and s(a) ¬ 0, then LifeSpan(s) = 4 and
for every natural number k holds (Computation(s))(k)¹D = s¹D, where
S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(36) If I is closed on s and halting on s and s(a) > 0, then
(Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +
3)¹D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))¹D, where
S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(37) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then (StepWhile>0 (a, I, s))(k +
1)¹D = (StepWhile>0 (a, I, s))(k)¹D, where D =
Int-Locations∪FinSeq-Locations.

(38) Suppose I is halting on Initialize((StepWhile>0 (a, I, s))(k)), closed on
Initialize((StepWhile>0 (a, I, s))(k)), and parahalting and (StepWhile>0
(a, I, s))(k)(a) > 0 and (StepWhile>0 (a, I, s))(k)(intloc(0)) = 1.
Then (StepWhile>0 (a, I, s))(k + 1)¹D = IExec(I, (StepWhile>0 (a, I, s))
(k))¹D, where D = Int-Locations∪FinSeq-Locations.

(39) If ProperBodyWhile>0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =
1, then for every k holds (StepWhile>0 (a, I1, s))(k)(intloc(0)) = 1.

(40) If ProperBodyWhile>0(a, I, s1) and s1¹D = s2¹D, then for every
k holds (StepWhile>0 (a, I, s1))(k)¹D = (StepWhile>0 (a, I, s2))(k)¹D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let
I be a macro instruction. Let us assume that ProperBodyWhile>0(a, I, s) or I

is parahalting and WithVariantWhile>0(a, I, s).
The functor ExitsAtWhile>0 (a, I, s) yields a natural number and is defined

by the condition (Def. 6).

(Def. 6) There exists a natural number k such that
(i) ExitsAtWhile>0 (a, I, s) = k,

(ii) (StepWhile>0 (a, I, s))(k)(a) ¬ 0,
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(iii) for every natural number i such that (StepWhile>0 (a, I, s))(i)(a) ¬ 0
holds k ¬ i, and

(iv) (Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·((while a >

0 do I)+·S1)))¹D = (StepWhile>0 (a, I, s))(k)¹D,

where S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

Next we state several propositions:

(41) If s(intloc(0)) = 1 and s(a) ¬ 0, then IExec(while a > 0 do I, s)¹D =
s¹D, where D = Int-Locations∪FinSeq-Locations.

(42) If ProperBodyWhile>0(a, I, Initialize(s)) or I is parahalting and if
WithVariantWhile>0(a, I, Initialize(s)), then IExec(while a > 0 do I, s)¹D
= (StepWhile>0 (a, I, Initialize(s)))(ExitsAtWhile>0 (a, I, Initialize(s)))¹D,

where D = Int-Locations∪FinSeq-Locations.

(43) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then for every natural num-
ber n such that k ¬ n holds (StepWhile>0 (a, I, s))(n)¹D =
(StepWhile>0 (a, I, s))(k)¹D, where D = Int-Locations∪FinSeq-Locations.

(44) If s1¹D = s2¹D and ProperBodyWhile>0(a, I, s1), then

ProperBodyWhile>0(a, I, s2), where D = Int-Locations∪FinSeq-Locations.

(45) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and
WithVariantWhile>0(a, I1, s). Let given i, j. Suppose i 6= j and
i ¬ ExitsAtWhile>0 (a, I1, s) and j ¬ ExitsAtWhile>0 (a, I1, s).
Then (StepWhile>0 (a, I1, s))(i) 6= (StepWhile>0 (a, I1, s))(j) and
(StepWhile>0 (a, I1, s))(i)¹D 6= (StepWhile>0 (a, I1, s))(j)¹D, where D =
Int-Locations∪FinSeq-Locations.

Let f be a function from
∏

(the object kind of SCMFSA) into N. We say
that f is on data only if and only if:

(Def. 7) For all s1, s2 such that s1¹D = s2¹D holds f(s1) = f(s2), where D =
Int-Locations∪FinSeq-Locations.

We now state two propositions:

(46) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and
WithVariantWhile>0(a, I1, s). Then there exists a function f from

∏
(the

object kind of SCMFSA) into N such that f is on data only and
for every natural number k holds f((StepWhile>0 (a, I1, s))(k + 1)) <

f((StepWhile>0 (a, I1, s))(k)) or (StepWhile>0 (a, I1, s))(k)(a) ¬ 0.

(47) If s1(intloc(0)) = 1 and s1¹D = s2¹D and ProperBodyWhile>0(a, I1, s1)
and WithVariantWhile>0(a, I1, s1), then WithVariantWhile>0(a, I1, s2),
where D = Int-Locations∪FinSeq-Locations.
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5. A Macro for the fusc Function

Let N , r1 be integer locations. The functor Fusc macro(N, r1) yields a macro
instruction and is defined as follows:

(Def. 8) Fusc macro(N, r1) =
SubFrom(r1, r1);
(n1:= intloc(0));
(a1:=N);
(while a1 > 0 do
((r2:=2);
Divide(a1, r2);
(if r2 = 0 then
Macro(AddTo(n1, r1)) else
Macro(AddTo(r1, n1))))),
where n1 = 1st -RWNotIn({N, r1}), a1 = 2nd-RWNotIn({N, r1}), and r2 =
3rd -RWNotIn({N, r1}).

One can prove the following proposition

(48) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be
a natural number. If n = s(N), then (IExec(Fusc macro(N, r1), s))(r1) =
Fusc(n) and (IExec(Fusc macro(N, r1), s))(N) = n.

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[3] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[7] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized

Mathematics, 4(1):61–67, 1993.
[9] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries.

Formalized Mathematics, 4(1):69–72, 1993.
[10] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part II - programs.

Formalized Mathematics, 4(1):73–75, 1993.
[11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.



98 piotr rudnicki

[14] Jing-Chao Chen. While macro instructions of SCMFSA. Formalized Mathematics,
6(4):553–561, 1997.

[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[16] Piotr Rudnicki. On the composition of non-parahalting macro instructions. Formalized
Mathematics, 7(1):87–92, 1998.

[17] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[18] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[29] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics,

2(3):413–418, 1991.

Received June 3, 1998



FORMALIZED MATHEMATICS

Volume 7, Number 1, 1998
University of Białystok

Another times Macro Instruction

Piotr Rudnicki1

University of Alberta
Edmonton

Summary. The semantics of the times macro is given in [2] only for the
case when the body of the macro is parahalting. We remedy this by defining
a new times macro instruction in terms of while (see [9, 13]). The semantics
of the new times macro is given in a way analogous to the semantics of while
macros. The new times uses an anonymous variable to control the number of its
executions. We present two examples: a trivial one and a remake of the macro
for the Fibonacci sequence (see [12]).

MML Identifier: SFMASTR2.

The terminology and notation used in this paper are introduced in the following
articles: [11], [16], [21], [6], [8], [19], [5], [7], [10], [22], [3], [4], [1], [18], [17], [12],
[14], [20], and [15].

1. SCMFSA Preliminaries

For simplicity, we follow the rules: s, s1, s2 denote states of SCMFSA, a,
b denote integer locations, d denotes a read-write integer location, f denotes a
finite sequence location, I denotes a macro instruction, J denotes a good macro
instruction, and k denotes a natural number.

One can prove the following propositions:

(1) If I is closed on Initialize(s) and halting on Initialize(s) and b /∈
UsedIntLoc(I), then (IExec(I, s))(b) = (Initialize(s))(b).

(2) If I is closed on Initialize(s) and halting on Initialize(s) and f /∈
UsedInt∗ Loc(I), then (IExec(I, s))(f) = (Initialize(s))(f).
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(3) Suppose I is closed on Initialize(s), halting on Initialize(s), and parahal-
ting but s(intloc(0)) = 1 or a is read-write but a /∈ UsedIntLoc(I). Then
(IExec(I, s))(a) = s(a).

(4) If s(intloc(0)) = 1, then I is closed on s iff I is closed on Initialize(s).
(5) If s(intloc(0)) = 1, then I is closed on s and halting on s iff I is closed

on Initialize(s) and halting on Initialize(s).
(6) Let I1 be a subset of Int-Locations and F1 be a subset of

FinSeq-Locations. Then s1¹(I1 ∪ F1) = s2¹(I1 ∪ F1) if and only if the
following conditions are satisfied:

(i) for every integer location x such that x ∈ I1 holds s1(x) = s2(x), and
(ii) for every finite sequence location x such that x ∈ F1 holds s1(x) =

s2(x).
(7) Let I1 be a subset of Int-Locations. Then s1¹(I1 ∪ FinSeq-Locations) =

s2¹(I1 ∪ FinSeq-Locations) if and only if the following conditions are sa-
tisfied:

(i) for every integer location x such that x ∈ I1 holds s1(x) = s2(x), and
(ii) for every finite sequence location x holds s1(x) = s2(x).

2. Another times Macro Instruction

Let a be an integer location and let I be a macro instruction. The functor
times(a, I) yields a macro instruction and is defined by:

(Def. 1) times(a, I) = (a1:=a);(while a1 > 0 do (I;SubFrom(a1, intloc(0)))),
where a1 = 1st -RWNotIn({a} ∪UsedIntLoc(I)).

We introduce a times I as a synonym of times(a, I).
Next we state two propositions:

(8) {b} ∪UsedIntLoc(I) ⊆ UsedIntLoc(times(b, I)).
(9) UsedInt∗ Loc(times(b, I)) = UsedInt∗ Loc(I).
Let I be a good macro instruction and let a be an integer location. Observe

that times(a, I) is good.
Let s be a state of SCMFSA, let I be a macro instruction, and let a be an

integer location. The functor StepTimes(a, I, s) yields a function from N into∏
(the object kind of SCMFSA) and is defined by:

(Def. 2) StepTimes(a, I, s) = StepWhile>0 (a1, I;SubFrom(a1, intloc(0)),
Exec(a1:=a, Initialize(s))),
where a1 = 1st -RWNotIn({a} ∪UsedIntLoc(I)).

Next we state several propositions:

(10) (StepTimes(a, J, s))(0)(intloc(0)) = 1.
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(11) If s(intloc(0)) = 1 or a is read-write, then (StepTimes(a, J, s))
(0)(1st -RWNotIn({a} ∪UsedIntLoc(J))) = s(a).

(12) Suppose (StepTimes(a, J, s))(k)(intloc(0)) = 1 and J is closed on
(StepTimes(a, J, s))(k) and halting on (StepTimes(a, J, s))(k). Then
(StepTimes(a, J, s))(k + 1)(intloc(0)) = 1 and if (StepTimes(a, J, s))(k)
(1st -RWNotIn({a}∪UsedIntLoc(J))) > 0, then (StepTimes(a, J, s))(k+1)
(1st -RWNotIn({a} ∪UsedIntLoc(J))) = (StepTimes(a, J, s))(k)
(1st -RWNotIn({a} ∪UsedIntLoc(J)))− 1.

(13) If s(intloc(0)) = 1 or a is read-write, then (StepTimes(a, I, s))(0)(a) =
s(a).

(14) (StepTimes(a, I, s))(0)(f) = s(f).

Let s be a state of SCMFSA, let a be an integer location, and let I be a
macro instruction. We say that ProperTimesBody a, I, s if and only if:

(Def. 3) For every natural number k such that k < s(a) holds I is closed on
(StepTimes(a, I, s))(k) and halting on (StepTimes(a, I, s))(k).

One can prove the following propositions:

(15) If I is parahalting, then ProperTimesBody a, I, s.

(16) If ProperTimesBody a, J , s, then for every k such that k ¬ s(a) holds
(StepTimes(a, J, s))(k)(intloc(0)) = 1.

(17) Suppose s(intloc(0)) = 1 or a is read-write but ProperTimesBody a, J , s.
Let given k. If k ¬ s(a), then (StepTimes(a, J, s))(k)(1st -RWNotIn({a} ∪
UsedIntLoc(J))) + k = s(a).

(18) Suppose ProperTimesBody a, J , s but 0 ¬ s(a) but s(intloc(0)) = 1 or
a is read-write. Let given k. If k  s(a), then (StepTimes(a, J, s))(k)
(1st -RWNotIn({a} ∪UsedIntLoc(J))) = 0 and (StepTimes(a, J, s))
(k)(intloc(0)) = 1.

(19) If s(intloc(0)) = 1, then (StepTimes(a, I, s))(0)¹(UsedIntLoc(I) ∪
FinSeq-Locations) = s¹(UsedIntLoc(I) ∪ FinSeq-Locations).

(20) Suppose (StepTimes(a, J, s))(k)(intloc(0)) = 1 and J is halting on
Initialize((StepTimes(a, J, s))(k)) and closed on Initialize((StepTimes(a, J, s))
(k)) and (StepTimes(a, J, s))(k)(1st -RWNotIn({a}∪UsedIntLoc(J))) > 0.

Then (StepTimes(a, J, s))(k + 1)¹(UsedIntLoc(J) ∪ FinSeq-Locations) =
IExec(J, (StepTimes(a, J, s))(k))¹(UsedIntLoc(J) ∪ FinSeq-Locations).

(21) Suppose ProperTimesBody a, J , s or J is parahalting but
k < s(a) but s(intloc(0)) = 1 or a is read-write. Then
(StepTimes(a, J, s))(k + 1)¹(UsedIntLoc(J) ∪ FinSeq-Locations) =
IExec(J, (StepTimes(a, J, s))(k))¹(UsedIntLoc(J) ∪ FinSeq-Locations).

(22) If s(a) ¬ 0 and s(intloc(0)) = 1, then IExec(times(a, I), s)¹(UsedIntLoc(I)∪
FinSeq-Locations) = s¹(UsedIntLoc(I) ∪ FinSeq-Locations).
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(23) Suppose s(a) = k but ProperTimesBody a, J , s or J is parahalting
but s(intloc(0)) = 1 or a is read-write. Then IExec(times(a, J), s)¹D =
(StepTimes(a, J, s))(k)¹D, where D = Int-Locations∪FinSeq-Locations.

(24) If s(intloc(0)) = 1 and if ProperTimesBody a, J , s or J is parahalting,
then times(a, J) is closed on s and times(a, J) is halting on s.

3. A Trivial Example

Let d be a read-write integer location. The functor triv-times(d) yields a
macro instruction and is defined as follows:

(Def. 4) triv-times(d) =
times(d, (while d = 0 do Macro(d:=d));
SubFrom(d, intloc(0))).

One can prove the following propositions:

(25) If s(d) ¬ 0, then (IExec(triv-times(d), s))(d) = s(d).

(26) If 0 ¬ s(d), then (IExec(triv-times(d), s))(d) = 0.

4. A Macro for the Fibonacci Sequence

Let N , r1 be integer locations. The functor Fib-macro(N, r1) yields a macro
instruction and is defined by:

(Def. 5) Fib-macro(N, r1) =
(N1:=N);
SubFrom(r1, r1);
(n1:= intloc(0));
times(N, AddTo(r1, n1); swap(r1, n1));
(N :=N1),
where N1 = 1st-NotUsed(times(N, AddTo(r1, n1); swap(r1, n1))) and n1 =
1st -RWNotIn({N, r1}).

One can prove the following proposition

(27) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be
a natural number. If n = s(N), then (IExec(Fib-macro(N, r1), s))(r1) =
Fib(n) and (IExec(Fib-macro(N, r1), s))(N) = s(N).
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Summary. We define a for type (going up) macro instruction in terms of
the while macro. This gives an iterative macro with an explicit control variable.
The for macro is used to define a macro for the selection sort acting on a finite
sequence location of SCMFSA. On the way, a macro for finding a minimum in a
section of an array is defined.

MML Identifier: SFMASTR3.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [21], [28], [6], [7], [9], [26], [10], [11], [8], [25], [15], [5],
[13], [29], [30], [23], [3], [4], [2], [1], [24], [22], [12], [19], [17], [18], [27], [20], and
[14].

1. General Preliminaries

The following propositions are true:

(1) Let X be a set, p be a permutation of X, and x, y be elements of X.
Then p +· (x, p(y)) +· (y, p(x)) is a permutation of X.

(2) Let f be a function and x, y be sets. Suppose x ∈ dom f and y ∈ dom f.

Then there exists a permutation p of dom f such that f +· (x, f(y)) +·
(y, f(x)) = f · p.

Let X be a finite non empty subset of R. The functor min X yielding a real
number is defined by:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(Def. 1) min X ∈ X and for every real number k such that k ∈ X holds min X ¬
k.

Let X be a finite non empty subset of Z. The functor min X yielding an
integer is defined by:

(Def. 2) There exists a finite non empty subset Y of R such that Y = X and
min X = min Y.

Let F be a finite sequence of elements of Z and let m, n be natural numbers.
Let us assume that 1 ¬ m and m ¬ n and n ¬ len F. The functor minn

m F yields
a natural number and is defined as follows:

(Def. 3) There exists a finite non empty subset X of Z such that X =
rng〈F (m), . . . , F (n)〉 and (minn

m F ) + 1 = (min X) " 〈F (m), . . . , F (n)〉+
m.

We use the following convention: F , F1 denote finite sequences of elements
of Z and k, m, n, m1 denote natural numbers.

The following propositions are true:

(3) Suppose 1 ¬ m and m ¬ n and n ¬ len F. Then m1 = minn
m F if and

only if the following conditions are satisfied:
(i) m ¬ m1,

(ii) m1 ¬ n,

(iii) for every natural number i such that m ¬ i and i ¬ n holds F (m1) ¬
F (i), and

(iv) for every natural number i such that m ¬ i and i < m1 holds F (m1) <

F (i).
(4) If 1 ¬ m and m ¬ len F, then minm

m F = m.

Let F be a finite sequence of elements of Z and let m, n be natural numbers.
We say that F is non decreasing on m, n if and only if:

(Def. 4) For all natural numbers i, j such that m ¬ i and i ¬ j and j ¬ n holds
F (i) ¬ F (j).

Let F be a finite sequence of elements of Z and let n be a natural number.
We say that F is split at n if and only if:

(Def. 5) For all natural numbers i, j such that 1 ¬ i and i ¬ n and n < j and
j ¬ len F holds F (i) ¬ F (j).

We now state two propositions:

(5) Suppose k + 1 ¬ len F and m1 = min(len F )
(k+1) F and F is split at k and F

is non decreasing on 1, k and F1 = F +· (k + 1, F (m1)) +· (m1, F (k + 1)).
Then F1 is non decreasing on 1, k + 1.

(6) If k + 1 ¬ len F and m1 = min(len F )
(k+1) F and F is split at k and F1 =

F +· (k + 1, F (m1)) +· (m1, F (k + 1)), then F1 is split at k + 1.
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2. SCMFSA Preliminaries

For simplicity, we use the following convention: s is a state of SCMFSA, a, c

are read-write integer locations, a1, b1, c1, d1, x are integer locations, f is a finite
sequence location, I, J are macro instructions, I1 is a good macro instruction,
and k is a natural number.

The following propositions are true:

(7) If I is closed on Initialize(s) and halting on Initialize(s) and I does not
destroy a1, then (IExec(I, s))(a1) = (Initialize(s))(a1).

(8) If s(intloc(0)) = 1, then IExec(StopSCMFSA
, s)¹D = s¹D, where D =

Int-Locations∪FinSeq-Locations.

(9) StopSCMFSA
does not refer a1.

(10) If a1 6= b1, then c1:=b1 does not refer a1.

(11) (Exec(a:=fb1 , s))(a) = π|s(b1)|s(f).
(12) (Exec(fa1 :=b1, s))(f) = s(f) +· (|s(a1)|, s(b1)).

Let a be a read-write integer location, let b be an integer location, and let
I, J be good macro instructions. Observe that if a > b then I else J is good.

One can prove the following propositions:

(13) UsedIntLoc(if a1 > b1 then I else J) = {a1, b1} ∪ UsedIntLoc(I) ∪
UsedIntLoc(J).

(14) If I does not destroy a1, then while b1 > 0 do I does not destroy a1.

(15) If c1 6= a1 and I does not destroy c1 and J does not destroy c1, then
if a1 > b1 then I else J does not destroy c1.

3. The for-up Macro Instruction

Let a, b, c be integer locations, let I be a macro instruction, and let s be a
state of SCMFSA. The functor StepForUp(a, b, c, I, s) yields a function from N
into

∏
(the object kind of SCMFSA) and is defined by:

(Def. 6) StepForUp(a, b, c, I, s) = StepWhile>0
(a2, I;
AddTo(a, intloc(0));
SubFrom(a2, intloc(0)), s +· (a2, (s(c)− s(b)) + 1) +· (a, s(b))),
where a2 = 1st -RWNotIn({a, b, c} ∪UsedIntLoc(I)).

Next we state several propositions:

(16) If s(intloc(0)) = 1, then (StepForUp(a, b1, c1, I, s))(0)(intloc(0)) = 1.
(17) (StepForUp(a, b1, c1, I, s))(0)(a) = s(b1).
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(18) If a 6= b1, then (StepForUp(a, b1, c1, I, s))(0)(b1) = s(b1).
(19) If a 6= c1, then (StepForUp(a, b1, c1, I, s))(0)(c1) = s(c1).
(20) If a 6= d1 and d1 ∈ UsedIntLoc(I), then (StepForUp(a, b1, c1, I, s))(0)(d1) =

s(d1).
(21) (StepForUp(a, b1, c1, I, s))(0)(f) = s(f).
(22) Suppose s(intloc(0)) = 1. Let a2 be a read-write integer lo-

cation. If a2 = 1st -RWNotIn({a, b1, c1} ∪ UsedIntLoc(I)), then
IExec((a2:=c1);SubFrom(a2, b1);AddTo(a2, intloc(0));(a:=b1), s)¹D = (s+·
(a2, (s(c1)−s(b1))+1)+·(a, s(b1)))¹D, where a2 = 1st -RWNotIn({a, b, c}∪
UsedIntLoc(I)) and D = Int-Locations∪FinSeq-Locations.

Let a, b, c be integer locations, let I be a macro instruction, and let s be a
state of SCMFSA. We say that ProperForUpBody a, b, c, I, s if and only if:

(Def. 7) For every natural number i such that i < (s(c)−s(b))+1 holds I is closed
on (StepForUp(a, b, c, I, s))(i) and halting on (StepForUp(a, b, c, I, s))(i).

Next we state several propositions:

(23) For every parahalting macro instruction I holds ProperForUpBody a1,
b1, c1, I, s.

(24) If (StepForUp(a, b1, c1, I1, s))(k)(intloc(0)) = 1 and I1 is closed on
(StepForUp(a, b1, c1, I1, s))(k) and halting on (StepForUp(a, b1, c1, I1, s))(k),
then (StepForUp(a, b1, c1, I1, s))(k + 1)(intloc(0)) = 1.

(25) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s. Let given
k. Suppose k ¬ (s(c1)− s(b1)) + 1. Then

(i) (StepForUp(a, b1, c1, I1, s))(k)(intloc(0)) = 1,
(ii) if I1 does not destroy a, then (StepForUp(a, b1, c1, I1, s))(k)(a) = k +

s(b1) and (StepForUp(a, b1, c1, I1, s))(k)(a) ¬ s(c1) + 1, and
(iii) (StepForUp(a, b1, c1, I1, s))(k)(1st -RWNotIn({a, b1, c1}∪UsedIntLoc(I1)))+

k = (s(c1)− s(b1)) + 1.

(26) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s. Let
given k. Then (StepForUp(a, b1, c1, I1, s))(k)(1st -RWNotIn({a, b1, c1} ∪
UsedIntLoc(I1))) > 0 if and only if k < (s(c1)− s(b1)) + 1.

(27) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s and
k < (s(c1)−s(b1))+1. Then (StepForUp(a, b1, c1, I1, s))(k+1)¹({a, b1, c1}∪
UsedIntLoc(I1)∪F2) = IExec(I1;AddTo(a, intloc(0)), (StepForUp(a, b1, c1,

I1, s))(k))¹({a, b1, c1}∪UsedIntLoc(I1)∪F2), where F2 = FinSeq-Locations.

Let a, b, c be integer locations and let I be a macro instruction. The functor
for-up(a, b, c, I) yields a macro instruction and is defined by:

(Def. 8) for-up(a, b, c, I) =
(a2:=c);
SubFrom(a2, b);
AddTo(a2, intloc(0));



the for (going up) macro instruction 109

(a:=b);(while a2 > 0 do (I;
AddTo(a, intloc(0));SubFrom(a2, intloc(0)))),
where a2 = 1st -RWNotIn({a, b, c} ∪UsedIntLoc(I)).

The following proposition is true

(28) {a1, b1, c1} ∪UsedIntLoc(I) ⊆ UsedIntLoc(for-up(a1, b1, c1, I)).
Let a be a read-write integer location, let b, c be integer locations, and let I

be a good macro instruction. Note that for-up(a, b, c, I) is good.
Next we state four propositions:

(29) If a 6= a1 and a1 6= 1st -RWNotIn({a, b1, c1}∪UsedIntLoc(I)) and I does
not destroy a1, then for-up(a, b1, c1, I) does not destroy a1.

(30) Suppose s(intloc(0)) = 1 and s(b1) > s(c1). Then for every
x such that x 6= a and x ∈ {b1, c1} ∪ UsedIntLoc(I) holds
(IExec(for-up(a, b1, c1, I), s))(x) = s(x) and for every f holds
(IExec(for-up(a, b1, c1, I), s))(f) = s(f).

(31) Suppose s(intloc(0)) = 1 but k = (s(c1) − s(b1)) + 1 but
ProperForUpBody a, b1, c1, I1, s or I1 is parahalting. Then
IExec(for-up(a, b1, c1, I1), s)¹D = (StepForUp(a, b1, c1, I1, s))(k)¹D, where
D = Int-Locations∪FinSeq-Locations.

(32) Suppose s(intloc(0)) = 1 but ProperForUpBody a, b1, c1, I1, s or I1 is
parahalting. Then for-up(a, b1, c1, I1) is closed on s and for-up(a, b1, c1, I1)
is halting on s.

4. Finding Minimum in a Section of an Array

Let s1, f1, m2 be integer locations and let f be a finite sequence location.
The functor FinSeqMin(f, s1, f1,m2) yielding a macro instruction is defined by:

(Def. 9) FinSeqMin(f, s1, f1,m2) =
(m2:=s1);
for-up(c2, s1, f1,

(a3:=fc2);
(a4:=fm2);
(if a4 > a3 then Macro(m2:=c2) else (StopSCMFSA

))),
where c2 = 3rd -RWNotIn({s1, f1, m2}),
a3 = 1st -RWNotIn({s1, f1,m2}), and
a4 = 2nd-RWNotIn({s1, f1,m2}).

Let s1, f1 be integer locations, let m2 be a read-write integer location, and
let f be a finite sequence location. Note that FinSeqMin(f, s1, f1,m2) is good.

The following propositions are true:

(33) If c 6= a1, then FinSeqMin(f, a1, b1, c) does not destroy a1.



110 piotr rudnicki

(34) {a1, b1, c} ⊆ UsedIntLoc(FinSeqMin(f, a1, b1, c)).
(35) If s(intloc(0)) = 1, then FinSeqMin(f, a1, b1, c) is closed on s and

FinSeqMin(f, a1, b1, c) is halting on s.

(36) If a1 6= c and b1 6= c and s(intloc(0)) = 1, then
(IExec(FinSeqMin(f, a1, b1, c), s))(f) = s(f) and (IExec(FinSeqMin(f, a1,

b1, c), s))(a1) = s(a1) and (IExec(FinSeqMin(f, a1, b1, c), s))(b1) = s(b1).
(37) If 1 ¬ s(a1) and s(a1) ¬ s(b1) and s(b1) ¬ len s(f) and a1 6= c and

b1 6= c and s(intloc(0)) = 1, then (IExec(FinSeqMin(f, a1, b1, c), s))(c) =
min|s(b1)|

|s(a1)| s(f).

5. A Swap Macro Instruction

Let f be a finite sequence location and let a, b be integer locations. The
functor swap(f, a, b) yields a macro instruction and is defined as follows:

(Def. 10) swap(f, a, b) = (a3:=fa);(a4:=fb);(fa:=a4);(fb:=a3), where a3 =
1st -RWNotIn({s1, f1,m2}) and a4 = 2nd-RWNotIn({s1, f1,m2}).

Let f be a finite sequence location and let a, b be integer locations. Note
that swap(f, a, b) is good and parahalting.

The following propositions are true:

(38) If c1 6= 1st -RWNotIn({a1, b1}) and c1 6= 2nd-RWNotIn({a1, b1}), then
swap(f, a1, b1) does not destroy c1.

(39) If 1 ¬ s(a1) and s(a1) ¬ len s(f) and 1 ¬ s(b1) and s(b1) ¬
len s(f) and s(intloc(0)) = 1, then (IExec(swap(f, a1, b1), s))(f) = s(f)+·
(s(a1), s(f)(s(b1))) +· (s(b1), s(f)(s(a1))).

(40) Suppose 1 ¬ s(a1) and s(a1) ¬ len s(f) and 1 ¬ s(b1) and s(b1) ¬
len s(f) and s(intloc(0)) = 1. Then (IExec(swap(f, a1, b1), s))(f)(s(a1)) =
s(f)(s(b1)) and (IExec(swap(f, a1, b1), s))(f)(s(b1)) = s(f)(s(a1)).

(41) {a1, b1} ⊆ UsedIntLoc(swap(f, a1, b1)).
(42) UsedInt∗ Loc(swap(f, a1, b1)) = {f}.

6. Selection Sort

Let f be a finite sequence location. The functor Selection-sort f yielding a
macro instruction is defined as follows:

(Def. 11) Selection-sort f = (f1:=lenf); for-up(c2, intloc(0), f ′1, FinSeqMin(f, c2, f
′
1,

m′1); swap(f, c2,m
′
1)), where c2 = 3rd -RWNotIn({s1, f1,m2}), f ′1 =

1st-NotUsed(swap(f, c2,m
′
1)), and m′1 = 2nd-RWNotIn(∅Int-Locations).
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The following proposition is true

(43) Let S be a state of SCMFSA. Suppose S = IExec(Selection-sort f, s).
Then S(f) is non decreasing on 1, len S(f) and there exists a permutation
p of Seg len s(f) such that S(f) = s(f) · p.
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Summary. This is the continuation of the proof of the Jordan Theorem
according to [18].

MML Identifier: JORDAN5D.

The articles [16], [8], [6], [2], [21], [20], [5], [3], [12], [13], [15], [9], [1], [14], [17],
[4], [23], [11], [10], [22], [19], and [7] provide the terminology and notation for
this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q denote points of E2
T,

s, r denote real numbers, h denotes a non constant standard special circular
sequence, g denotes a finite sequence of elements of E2

T, f denotes a non empty
finite sequence of elements of E2

T, and I, i1, i, j, k denote natural numbers.
We now state a number of propositions:

(1) Let B be a subset of R. Suppose there exists a real number r1 such that
r1 ∈ B and B is lower bounded and for every r such that r ∈ B holds
s ¬ r. Then s ¬ inf B.

(2) Let B be a subset of R. Suppose there exists a real number r1 such that
r1 ∈ B and B is upper bounded and for every r such that r ∈ B holds
s  r. Then s  sup B.

(3) πlen hh ∈ L(h, len h−′ 1).
1A part of this paper was written while the author visited the Shinshu University in the

winter of 1997.
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(4) If 3 ¬ i, then i mod (i−′ 1) = 1.

(5) If p ∈ rng h, then there exists a natural number i such that 1 ¬ i and
i + 1 ¬ len h and h(i) = p.

(6) For every finite sequence g of elements of R such that r ∈ rng g holds
(Inc(g))(1) ¬ r and r ¬ (Inc(g))(len Inc(g)).

(7) Suppose 1 ¬ i and i ¬ len h and 1 ¬ I and I ¬ width the Go-
board of h. Then ((the Go-board of h)1,I)1 ¬ (πih)1 and (πih)1 ¬
((the Go-board of h)len the Go-board of h, I)1.

(8) Suppose 1 ¬ i and i ¬ len h and 1 ¬ I and I ¬ len the Go-
board of h. Then ((the Go-board of h)I,1)2 ¬ (πih)2 and (πih)2 ¬
((the Go-board of h)I,width the Go-board of h)2.

(9) Suppose 1 ¬ i and i ¬ len the Go-board of f . Then there exist k, j

such that k ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board of f and
πkf = (the Go-board of f)i,j .

(10) Suppose 1 ¬ j and j ¬ width the Go-board of f . Then there exist k, i

such that k ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board of f and
πkf = (the Go-board of f)i,j .

(11) Suppose 1 ¬ i and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the
Go-board of f . Then there exists k such that k ∈ dom f and 〈〈i, j〉〉 ∈ the
indices of the Go-board of f and (πkf)1 = ((the Go-board of f)i,j)1.

(12) Suppose 1 ¬ i and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the
Go-board of f . Then there exists k such that k ∈ dom f and 〈〈i, j〉〉 ∈ the
indices of the Go-board of f and (πkf)2 = ((the Go-board of f)i,j)2.

2. Extrema of Projections

One can prove the following propositions:

(13) If 1 ¬ i and i ¬ len h, then S-bound L̃(h) ¬ (πih)2 and (πih)2 ¬
N-bound L̃(h).

(14) If 1 ¬ i and i ¬ len h, then W-bound L̃(h) ¬ (πih)1 and (πih)1 ¬
E-bound L̃(h).

(15) For every subset X of R such that X = {q2 : q1 = W-bound L̃(h) ∧
q ∈ L̃(h)} holds X = (proj2 ¹ W-most L̃(h))◦(the carrier of
(E2

T)¹ W-most L̃(h)).
(16) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈
L̃(h)} holds X = (proj2 ¹ E-most L̃(h))◦(the carrier of (E2

T)¹ E-most L̃(h)).
(17) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧

q ∈ L̃(h)} holds X = (proj1 ¹ N-most L̃(h))◦(the carrier of
(E2

T)¹ N-most L̃(h)).
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(18) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈
L̃(h)} holds X = (proj1 ¹ S-most L̃(h))◦(the carrier of (E2

T)¹ S-most L̃(h)).

(19) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds X =
(proj1 ¹ L̃(g))◦(the carrier of (E2

T)¹L̃(g)).

(20) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds X =
(proj2 ¹ L̃(g))◦(the carrier of (E2

T)¹L̃(g)).

(21) For every subset X of R such that X = {q2 : q1 = W-bound L̃(h) ∧ q ∈
L̃(h)} holds inf X = inf(proj2 ¹ W-most L̃(h)).

(22) For every subset X of R such that X = {q2 : q1 = W-bound L̃(h) ∧ q ∈
L̃(h)} holds sup X = sup(proj2 ¹ W-most L̃(h)).

(23) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈
L̃(h)} holds inf X = inf(proj2 ¹ E-most L̃(h)).

(24) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈
L̃(h)} holds sup X = sup(proj2 ¹ E-most L̃(h)).

(25) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds inf X =
inf(proj1 ¹ L̃(g)).

(26) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈
L̃(h)} holds inf X = inf(proj1 ¹ S-most L̃(h)).

(27) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈
L̃(h)} holds sup X = sup(proj1 ¹ S-most L̃(h)).

(28) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧ q ∈
L̃(h)} holds inf X = inf(proj1 ¹ N-most L̃(h)).

(29) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧ q ∈
L̃(h)} holds sup X = sup(proj1 ¹ N-most L̃(h)).

(30) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds inf X =
inf(proj2 ¹ L̃(g)).

(31) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds sup X =
sup(proj1 ¹ L̃(g)).

(32) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds sup X =
sup(proj2 ¹ L̃(g)).

(33) If p ∈ L̃(h) and 1 ¬ I and I ¬ width the Go-board of h, then
((the Go-board of h)1,I)1 ¬ p1.

(34) If p ∈ L̃(h) and 1 ¬ I and I ¬ width the Go-board of h, then p1 ¬
((the Go-board of h)len the Go-board of h, I)1.

(35) If p ∈ L̃(h) and 1 ¬ I and I ¬ len the Go-board of h, then
((the Go-board of h)I,1)2 ¬ p2.

(36) If p ∈ L̃(h) and 1 ¬ I and I ¬ len the Go-board of h, then p2 ¬
((the Go-board of h)I,width the Go-board of h)2.
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(37) Suppose 1 ¬ i and i ¬ len the Go-board of h and 1 ¬ j and
j ¬ width the Go-board of h. Then there exists q such that q1 =
((the Go-board of h)i,j)1 and q ∈ L̃(h).

(38) Suppose 1 ¬ i and i ¬ len the Go-board of h and 1 ¬ j and
j ¬ width the Go-board of h. Then there exists q such that q2 =
((the Go-board of h)i,j)2 and q ∈ L̃(h).

(39) W-bound L̃(h) = ((the Go-board of h)1,1)1.

(40) S-bound L̃(h) = ((the Go-board of h)1,1)2.

(41) E-bound L̃(h) = ((the Go-board of h)len the Go-board of h, 1)1.

(42) N-bound L̃(h) = ((the Go-board of h)1,width the Go-board of h)2.

(43) Let Y be a non empty finite subset of N. Suppose that
(i) 1 ¬ i,

(ii) i ¬ len f,

(iii) 1 ¬ I,

(iv) I ¬ len the Go-board of f ,
(v) Y = {j : 〈〈I, j〉〉 ∈ the indices of the Go-board of f ∧ ∨

k (k ∈
dom f ∧ πkf = (the Go-board of f)I,j)},

(vi) (πif)1 = ((the Go-board of f)I,1)1, and
(vii) i1 = min Y.

Then ((the Go-board of f)I,i1)2 ¬ (πif)2.

(44) Let Y be a non empty finite subset of N. Suppose that
(i) 1 ¬ i,

(ii) i ¬ len h,

(iii) 1 ¬ I,

(iv) I ¬ width the Go-board of h,
(v) Y = {j : 〈〈j, I〉〉 ∈ the indices of the Go-board of h ∧ ∨

k (k ∈
dom h ∧ πkh = (the Go-board of h)j,I)},

(vi) (πih)2 = ((the Go-board of h)1,I)2, and
(vii) i1 = min Y.

Then ((the Go-board of h)i1,I)1 ¬ (πih)1.

(45) Let Y be a non empty finite subset of N. Suppose that
(i) 1 ¬ i,

(ii) i ¬ len h,

(iii) 1 ¬ I,

(iv) I ¬ width the Go-board of h,
(v) Y = {j : 〈〈j, I〉〉 ∈ the indices of the Go-board of h ∧ ∨

k (k ∈
dom h ∧ πkh = (the Go-board of h)j,I)},

(vi) (πih)2 = ((the Go-board of h)1,I)2, and
(vii) i1 = max Y.

Then ((the Go-board of h)i1,I)1  (πih)1.
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(46) Let Y be a non empty finite subset of N. Suppose that
(i) 1 ¬ i,

(ii) i ¬ len f,

(iii) 1 ¬ I,

(iv) I ¬ len the Go-board of f ,
(v) Y = {j : 〈〈I, j〉〉 ∈ the indices of the Go-board of f ∧ ∨

k (k ∈
dom f ∧ πkf = (the Go-board of f)I,j)},

(vi) (πif)1 = ((the Go-board of f)I,1)1, and
(vii) i1 = max Y.

Then ((the Go-board of f)I,i1)2  (πif)2.

3. Coordinates of the Special Circular Sequences Bounding Boxes

Let g be a non constant standard special circular sequence. The functor iSW g

yields a natural number and is defined as follows:

(Def. 1) 〈〈1, iSW g〉〉 ∈ the indices of the Go-board of g and (the Go-board of
g)1,iSW g = W-min L̃(g).

The functor iNW g yields a natural number and is defined by:

(Def. 2) 〈〈1, iNW g〉〉 ∈ the indices of the Go-board of g and (the Go-board of
g)1,iNW g = W-max L̃(g).

The functor iSE g yielding a natural number is defined by the conditions (Def. 3).

(Def. 3)(i) 〈〈 len the Go-board of g, iSE g〉〉 ∈ the indices of the Go-board of g, and
(ii) (the Go-board of g)len the Go-board of g, iSE g = E-min L̃(g).

The functor iNE g yielding a natural number is defined by the conditions (Def. 4).

(Def. 4)(i) 〈〈 len the Go-board of g, iNE g〉〉 ∈ the indices of the Go-board of g,
and

(ii) (the Go-board of g)len the Go-board of g, iNE g = E-max L̃(g).
The functor iWS g yields a natural number and is defined by:

(Def. 5) 〈〈 iWS g, 1〉〉 ∈ the indices of the Go-board of g and (the Go-board of
g)iWS g,1 = S-min L̃(g).

The functor iES g yields a natural number and is defined by:

(Def. 6) 〈〈 iES g, 1〉〉 ∈ the indices of the Go-board of g and (the Go-board of
g)iES g,1 = S-max L̃(g).

The functor iWN g yields a natural number and is defined by the conditions
(Def. 7).

(Def. 7)(i) 〈〈 iWN g, width the Go-board of g〉〉 ∈ the indices of the Go-board of g,
and

(ii) (the Go-board of g)iWN g,width the Go-board of g = N-min L̃(g).
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The functor iEN g yields a natural number and is defined by the conditions
(Def. 8).

(Def. 8)(i) 〈〈 iEN g, width the Go-board of g〉〉 ∈ the indices of the Go-board of g,
and

(ii) (the Go-board of g)iEN g,width the Go-board of g = N-max L̃(g).
Next we state two propositions:

(47)(i) 1 ¬ iWN h,

(ii) iWN h ¬ len the Go-board of h,
(iii) 1 ¬ iEN h,

(iv) iEN h ¬ len the Go-board of h,
(v) 1 ¬ iWS h,

(vi) iWS h ¬ len the Go-board of h,
(vii) 1 ¬ iES h, and
(viii) iES h ¬ len the Go-board of h.

(48)(i) 1 ¬ iNE h,

(ii) iNE h ¬ width the Go-board of h,
(iii) 1 ¬ iSE h,

(iv) iSE h ¬ width the Go-board of h,
(v) 1 ¬ iNW h,

(vi) iNW h ¬ width the Go-board of h,
(vii) 1 ¬ iSW h, and
(viii) iSW h ¬ width the Go-board of h.

Let g be a non constant standard special circular sequence. The functor
nSW g yields a natural number and is defined as follows:

(Def. 9) 1 ¬ nSW g and nSW g + 1 ¬ len g and g(nSW g) = W-min L̃(g).
The functor nNW g yielding a natural number is defined as follows:

(Def. 10) 1 ¬ nNW g and nNW g + 1 ¬ len g and g(nNW g) = W-max L̃(g).
The functor nSE g yielding a natural number is defined by:

(Def. 11) 1 ¬ nSE g and nSE g + 1 ¬ len g and g(nSE g) = E-min L̃(g).
The functor nNE g yielding a natural number is defined by:

(Def. 12) 1 ¬ nNE g and nNE g + 1 ¬ len g and g(nNE g) = E-max L̃(g).
The functor nWS g yielding a natural number is defined by:

(Def. 13) 1 ¬ nWS g and nWS g + 1 ¬ len g and g(nWS g) = S-min L̃(g).
The functor nES g yields a natural number and is defined as follows:

(Def. 14) 1 ¬ nES g and nES g + 1 ¬ len g and g(nES g) = S-max L̃(g).
The functor nWN g yielding a natural number is defined by:

(Def. 15) 1 ¬ nWN g and nWN g + 1 ¬ len g and g(nWN g) = N-min L̃(g).
The functor nEN g yielding a natural number is defined by:

(Def. 16) 1 ¬ nEN g and nEN g + 1 ¬ len g and g(nEN g) = N-max L̃(g).
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Next we state four propositions:

(49) nWN h 6= nWS h.

(50) nSW h 6= nSE h.

(51) nEN h 6= nES h.

(52) nNW h 6= nNE h.
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Summary. This article is concerned with Euler’s theorem and small Fer-
mat’s theorem that play important roles in public-key cryptograms. In the first
section, we present some selected theorems on integers. In the following section,
we remake definitions about the finite sequence of natural, the function of na-
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The articles [6], [3], [2], [11], [10], [9], [1], [8], [4], [12], [5], and [7] provide the
terminology and notation for this paper.

1. Preliminary

We use the following convention: a, b, m, n, k, l, i, j, n1, n2, n3 are natural
numbers, t is an integer, and f , F are finite sequences of elements of N.

We now state a number of propositions:

(1) a and b qua integer are relative prime iff a and b are relative prime.
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(2) If m > 1 and m · t  1, then t  1.

(3) If m > 1 and m · t  0, then t  0.

(4) If m 6= 0, then n mod m = (n qua integer) mod m.

(5) Suppose a 6= 0 and b 6= 0 and m 6= 0 and a and m are relative prime and
b and m are relative prime. Then m and a · b mod m are relative prime.

(6) Suppose m > 1 and b 6= 0 and m and n are relative prime and a and m

are relative prime and n = a · b mod m. Then m and b are relative prime.

(7) For every n such that n 6= 0 holds m mod n mod n = m mod n.

(8) For every n such that n 6= 0 holds (l + m) mod n = ((l mod n) + (m mod
n)) mod n.

(9) For every n such that n 6= 0 holds l ·m mod n = l · (m mod n) mod n.

(10) For every n such that n 6= 0 holds l ·m mod n = (l mod n) ·m mod n.

(11) For every n such that n 6= 0 holds l·mmodn = (lmodn)·(mmodn)modn.

2. Finite Sequence of Naturals

We now state two propositions:

(12) For every finite sequence f of elements of N such that n 6= 0 and n ¬ m

holds (f¹m)(n) = f(n).
(13) For every finite sequence f of elements of N such that n ¬ m holds

f¹m¹n = f¹n.

Let us consider a, f . Then a · f is a finite sequence of elements of N.
One can prove the following propositions:

(14) For every finite sequence f of elements of N and for every natural number
r holds

∏
(f a 〈r〉) =

∏
f · r.

(15) For all finite sequences f1, f2 of elements of N holds
∏

(f1
a f2) =

∏
f1 ·∏

f2.

(16)
∏

(εN) = 1.
(17)

∏〈a〉 = a.

(18)
∏

(〈a〉 a F ) = a ·∏F.

(19)
∏〈n1, n2〉 = n1 · n2.

(20)
∏〈n1, n2, n3〉 = n1 · n2 · n3.

(21)
∏

(i 7→ (1 qua real number)) = 1.

(22)
∏

((i + j) 7→ m) =
∏

(i 7→ m) ·∏(j 7→ m).
(23)

∏
((i · j) 7→ m) =

∏
(j 7→∏

(i 7→ m)).
(24)

∏
(i 7→ (n1 · n2)) =

∏
(i 7→ n1) ·

∏
(i 7→ n2).
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(25) For all finite sequences R1, R2 of elements of N such that R1 and R2 are
fiberwise equipotent holds

∏
R1 =

∏
R2.

3. Modulus for Finite Sequence of Naturals

Let f be a finite sequence of elements of N and let m be a natural number.
The functor f mod m yielding a finite sequence of elements of N is defined by:

(Def. 1) len(f modm) = len f and for every natural number i such that i ∈ dom f

holds (f mod m)(i) = f(i) mod m.

We now state several propositions:

(26) For every finite sequence f of elements of N such that m 6= 0 holds∏
(f mod m) mod m =

∏
f mod m.

(27) If a 6= 0 and m > 1 and n 6= 0 and a · n mod m = n mod m and m and n

are relative prime, then a mod m = 1.

(28) For every F such that m 6= 0 holds F mod m mod m = F mod m.

(29) For every F such that m 6= 0 holds a · (F mod m) mod m = a ·F mod m.

(30) For all finite sequences F , G of elements of N such that m 6= 0 holds
F a G mod m = (F mod m) a (G mod m).

(31) For all finite sequences F , G of elements of N such that m 6= 0 holds
a · (F a G) mod m = (a · F mod m) a (a ·G mod m).

Let us consider n, k. Then nk
N is a natural number.

We now state the proposition

(32) If a 6= 0 and m 6= 0 and a and m are relative prime, then for every b

holds ab
N and m are relative prime.

4. Euler’s Theorem and Small Fermat’s Theorem

The following propositions are true:

(33) If a 6= 0 and m > 1 and a and m are relative prime, then (aEuler m
N ) mod

m = 1.

(34) If a 6= 0 and m is prime and a and m are relative prime, then (am
N ) mod

m = a mod m.
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1. Preliminaries

In this paper a, b, c, d, e, f are sets.
Next we state three propositions:

(1) If 〈a〉 = 〈b〉, then a = b.

(2) If 〈a, b〉 = 〈c, d〉, then a = c and b = d.

(3) If 〈a, b, c〉 = 〈d, e, f〉, then a = d and b = e and c = f.

2. The Product of the Families of the Groups

We use the following convention: i, I denote sets, f , g, h denote functions,
and s denotes a many sorted set indexed by I.

Let R be a binary relation. We say that R is semigroup yielding if and only
if:

(Def. 1) For every set y such that y ∈ rng R holds y is a non empty semigroup.

Let us note that every function which is semigroup yielding is also 1-sorted
yielding.

Let I be a set. One can verify that there exists a many sorted set indexed
by I which is semigroup yielding.

Let us observe that there exists a function which is semigroup yielding.
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Let I be a set. A family of semigroups indexed by I is a semigroup yielding
many sorted set indexed by I.

Let I be a non empty set, let F be a family of semigroups indexed by I, and
let i be an element of I. Then F (i) is a non empty semigroup.

Let I be a set and let F be a family of semigroups indexed by I. One can
verify that the support of F is non-empty.

Let I be a set and let F be a family of semigroups indexed by I. The functor∏
F yielding a strict semigroup is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of
∏

F =
∏

(the support of F ), and
(ii) for all elements f , g of

∏
(the support of F ) and for every set i such that

i ∈ I there exists a non empty semigroup F1 and there exists a function
h such that F1 = F (i) and h = (the multiplication of

∏
F )(f, g) and

h(i) = (the multiplication of F1)(f(i), g(i)).
Let I be a set and let F be a family of semigroups indexed by I. Note that∏

F is non empty.
Let I be a set and let F be a family of semigroups indexed by I. Observe

that every element of the carrier of
∏

F is function-like and relation-like.
Let I be a set, let F be a family of semigroups indexed by I, and let f , g be

elements of
∏

(the support of F ). Observe that (the multiplication of
∏

F )(f,

g) is function-like and relation-like.
One can prove the following proposition

(4) Let F be a family of semigroups indexed by I, G be a non empty se-
migroup, p, q be elements of the carrier of

∏
F, and x, y be elements of

the carrier of G. Suppose i ∈ I and G = F (i) and f = p and g = q and
h = p · q and f(i) = x and g(i) = y. Then x · y = h(i).

Let I be a set and let F be a family of semigroups indexed by I. We say
that F is group-like if and only if:

(Def. 3) For every set i such that i ∈ I there exists a group-like non empty
semigroup F1 such that F1 = F (i).

We say that F is associative if and only if:

(Def. 4) For every set i such that i ∈ I there exists an associative non empty
semigroup F1 such that F1 = F (i).

We say that F is commutative if and only if:

(Def. 5) For every set i such that i ∈ I there exists a commutative non empty
semigroup F1 such that F1 = F (i).

Let I be a non empty set and let F be a family of semigroups indexed by I.
Let us observe that F is group-like if and only if:

(Def. 6) For every element i of I holds F (i) is group-like.

Let us observe that F is associative if and only if:

(Def. 7) For every element i of I holds F (i) is associative.
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Let us observe that F is commutative if and only if:

(Def. 8) For every element i of I holds F (i) is commutative.

Let I be a set. Note that there exists a family of semigroups indexed by I

which is group-like, associative, and commutative.
Let I be a set and let F be a group-like family of semigroups indexed by I.

Note that
∏

F is group-like.
Let I be a set and let F be an associative family of semigroups indexed by

I. One can check that
∏

F is associative.
Let I be a set and let F be a commutative family of semigroups indexed by

I. One can verify that
∏

F is commutative.
We now state several propositions:

(5) Let F be a family of semigroups indexed by I and G be a non empty
semigroup. If i ∈ I and G = F (i) and

∏
F is group-like, then G is group-

like.

(6) Let F be a family of semigroups indexed by I and G be a non empty
semigroup. If i ∈ I and G = F (i) and

∏
F is associative, then G is

associative.

(7) Let F be a family of semigroups indexed by I and G be a non empty
semigroup. If i ∈ I and G = F (i) and

∏
F is commutative, then G is

commutative.

(8) Let F be a group-like family of semigroups indexed by I. Suppose that for
every set i such that i ∈ I there exists a group-like non empty semigroup
G such that G = F (i) and s(i) = 1G. Then s = 1QF .

(9) Let F be a group-like family of semigroups indexed by I and G be a
group-like non empty semigroup. If i ∈ I and G = F (i) and f = 1QF ,

then f(i) = 1G.

(10) Let F be an associative group-like family of semigroups indexed by I

and x be an element of the carrier of
∏

F. Suppose that
(i) x = g, and
(ii) for every set i such that i ∈ I there exists a group G and there exists

an element y of the carrier of G such that G = F (i) and s(i) = y−1 and
y = g(i).
Then s = x−1.

(11) Let F be an associative group-like family of semigroups indexed by I, x

be an element of the carrier of
∏

F, G be a group, and y be an element
of the carrier of G. If i ∈ I and G = F (i) and f = x and g = x−1 and
f(i) = y, then g(i) = y−1.

Let I be a set and let F be an associative group-like family of semigroups
indexed by I. The functor sum F yielding a strict subgroup of

∏
F is defined

by the condition (Def. 9).
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(Def. 9) Let x be a set. Then x ∈ the carrier of sum F if and only if there exists
an element g of

∏
(the support of F ) and there exists a finite subset J of

I and there exists a many sorted set f indexed by J such that g = 1QF

and x = g+·f and for every set j such that j ∈ J there exists a group-like
non empty semigroup G such that G = F (j) and f(j) ∈ the carrier of G

and f(j) 6= 1G.

Let I be a set, let F be an associative group-like family of semigroups indexed
by I, and let f , g be elements of the carrier of sum F. One can check that (the
multiplication of sum F )(f, g) is function-like and relation-like.

The following proposition is true

(12) For every finite set I and for every associative group-like family F of
semigroups indexed by I holds

∏
F = sum F.

3. The Product of One, Two and Three Groups

One can prove the following proposition

(13) For every non empty semigroup G1 holds 〈G1〉 is a family of semigroups
indexed by {1}.

Let G1 be a non empty semigroup. Then 〈G1〉 is a family of semigroups
indexed by {1}.

We now state the proposition

(14) For every group-like non empty semigroup G1 holds 〈G1〉 is a group-like
family of semigroups indexed by {1}.

Let G1 be a group-like non empty semigroup. Then 〈G1〉 is a group-like
family of semigroups indexed by {1}.

Next we state the proposition

(15) For every associative non empty semigroup G1 holds 〈G1〉 is an associa-
tive family of semigroups indexed by {1}.

Let G1 be an associative non empty semigroup. Then 〈G1〉 is an associative
family of semigroups indexed by {1}.

The following proposition is true

(16) For every commutative non empty semigroup G1 holds 〈G1〉 is a com-
mutative family of semigroups indexed by {1}.

Let G1 be a commutative non empty semigroup. Then 〈G1〉 is a commutative
family of semigroups indexed by {1}.

We now state the proposition

(17) For every group G1 holds 〈G1〉 is a group-like associative family of se-
migroups indexed by {1}.
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Let G1 be a group. Then 〈G1〉 is a group-like associative family of semigroups
indexed by {1}.

Next we state the proposition

(18) Let G1 be a commutative group. Then 〈G1〉 is a commutative group-like
associative family of semigroups indexed by {1}.

Let G1 be a commutative group. Then 〈G1〉 is a group-like associative com-
mutative family of semigroups indexed by {1}.

Let G1 be a non empty semigroup. Note that every element of
∏

the support
of 〈G1〉 is finite sequence-like.

Let G1 be a non empty semigroup. Note that every element of the carrier of∏〈G1〉 is finite sequence-like.
Let G1 be a non empty semigroup and let x be an element of the carrier of

G1. Then 〈x〉 is an element of
∏〈G1〉.

One can prove the following proposition

(19) For all non empty semigroups G1, G2 holds 〈G1, G2〉 is a family of semi-
groups indexed by {1, 2}.

Let G1, G2 be non empty semigroups. Then 〈G1, G2〉 is a family of semigro-
ups indexed by {1, 2}.

One can prove the following proposition

(20) For all group-like non empty semigroups G1, G2 holds 〈G1, G2〉 is a
group-like family of semigroups indexed by {1, 2}.

Let G1, G2 be group-like non empty semigroups. Then 〈G1, G2〉 is a group-
like family of semigroups indexed by {1, 2}.

Next we state the proposition

(21) For all associative non empty semigroups G1, G2 holds 〈G1, G2〉 is an
associative family of semigroups indexed by {1, 2}.

Let G1, G2 be associative non empty semigroups. Then 〈G1, G2〉 is an asso-
ciative family of semigroups indexed by {1, 2}.

One can prove the following proposition

(22) For all commutative non empty semigroups G1, G2 holds 〈G1, G2〉 is a
commutative family of semigroups indexed by {1, 2}.

Let G1, G2 be commutative non empty semigroups. Then 〈G1, G2〉 is a com-
mutative family of semigroups indexed by {1, 2}.

The following proposition is true

(23) For all groups G1, G2 holds 〈G1, G2〉 is a group-like associative family of
semigroups indexed by {1, 2}.

Let G1, G2 be groups. Then 〈G1, G2〉 is a group-like associative family of
semigroups indexed by {1, 2}.

Next we state the proposition
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(24) Let G1, G2 be commutative groups. Then 〈G1, G2〉 is a group-like asso-
ciative commutative family of semigroups indexed by {1, 2}.

Let G1, G2 be commutative groups. Then 〈G1, G2〉 is a group-like associative
commutative family of semigroups indexed by {1, 2}.

Let G1, G2 be non empty semigroups. Note that every element of
∏

the
support of 〈G1, G2〉 is finite sequence-like.

Let G1, G2 be non empty semigroups. Note that every element of the carrier
of

∏〈G1, G2〉 is finite sequence-like.
Let G1, G2 be non empty semigroups, let x be an element of the carrier of

G1, and let y be an element of the carrier of G2. Then 〈x, y〉 is an element of∏〈G1, G2〉.
One can prove the following proposition

(25) For all non empty semigroups G1, G2, G3 holds 〈G1, G2, G3〉 is a family
of semigroups indexed by {1, 2, 3}.

Let G1, G2, G3 be non empty semigroups. Then 〈G1, G2, G3〉 is a family of
semigroups indexed by {1, 2, 3}.

Next we state the proposition

(26) For all group-like non empty semigroups G1, G2, G3 holds 〈G1, G2, G3〉
is a group-like family of semigroups indexed by {1, 2, 3}.

Let G1, G2, G3 be group-like non empty semigroups. Then 〈G1, G2, G3〉 is a
group-like family of semigroups indexed by {1, 2, 3}.

Next we state the proposition

(27) Let G1, G2, G3 be associative non empty semigroups. Then 〈G1, G2, G3〉
is an associative family of semigroups indexed by {1, 2, 3}.

Let G1, G2, G3 be associative non empty semigroups. Then 〈G1, G2, G3〉 is
an associative family of semigroups indexed by {1, 2, 3}.

One can prove the following proposition

(28) Let G1, G2, G3 be commutative non empty semigroups. Then 〈G1, G2,

G3〉 is a commutative family of semigroups indexed by {1, 2, 3}.
Let G1, G2, G3 be commutative non empty semigroups. Then 〈G1, G2, G3〉

is a commutative family of semigroups indexed by {1, 2, 3}.
Next we state the proposition

(29) For all groups G1, G2, G3 holds 〈G1, G2, G3〉 is a group-like associative
family of semigroups indexed by {1, 2, 3}.

Let G1, G2, G3 be groups. Then 〈G1, G2, G3〉 is a group-like associative
family of semigroups indexed by {1, 2, 3}.

One can prove the following proposition

(30) Let G1, G2, G3 be commutative groups. Then 〈G1, G2, G3〉 is a group-like
associative commutative family of semigroups indexed by {1, 2, 3}.
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Let G1, G2, G3 be commutative groups. Then 〈G1, G2, G3〉 is a group-like
associative commutative family of semigroups indexed by {1, 2, 3}.

Let G1, G2, G3 be non empty semigroups. Observe that every element of∏
the support of 〈G1, G2, G3〉 is finite sequence-like.
Let G1, G2, G3 be non empty semigroups. Note that every element of the

carrier of
∏〈G1, G2, G3〉 is finite sequence-like.

Let G1, G2, G3 be non empty semigroups, let x be an element of the carrier
of G1, let y be an element of the carrier of G2, and let z be an element of the
carrier of G3. Then 〈x, y, z〉 is an element of

∏〈G1, G2, G3〉.
For simplicity, we adopt the following rules: G1, G2, G3 denote non empty

semigroups, x1, x2 denote elements of the carrier of G1, y1, y2 denote elements
of the carrier of G2, and z1, z2 denote elements of the carrier of G3.

One can prove the following propositions:

(31) 〈x1〉 · 〈x2〉 = 〈x1 · x2〉.
(32) 〈x1, y1〉 · 〈x2, y2〉 = 〈x1 · x2, y1 · y2〉.
(33) 〈x1, y1, z1〉 · 〈x2, y2, z2〉 = 〈x1 · x2, y1 · y2, z1 · z2〉.

In the sequel G1, G2, G3 denote group-like non empty semigroups.
We now state three propositions:

(34) 1Q〈G1〉 = 〈1(G1)〉.
(35) 1Q〈G1,G2〉 = 〈1(G1), 1(G2)〉.
(36) 1Q〈G1,G2,G3〉 = 〈1(G1), 1(G2), 1(G3)〉.

For simplicity, we adopt the following rules: G1, G2, G3 are groups, x is an
element of the carrier of G1, y is an element of the carrier of G2, and z is an
element of the carrier of G3.

The following propositions are true:

(37) (〈x〉 qua element of the carrier of
∏〈G1〉)−1 = 〈x−1〉.

(38) (〈x, y〉 qua element of the carrier of
∏〈G1, G2〉)−1 = 〈x−1, y−1〉.

(39) (〈x, y, z〉 qua element of the carrier of
∏〈G1, G2, G3〉)−1 = 〈x−1, y−1,

z−1〉.
(40) Let f be a function from the carrier of G1 into the carrier of

∏〈G1〉.
Suppose that for every element x of the carrier of G1 holds f(x) = 〈x〉.
Then f is a homomorphism from G1 to

∏〈G1〉.
(41) Let f be a homomorphism from G1 to

∏〈G1〉. Suppose that for every
element x of the carrier of G1 holds f(x) = 〈x〉. Then f is an isomorphism.

(42) G1 and
∏〈G1〉 are isomorphic.
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Summary. At the beginning, the concept of the segment of the simple
closed curve in 2-dimensional Euclidean space is defined. Some properties of
segments are shown in the succeeding theorems. At the end, the existence of the
function which can divide the simple closed curve into segments is shown. We
can make the diameter of segments as small as we want.
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The terminology and notation used in this paper are introduced in the following
papers: [17], [5], [7], [2], [15], [3], [11], [12], [13], [1], [14], [4], [18], [16], [10], [8],
[9], and [6].

1. Definition of the Segment and Its Property

In this paper p, p1, q are points of E2
T.

The following three propositions are true:

(1) Let P be a compact non empty subset of E2
T. Suppose P is a simple

closed curve. Then W-min P ∈ LowerArc P and E-max P ∈ LowerArc P

and W-min P ∈ UpperArc P and E-max P ∈ UpperArc P.

(2) For every compact non empty subset P of E2
T and for every q such that

P is a simple closed curve and LE(q, W-min P, P ) holds q = W-min P.

(3) For every compact non empty subset P of E2
T and for every q such that

P is a simple closed curve and q ∈ P holds LE(W-min P, q, P ).
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Let P be a compact non empty subset of E2
T and let q1, q2 be points of E2

T.
The functor Segment(q1, q2, P ) yields a subset of E2

T and is defined by:

(Def. 1) Segment(q1, q2, P ) =





{p : LE(q1, p, P ) ∧ LE(p, q2, P )},
if q2 6= W-min P,

{p1 : LE(q1, p1, P ) ∨ q1 ∈ P ∧ p1 = W-min P},
otherwise.

One can prove the following propositions:

(4) For every compact non empty subset P of E2
T such that P is a sim-

ple closed curve holds Segment(W-min P, E-max P, P ) = UpperArc P and
Segment(E-max P, W-min P, P ) = LowerArc P.

(5) Let P be a compact non empty subset of E2
T and q1, q2 be points of E2

T.
If P is a simple closed curve and LE(q1, q2, P ), then q1 ∈ P and q2 ∈ P.

(6) Let P be a compact non empty subset of E2
T and q1, q2 be points of E2

T. If
P is a simple closed curve and LE(q1, q2, P ), then q1 ∈ Segment(q1, q2, P )
and q2 ∈ Segment(q1, q2, P ).

(7) Let P be a compact non empty subset of E2
T and q be a point of

E2
T. If P is a simple closed curve and q ∈ P and q 6= W-min P, then

Segment(q, q, P ) = {q}.

(8) Let P be a compact non empty subset of E2
T and q1, q2 be points of E2

T.
If P is a simple closed curve and q1 6= W-min P and q2 6= W-min P, then
W-min P /∈ Segment(q1, q2, P ).

(9) Let P be a compact non empty subset of E2
T and q1, q2, q3 be points of E2

T.
Suppose P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P ) and
q1 = q2 and q1 = W-min P and q1 6= q3 and q2 = q3 and q2 = W-min P.

Then Segment(q1, q2, P ) ∩ Segment(q2, q3, P ) = {q2}.

(10) Let P be a compact non empty subset of E2
T and q1, q2 be points of E2

T.
Suppose P is a simple closed curve and LE(q1, q2, P ) and q1 6= q2 and q1 6=
W-min P. Then Segment(q2, W-min P, P ) ∩ Segment(W-min P, q1, P ) =
{W-min P}.

(11) Let P be a compact non empty subset of E2
T and q1, q2, q3, q4 be points of

E2
T. Suppose P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P )

and LE(q3, q4, P ) and q1 6= q2 and q2 6= q3. Then Segment(q1, q2, P ) ∩
Segment(q3, q4, P ) = ∅.
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2. A Function to Divide the Simple Closed Curve

In the sequel n is a natural number.
We now state three propositions:

(12) Let P be a non empty subset of the carrier of En
T and f be a map from

I into (En
T)¹P. Suppose P 6= ∅ and f is a homeomorphism. Then there

exists a map g from I into En
T such that f = g and g is continuous and

one-to-one.

(13) For every finite sequence f of elements of R such that f is increasing
holds f is one-to-one.

(14) Let P be a compact non empty subset of E2
T and e be a real number.

Suppose P is a simple closed curve and e > 0. Then there exists a finite
sequence h of elements of the carrier of E2

T such that
(i) h(1) = W-min P,

(ii) h is one-to-one,
(iii) 8 ¬ len h,

(iv) rng h ⊆ P,

(v) for every natural number i such that 1 ¬ i and i < len h holds
LE(πih, πi+1h, P ),

(vi) for every natural number i and for every subset W of the carrier of
E2 such that 1 ¬ i and i < len h and W = Segment(πih, πi+1h, P ) holds
ØW < e,

(vii) for every subset W of the carrier of E2 such that W =
Segment(πlen hh, π1h, P ) holds ØW < e,

(viii) for every natural number i such that 1 ¬ i and i + 1 < len h holds
Segment(πih, πi+1h, P ) ∩ Segment(πi+1h, πi+2h, P ) = {πi+1h},

(ix) Segment(πlen hh, π1h, P ) ∩ Segment(π1h, π2h, P ) = {π1h}, and
(x) for all natural numbers i, j such that 1 ¬ i and i < len h and

1 ¬ j and j < len h and i 6= j and i and j are not adjacent holds
Segment(πih, πi+1h, P ) ∩ Segment(πjh, πj+1h, P ) = ∅.
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Summary. Up to now, many properties of macro instructions of SCMFSA

are described by the parahalting concepts. However, many practical programs are
not always halting while they are halting for initialization states. For this reason,
we propose initialization halting concepts. That a program is initialization halting
(called ”InitHalting” for short) means it is halting for initialization states.In
order to make the halting proof of more complicated programs easy, we present
”InitHalting” basic properties of the compositions of the macro instructions, if-
Macro (conditional branch macro instructions) and Times-Macro (for-loop macro
instructions) etc.

MML Identifier: SCM HALT.

The terminology and notation used in this paper have been introduced in the
following articles: [14], [18], [16], [26], [7], [9], [12], [11], [24], [8], [13], [27], [22],
[5], [6], [3], [1], [2], [4], [23], [19], [20], [21], [10], [15], [25], and [17].

1. The Definition of Several Notions Related to Initialization

For simplicity, we adopt the following rules: m is a natural number, I is a
macro instruction, s, s1, s2 are states of SCMFSA, a is an integer location, and
f is a finite sequence location.

Let I be a macro instruction. We say that I is InitClosed if and only if:

(Def. 1) For every state s of SCMFSA and for every natural number n such that
Initialized(I) ⊆ s holds IC(Computation(s))(n) ∈ dom I.

We say that I is InitHalting if and only if:
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(Def. 2) Initialized(I) is halting.

We say that I is keepInt0 1 if and only if:

(Def. 3) For every state s of SCMFSA such that Initialized(I) ⊆ s and for every
natural number k holds (Computation(s))(k)(intloc(0)) = 1.

2. The Relationship Between Initialization Halting and
Unconditional Halting

The following four propositions are true:

(1) For every set x and for all natural numbers i, m, n such that x ∈
dom((intloc(i)7−→. m)+· Start-At(insloc(n))) holds x = intloc(i) or x =
ICSCMFSA .

(2) For every macro instruction I and for all natural numbers i, m, n holds
dom I ∩ dom((intloc(i) 7−→. m)+·Start-At(insloc(n))) = ∅.

(3) Initialized(I) = I+·((intloc(0)7−→. 1)+· Start-At(insloc(0))).
(4) Macro(haltSCMFSA) is InitHalting.

Let us mention that there exists a macro instruction which is InitHalting.
One can prove the following three propositions:

(5) For every InitHalting macro instruction I such that Initialized(I) ⊆ s

holds s is halting.

(6) I+· Start-At(insloc(0)) ⊆ Initialized(I).
(7) For every macro instruction I and for every state s of SCMFSA such

that Initialized(I) ⊆ s holds s(intloc(0)) = 1.
Let us mention that every macro instruction which is paraclosed is also

InitClosed.
Let us note that every macro instruction which is parahalting is also Ini-

tHalting.
One can check the following observations:

∗ every macro instruction which is InitHalting is also InitClosed,

∗ every macro instruction which is keepInt0 1 is also InitClosed, and

∗ every macro instruction which is keeping 0 is also keepInt0 1.

3. The Other Properties of Initialization Halting

One can prove the following two propositions:

(8) Let I be a InitHalting macro instruction and a be a read-write integer
location. If a /∈ UsedIntLoc(I), then (IExec(I, s))(a) = s(a).
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(9) Let I be a InitHalting macro instruction and f be a finite sequence
location. If f /∈ UsedInt∗ Loc(I), then (IExec(I, s))(f) = s(f).

Let I be a InitHalting macro instruction. Note that Initialized(I) is halting.
Let us observe that every macro instruction which is InitHalting is also non

empty.
The following propositions are true:

(10) For every InitHalting macro instruction I holds dom I 6= ∅.
(11) For every InitHalting macro instruction I holds insloc(0) ∈ dom I.

(12) Let J be a InitHalting macro instruction. Suppose Initialized(J) ⊆ s1.

Let n be a natural number. Suppose ProgramPart(Relocated(J, n)) ⊆
s2 and IC(s2) = insloc(n) and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then
IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and IncAddr(CurInstr
((Computation(s1))(i)), n) = CurInstr((Computation(s2))(i))
and (Computation(s1))(i)¹(Int-Locations∪FinSeq-Locations) =
(Computation(s2))(i)¹(Int-Locations∪FinSeq-Locations).

(13) If Initialized(I) ⊆ s, then I ⊆ s.

(14) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆
s1 and Initialized(I) ⊆ s2 and s1 and s2 are equal outside the in-
struction locations of SCMFSA. Let k be a natural number. Then
(Computation(s1))(k) and (Computation(s2))(k) are equal outside the in-
struction locations of SCMFSA and CurInstr((Computation(s1))(k)) =
CurInstr((Computation(s2))(k)).

(15) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆ s1

and Initialized(I) ⊆ s2 and s1 and s2 are equal outside the instruction
locations of SCMFSA. Then LifeSpan(s1) = LifeSpan(s2) and Result(s1)
and Result(s2) are equal outside the instruction locations of SCMFSA.

(16) Macro(haltSCMFSA) is keeping 0 and InitHalting.

Let us observe that there exists a macro instruction which is keeping 0 and
InitHalting.

One can verify that there exists a macro instruction which is keepInt0 1 and
InitHalting.

Next we state several propositions:

(17) For every keepInt0 1 InitHalting macro instruction I holds
(IExec(I, s))(intloc(0)) = 1.

(18) Let I be a InitClosed macro instruction and J be a macro in-
struction. Suppose Initialized(I) ⊆ s and s is halting. Let gi-
ven m. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+·(I;J)))(m) are equal outside the instruction locations
of SCMFSA.
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(19) For all natural numbers i, m, n holds s+·I+·((intloc(i)7−→. m)+· Start-At
(insloc(n))) = (s+·((intloc(i)7−→. m)+· Start-At(insloc(n))))+·I.

(20) If (intloc(0)7−→. 1)+· Start-At(insloc(0)) ⊆ s, then Initialized(I) ⊆
s+·(I+·((intloc(0)7−→. 1)+· Start-At(insloc(0)))) and s+·(I+·((intloc(0)7−→. 1)
+· Start-At(insloc(0)))) = s+·I and s+·(I+·((intloc(0)7−→. 1)
+· Start-At(insloc(0))))+·Directed(I) = s+·Directed(I).

(21) For every InitClosed macro instruction I such that s+·I is halting
and Directed(I) ⊆ s and (intloc(0)7−→. 1)+· Start-At(insloc(0)) ⊆ s holds
IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I).

(22) Let I be a InitClosed macro instruction. Suppose s+·I is halting and
Directed(I) ⊆ s and (intloc(0)7−→. 1)+· Start-At(insloc(0)) ⊆ s. Then
(Computation(s))(LifeSpan(s+·I))¹(Int-Locations∪FinSeq-Locations) =
(Computation(s))(LifeSpan(s+·I)+1)¹(Int-Locations∪FinSeq-Locations).

(23) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆
s. Let k be a natural number. If k ¬ LifeSpan(s), then
CurInstr((Computation(s+·Directed(I)))(k)) 6= haltSCMFSA .

(24) Let I be a InitClosed macro instruction. Suppose s+· Initialized(I) is hal-
ting. Let J be a macro instruction and k be a natural number. Suppose k ¬
LifeSpan(s+· Initialized(I)). Then (Computation(s+· Initialized(I)))(k)
and (Computation(s+· Initialized(I;J)))(k) are equal outside the instruc-
tion locations of SCMFSA.

4. The Initialization Halting for Two Continuous
Macro-Instructions

One can prove the following proposition

(25) Let I be a keepInt0 1 InitHalting macro instruction, J be a Ini-
tHalting macro instruction, and s be a state of SCMFSA. Suppose
Initialized(I;J) ⊆ s. Then

(i) IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I),
(ii) (Computation(s))(LifeSpan(s+·I)+1)¹(Int-Locations∪FinSeq-Locations) =

((Computation(s+·I))(LifeSpan(s+·I))+· Initialized(J))¹(Int-Locations∪
FinSeq-Locations),

(iii) ProgramPart(Relocated(J, card I)) ⊆ (Computation(s))(LifeSpan(s+·I)+
1),

(iv) (Computation(s))(LifeSpan(s+·I) + 1)(intloc(0)) = 1,
(v) s is halting,
(vi) LifeSpan(s) = LifeSpan(s+·I)+1+LifeSpan(Result(s+·I)+· Initialized(J)),

and
(vii) if J is keeping 0, then (Result(s))(intloc(0)) = 1.
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Let I be a keepInt0 1 InitHalting macro instruction and let J be a InitHalting
macro instruction. Note that I;J is InitHalting.

Next we state four propositions:

(26) Let I be a keepInt0 1 macro instruction. Suppose s+·I is halting. Let J

be a InitClosed macro instruction. Suppose Initialized(I;J) ⊆ s. Let k be
a natural number. Then (Computation(Result(s+·I)+· Initialized(J)))(k)
+· Start-At(IC(Computation(Result(s+·I)+· Initialized(J)))(k) + card I) and
(Computation(s+·(I;J)))(LifeSpan(s+·I) + 1 + k) are equal outside the
instruction locations of SCMFSA.

(27) Let I be a keepInt0 1 macro instruction. Suppose s+· Initialized(I) is not
halting. Let J be a macro instruction and k be a natural number. Then
(Computation(s+· Initialized(I)))(k) and (Computation(s+· Initialized
(I;J)))(k) are equal outside the instruction locations of SCMFSA.

(28) Let I be a keepInt0 1 InitHalting macro instruction and J be a
InitHalting macro instruction. Then LifeSpan(s+· Initialized(I;J)) =
LifeSpan(s+· Initialized(I)) + 1 + LifeSpan(Result(s+· Initialized(I))
+· Initialized(J)).

(29) Let I be a keepInt0 1 InitHalting macro instruction and J be a InitHal-
ting macro instruction. Then IExec(I;J, s) = IExec(J, IExec(I, s))
+· Start-At(ICIExec(J,IExec(I,s)) + card I).

Let i be a parahalting instruction of SCMFSA. Observe that Macro(i) is
InitHalting.

Let i be a parahalting instruction of SCMFSA and let J be a parahalting
macro instruction. Observe that i;J is InitHalting.

Let i be a keeping 0 parahalting instruction of SCMFSA and let J be a
InitHalting macro instruction. Note that i;J is InitHalting.

Let I, J be keepInt0 1 macro instructions. One can verify that I;J is keepInt0
1.

Let j be a keeping 0 parahalting instruction of SCMFSA and let I be a
keepInt0 1 InitHalting macro instruction. One can check that I;j is InitHalting
and keepInt0 1.

Let i be a keeping 0 parahalting instruction of SCMFSA and let J be a
keepInt0 1 InitHalting macro instruction. Observe that i;J is InitHalting and
keepInt0 1.

Let j be a parahalting instruction of SCMFSA and let I be a parahalting
macro instruction. One can check that I;j is InitHalting.

Let i, j be parahalting instructions of SCMFSA. One can check that i;j is
InitHalting.

Next we state several propositions:

(30) Let I be a keepInt0 1 InitHalting macro instruction and J

be a InitHalting macro instruction. Then (IExec(I;J, s))(a) =
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(IExec(J, IExec(I, s)))(a).
(31) Let I be a keepInt0 1 InitHalting macro instruction and J

be a InitHalting macro instruction. Then (IExec(I;J, s))(f) =
(IExec(J, IExec(I, s)))(f).

(32) For every keepInt0 1 InitHalting macro instruction I and for every state s

of SCMFSA holds Initialize(IExec(I, s))¹(Int-Locations∪FinSeq-Locations) =
IExec(I, s)¹(Int-Locations∪FinSeq-Locations).

(33) Let I be a keepInt0 1 InitHalting macro instruction and j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(a) =
(Exec(j, IExec(I, s)))(a).

(34) Let I be a keepInt0 1 InitHalting macro instruction and j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(f) =
(Exec(j, IExec(I, s)))(f).

Let I be a macro instruction and let s be a state of SCMFSA. We say that
I is closed onInit s if and only if:

(Def. 4) For every natural number k holds IC(Computation(s+· Initialized(I)))(k) ∈
dom I.

We say that I is halting onInit s if and only if:

(Def. 5) s+· Initialized(I) is halting.

We now state three propositions:

(35) Let I be a macro instruction. Then I is InitClosed if and only if for every
state s of SCMFSA holds I is closed onInit s.

(36) Let I be a macro instruction. Then I is InitHalting if and only if for
every state s of SCMFSA holds I is halting onInit s.

(37) Let s be a state of SCMFSA, I be a macro instruction, and a be
an integer location. Suppose I does not destroy a and I is closed
onInit s and Initialized(I) ⊆ s. Let k be a natural number. Then
(Computation(s))(k)(a) = s(a).

Let us observe that there exists a macro instruction which is InitHalting and
good.

Let us observe that every macro instruction which is InitClosed and good is
also keepInt0 1.

Let us mention that StopSCMFSA
is InitHalting and good.

We now state several propositions:

(38) Let s be a state of SCMFSA, i be a keeping 0 parahalting instruction
of SCMFSA, J be a InitHalting macro instruction, and a be an integer
location. Then (IExec(i;J, s))(a) = (IExec(J, Exec(i, Initialize(s))))(a).

(39) Let s be a state of SCMFSA, i be a keeping 0 parahalting instruction of
SCMFSA, J be a InitHalting macro instruction, and f be a finite sequence
location. Then (IExec(i;J, s))(f) = (IExec(J, Exec(i, Initialize(s))))(f).
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(40) Let s be a state of SCMFSA and I be a macro instruction. Then I is
closed onInit s if and only if I is closed on Initialize(s).

(41) Let s be a state of SCMFSA and I be a macro instruction. Then I is
halting onInit s if and only if I is halting on Initialize(s).

(42) For every macro instruction I and for every state s of SCMFSA holds
IExec(I, s) = IExec(I, Initialize(s)).

5. IF-Programs with Initialization Halting

The following propositions are true:

(43) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) = 0 and I is closed onInit s and
I is halting onInit s. Then if a = 0 then I else J is closed onInit s and
if a = 0 then I else J is halting onInit s.

(44) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose s(a) = 0 and I is closed onInit
s and I is halting onInit s. Then IExec(if a = 0 then I else J, s) =
IExec(I, s)+· Start-At(insloc(card I + card J + 3)).

(45) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) 6= 0 and J is closed onInit s and
J is halting onInit s. Then if a = 0 then I else J is closed onInit s and
if a = 0 then I else J is halting onInit s.

(46) Let I, J be macro instructions, a be a read-write integer location,
and s be a state of SCMFSA. Suppose s(a) 6= 0 and J is closed onI-
nit s and J is halting onInit s. Then IExec(if a = 0 then I else J, s) =
IExec(J, s)+·Start-At(insloc(card I + card J + 3)).

(47) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,
and a be a read-write integer location. Then if a = 0 then I else J is
InitHalting and if s(a) = 0, then IExec(if a = 0 then I else J, s) =
IExec(I, s)+· Start-At(insloc(card I + card J + 3)) and if s(a) 6= 0, then
IExec(if a = 0 then I else J, s) = IExec(J, s)+· Start-At(insloc(card I +
card J + 3)).

(48) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,
and a be a read-write integer location. Then

(i) ICIExec(if a=0 then I else J,s) = insloc(card I + card J + 3),
(ii) if s(a) = 0, then for every integer location d holds (IExec(if a =

0 then I else J, s))(d) = (IExec(I, s))(d) and for every finite sequence
location f holds (IExec(if a = 0 then I else J, s))(f) = (IExec(I, s))(f),
and
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(iii) if s(a) 6= 0, then for every integer location d holds (IExec(if a =
0 then I else J, s))(d) = (IExec(J, s))(d) and for every finite sequence
location f holds (IExec(if a = 0 then I else J, s))(f) = (IExec(J, s))(f).

(49) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) > 0 and I is closed onInit s and
I is halting onInit s. Then if a > 0 then I else J is closed onInit s and
if a > 0 then I else J is halting onInit s.

(50) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose s(a) > 0 and I is closed onInit
s and I is halting onInit s. Then IExec(if a > 0 then I else J, s) =
IExec(I, s)+· Start-At(insloc(card I + card J + 3)).

(51) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) ¬ 0 and J is closed onInit s and
J is halting onInit s. Then if a > 0 then I else J is closed onInit s and
if a > 0 then I else J is halting onInit s.

(52) Let I, J be macro instructions, a be a read-write integer location,
and s be a state of SCMFSA. Suppose s(a) ¬ 0 and J is closed onI-
nit s and J is halting onInit s. Then IExec(if a > 0 then I else J, s) =
IExec(J, s)+· Start-At(insloc(card I + card J + 3)).

(53) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,
and a be a read-write integer location. Then if a > 0 then I else J is
InitHalting and if s(a) > 0, then IExec(if a > 0 then I else J, s) =
IExec(I, s)+· Start-At(insloc(card I + card J + 3)) and if s(a) ¬ 0, then
IExec(if a > 0 then I else J, s) = IExec(J, s)+· Start-At(insloc(card I +
card J + 3)).

(54) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,
and a be a read-write integer location. Then

(i) ICIExec(if a>0 then I else J,s) = insloc(card I + card J + 3),
(ii) if s(a) > 0, then for every integer location d holds (IExec(if a >

0 then I else J, s))(d) = (IExec(I, s))(d) and for every finite sequence
location f holds (IExec(if a > 0 then I else J, s))(f) = (IExec(I, s))(f),
and

(iii) if s(a) ¬ 0, then for every integer location d holds (IExec(if a >

0 then I else J, s))(d) = (IExec(J, s))(d) and for every finite sequence
location f holds (IExec(if a > 0 then I else J, s))(f) = (IExec(J, s))(f).

(55) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose s(a) < 0 and I is closed onInit
s and I is halting onInit s. Then IExec(if a < 0 then I else J, s) =
IExec(I, s)+· Start-At(insloc(card I + card J + card J + 7)).

(56) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose s(a) = 0 and J is closed onInit
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s and J is halting onInit s. Then IExec(if a < 0 then I else J, s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(57) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose s(a) > 0 and J is closed onInit
s and J is halting onInit s. Then IExec(if a < 0 then I else J, s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(58) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,
and a be a read-write integer location. Then

(i) if a < 0 then I else J is InitHalting,
(ii) if s(a) < 0, then IExec(if a < 0 then I else J, s) =

IExec(I, s)+· Start-At(insloc(card I + card J + card J + 7)), and
(iii) if s(a)  0, then IExec(if a < 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

Let I, J be InitHalting macro instructions and let a be a read-write integer
location. One can verify the following observations:

∗ if a = 0 then I else J is InitHalting,

∗ if a > 0 then I else J is InitHalting, and

∗ if a < 0 then I else J is InitHalting.

Next we state a number of propositions:

(59) For every macro instruction I holds I is InitHalting iff for every state s

of SCMFSA holds I is halting on Initialize(s).

(60) For every macro instruction I holds I is InitClosed iff for every state s

of SCMFSA holds I is closed on Initialize(s).

(61) Let s be a state of SCMFSA, I be a InitHalting macro instruc-
tion, and a be a read-write integer location. Then (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+·(I+· Start-At(insloc(0)))))(a).

(62) Let s be a state of SCMFSA, I be a InitHalting macro instruction, a be
an integer location, and k be a natural number. If I does not destroy a,
then (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(63) Let s be a state of SCMFSA, I be a InitHalting macro instruction, and
a be an integer location. If I does not destroy a, then (IExec(I, s))(a) =
(Initialize(s))(a).

(64) Let s be a state of SCMFSA, I be a keepInt0 1 InitHalting macro instruc-
tion, and a be a read-write integer location. Suppose I does not destroy
a. Then (Computation(Initialize(s)+·((I;SubFrom(a, intloc(0)))
+· Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·((I;SubFrom(a, intloc(0)))
+· Start-At(insloc(0)))))(a) = s(a)− 1.
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(65) Let s be a state of SCMFSA and I be a InitClosed macro instruc-
tion. Suppose Initialized(I) ⊆ s and s is halting. Let m be a natu-
ral number. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+· loop I))(m) are equal outside the instruction locations
of SCMFSA.

(66) Let s be a state of SCMFSA and I be a InitHalting macro instruction.
Suppose Initialized(I) ⊆ s. Let k be a natural number. If k ¬ LifeSpan(s),
then CurInstr((Computation(s+· loop I))(k)) 6= haltSCMFSA .

(67) I ⊆ s+· Initialized(I).

(68) Let s be a state of SCMFSA and I be a macro instruction. Sup-
pose I is closed onInit s and I is halting onInit s. Let m be
a natural number. Suppose m ¬ LifeSpan(s+· Initialized(I)). Then
(Computation(s+· Initialized(I)))(m) and (Computation(s+· Initialized
(loop I)))(m) are equal outside the instruction locations of SCMFSA.

(69) Let s be a state of SCMFSA and I be a macro instruction.
Suppose I is closed onInit s and I is halting onInit s. Let m

be a natural number. If m < LifeSpan(s+· Initialized(I)), then
CurInstr((Computation(s+· Initialized(I)))(m)) =
CurInstr((Computation(s+· Initialized(loop I)))(m)).

(70) For every instruction-location l of SCMFSA holds l /∈ dom((intloc(0)7−→. 1)
+· Start-At(insloc(0))).

(71) Let s be a state of SCMFSA and I be a macro instruction.
Suppose I is closed onInit s and I is halting onInit s. Then
CurInstr((Computation(s+· Initialized(loop I)))
(LifeSpan(s+· Initialized(I)))) = goto insloc(0) and for every natu-
ral number m such that m ¬ LifeSpan(s+· Initialized(I)) holds
CurInstr((Computation(s+· Initialized(loop I)))(m)) 6= haltSCMFSA .

(72) Let s be a state of SCMFSA and I be a macro instruction.
Suppose I is closed onInit s and I is halting onInit s. Then
CurInstr((Computation(s+· Initialized(loop I)))(LifeSpan
(s+· Initialized(I)))) = goto insloc(0).

(73) Let s be a state of SCMFSA, I be a good InitHalting macro in-
struction, and a be a read-write integer location. Suppose I does not
destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if a =
0 then Goto(insloc(2)) else (I;SubFrom(a, intloc(0))) is pseudo-closed
on s.

(74) Let s be a state of SCMFSA, I be a good InitHalting ma-
cro instruction, and a be a read-write integer location. Suppose I

does not destroy a and s(a) > 0. Then Initialized(loop if a =
0 then Goto(insloc(2)) else (I;SubFrom(a, intloc(0)))) is pseudo-closed
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on s.

6. LOOP-Programs with Initialization Halting

We now state two propositions:

(75) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,
and a be a read-write integer location. Suppose I does not destroy a and
s(intloc(0)) = 1. Then Times(a, I) is closed on s and Times(a, I) is halting
on s.

(76) Let I be a good InitHalting macro instruction and a be a read-write
integer location. If I does not destroy a, then Initialized(Times(a, I)) is
halting.

Let a be a read-write integer location and let I be a good macro instruction.
Observe that Times(a, I) is good.

Next we state several propositions:

(77) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,
and a be a read-write integer location. Suppose I does not destroy a and
s(intloc(0)) = 1 and s(a) > 0. Then there exists a state s2 of SCMFSA

and there exists a natural number k such that
(i) s2 = s+· Initialized(loop if a = 0 then Goto(insloc(2))

else (I;SubFrom(a, intloc(0)))),
(ii) k = LifeSpan(s+· Initialized(if a = 0 then Goto(insloc(2))

else (I;SubFrom(a, intloc(0))))) + 1,
(iii) (Computation(s2))(k)(a) = s(a)− 1,

(iv) (Computation(s2))(k)(intloc(0)) = 1,
(v) for every read-write integer location b such that b 6= a holds

(Computation(s2))(k)(b) = (IExec(I, s))(b),
(vi) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f),
(vii) IC(Computation(s2))(k) = insloc(0), and
(viii) for every natural number n such that n ¬ k holds

IC(Computation(s2))(n) ∈ dom loop if a = 0 then Goto(insloc(2))
else (I;SubFrom(a, intloc(0))).

(78) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-
tion, and a be a read-write integer location. If s(intloc(0)) = 1 and
s(a) ¬ 0, then IExec(Times(a, I), s)¹(Int-Locations∪FinSeq-Locations) =
s¹(Int-Locations∪FinSeq-Locations).

(79) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-
tion, and a be a read-write integer location. Suppose I does not de-
stroy a and s(a) > 0. Then (IExec(I;SubFrom(a, intloc(0)), s))(a) =
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s(a) − 1 and IExec(Times(a, I), s)¹(Int-Locations∪FinSeq-Locations) =
IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s))¹(Int-Locations∪
FinSeq-Locations).

(80) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,
f be a finite sequence location, and a be a read-write integer location. If
s(a) ¬ 0, then (IExec(Times(a, I), s))(f) = s(f).

(81) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,
b be an integer location, and a be a read-write integer location. If s(a) ¬ 0,

then (IExec(Times(a, I), s))(b) = (Initialize(s))(b).
(82) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

f be a finite sequence location, and a be a read-write integer location.
If I does not destroy a and s(a) > 0, then (IExec(Times(a, I), s))(f) =
(IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s)))(f).

(83) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-
tion, b be an integer location, and a be a read-write integer location.
If I does not destroy a and s(a) > 0, then (IExec(Times(a, I), s))(b) =
(IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s)))(b).

Let i be an instruction of SCMFSA. We say that i is good if and only if:

(Def. 6) i does not destroy intloc(0).
Let us observe that there exists an instruction of SCMFSA which is para-

halting and good.
Let i be a good instruction of SCMFSA and let J be a good macro instruc-

tion. Observe that i;J is good and J ;i is good.
Let i, j be good instructions of SCMFSA. Note that i;j is good.
Let a be a read-write integer location and let b be an integer location. Ob-

serve that a:=b is good and SubFrom(a, b) is good.
Let a be a read-write integer location, let b be an integer location, and let f

be a finite sequence location. Observe that a:=fb is good.
Let a, b be integer locations and let f be a finite sequence location. One can

check that fa:=b is good.
Let a be a read-write integer location and let f be a finite sequence location.

One can verify that a:=lenf is good.
Let n be a natural number. One can check that intloc(n + 1) is read-write.
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Summary. We present the bubble sorting algorithm using macro instruc-
tions such as the if-Macro (conditional branch macro instructions) and the Times-
Macro (for-loop macro instructions) etc. The correctness proof of the program
should include the proof of autonomic, halting and the correctness of the pro-
gram result. In the three terms, we justify rigorously the correctness of the bubble
sorting algorithm. In order to prove it is autonomic, we use the following the-
orem: if all variables used by the program are initialized, it is autonomic. This
justification method probably reveals that autonomic concept is not important.

MML Identifier: SCMBSORT.

The articles [18], [24], [21], [19], [31], [7], [9], [12], [22], [10], [13], [29], [14], [15],
[11], [28], [8], [32], [17], [26], [5], [6], [3], [1], [2], [4], [27], [25], [16], [20], [30], and
[23] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: p is a programmed finite partial
state of SCMFSA, i1 is an instruction of SCMFSA, i, j, k are natural numbers,
f1, f are finite sequence locations, a, b, d1, d2 are integer locations, l, l1 are
instructions-locations of SCMFSA, and s1 is a state of SCMFSA.

We now state a number of propositions:

(1) Let I, J be macro instructions and a, b be integer locations. Suppose I

does not destroy b and J does not destroy b. Then if a > 0 then I else J

does not destroy b.
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(2) Let I, J be macro instructions and a, b be integer locations. Suppose I

does not destroy b and J does not destroy b. Then if a = 0 then I else J

does not destroy b.

(3) Let I be a macro instruction and a, b be integer locations. If I does not
destroy b and a 6= b, then Times(a, I) does not destroy b.

(4) For every function f and for all sets n, m holds
(f+·(n7−→. m)+·(m 7−→. n))(m) = n.

(5) For every function f and for all sets n, m holds
(f+·(n7−→. m)+·(m 7−→. n))(n) = m.

(6) For every function f and for all sets n, m, x such that x ∈ dom f and
x 6= m and x 6= n holds (f+·(n 7−→. m)+·(m7−→. n))(x) = f(x).

(7) Let f , g be functions and m, n be sets. Suppose that
(i) f(m) = g(n),
(ii) f(n) = g(m),
(iii) m ∈ dom f,

(iv) n ∈ dom f,

(v) dom f = dom g, and
(vi) for every set k such that k 6= m and k 6= n and k ∈ dom f holds

f(k) = g(k).
Then f and g are fiberwise equipotent.

(8) Let s be a state of SCMFSA, f be a finite sequence location, and a, b

be integer locations. Then (Exec(b:=fa, s))(b) = π|s(a)|s(f).

(9) Let s be a state of SCMFSA, f be a finite sequence location, and a, b

be integer locations. Then (Exec(fa:=b, s))(f) = s(f) +· (|s(a)|, s(b)).
(10) Let s be a state of SCMFSA, f be a finite sequence location, m, n

be natural numbers, and a be an integer location. If m 6= n + 1, then
(Exec(intloc(m):=fa, Initialize(s)))(intloc(n + 1)) = s(intloc(n + 1)).

(11) Let s be a state of SCMFSA, m, n be natural numbers, and a be an inte-
ger location. If m 6= n+1, then (Exec(intloc(m):=a, Initialize(s)))(intloc(n+
1)) = s(intloc(n + 1)).

(12) Let s be a state of SCMFSA, f be a finite sequence location, and a be
a read-write integer location. Then (IExec(StopSCMFSA

, s))(a) = s(a) and
(IExec(StopSCMFSA

, s))(f) = s(f).

In the sequel n denotes a natural number.
One can prove the following propositions:

(13) If n ¬ 10, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8 or n = 9 or n = 10.

(14) Suppose n ¬ 12. Then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or
n = 5 or n = 6 or n = 7 or n = 8 or n = 9 or n = 10 or n = 11 or n = 12.
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(15) Let f , g be functions and X be a set. If dom f = dom g and for every
set x such that x ∈ X holds f(x) = g(x), then f¹X = g¹X.

(16) If i1 ∈ rng p and if i1 = a:=b or i1 = AddTo(a, b) or i1 = SubFrom(a, b)
or i1 = MultBy(a, b) or i1 = Divide(a, b), then a ∈ UsedIntLoc(p) and
b ∈ UsedIntLoc(p).

(17) If i1 ∈ rng p and if i1 = if a = 0 goto l1 or i1 = if a > 0 goto l1, then
a ∈ UsedIntLoc(p).

(18) If i1 ∈ rng p and if i1 = b:=f1a or i1 = f1a:=b, then a ∈ UsedIntLoc(p)
and b ∈ UsedIntLoc(p).

(19) If i1 ∈ rng p and if i1 = b:=f1a or i1 = f1a:=b, then f1 ∈ UsedInt∗ Loc(p).

(20) If i1 ∈ rng p and if i1 = a:=lenf1 or i1 = f1:=〈0, . . . , 0︸ ︷︷ ︸
a

〉, then a ∈

UsedIntLoc(p).

(21) If i1 ∈ rng p and if i1 = a:=lenf1 or i1 = f1:=〈0, . . . , 0︸ ︷︷ ︸
a

〉, then f1 ∈

UsedInt∗ Loc(p).

(22) Let p be a macro instruction, s2, s3 be states of SCMFSA, and gi-
ven i. If p ⊆ s2 and p ⊆ s3, then (Computation(s2))(i)¹ dom p =
(Computation(s3))(i)¹ dom p.

(23) Let t be a finite partial state of SCMFSA, p be a macro instruction,
and x be a set. Suppose dom t ⊆ Int-Locations∪FinSeq-Locations and
x ∈ dom t∪UsedInt∗ Loc(p)∪UsedIntLoc(p). Then x is an integer location
or a finite sequence location.

(24) For every f1 holds (Exec(Divide(d1, d2), s1))(f1) = s1(f1) and
(Exec(Divide(d1, d2), s1))(ICSCMFSA) = Next(IC(s1)).

(25) Let i, k be natural numbers, t be a finite partial state of SCMFSA, p be
a macro instruction, and s2, s3 be states of SCMFSA. Suppose that

(i) k ¬ i,

(ii) p ⊆ s2,

(iii) p ⊆ s3,

(iv) dom t ⊆ Int-Locations∪FinSeq-Locations,
(v) for every j holds IC(Computation(s2))(j) ∈ dom p and IC(Computation(s3))(j) ∈

dom p,

(vi) (Computation(s2))(k)(ICSCMFSA) = (Computation(s3))(k)(ICSCMFSA),
and

(vii) (Computation(s2))(k)¹(dom t ∪ UsedInt∗ Loc(p) ∪ UsedIntLoc(p)) =
(Computation(s3))(k)¹(dom t ∪UsedInt∗ Loc(p) ∪UsedIntLoc(p)).
Then (Computation(s2))(i)(ICSCMFSA) = (Computation(s3))(i)(ICSCMFSA)
and (Computation(s2))(i)¹(dom t ∪ UsedInt∗ Loc(p) ∪ UsedIntLoc(p)) =
(Computation(s3))(i)¹(dom t ∪UsedInt∗ Loc(p) ∪UsedIntLoc(p)).
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(26) Let i, k be natural numbers, p be a macro instruction, and s2, s3 be
states of SCMFSA. Suppose k ¬ i and p ⊆ s2 and p ⊆ s3 and for every j

holds IC(Computation(s2))(j) ∈ dom p and IC(Computation(s3))(j) ∈ dom p and
(Computation(s2))(k)(ICSCMFSA) = (Computation(s3))(k)(ICSCMFSA)
and (Computation(s2))(k)¹(UsedInt∗ Loc(p) ∪UsedIntLoc(p)) =
(Computation(s3))(k)¹(UsedInt∗ Loc(p) ∪UsedIntLoc(p)).
Then (Computation(s2))(i)(ICSCMFSA) = (Computation(s3))(i)(ICSCMFSA)
and (Computation(s2))(i)¹(UsedInt∗ Loc(p) ∪UsedIntLoc(p)) =
(Computation(s3))(i)¹(UsedInt∗ Loc(p) ∪UsedIntLoc(p)).

(27) UsedIntLoc(StopSCMFSA
) = ∅.

(28) UsedIntLoc(Goto(l)) = ∅.
(29) For all macro instructions I, J and for every integer location a

holds UsedIntLoc(if a = 0 then I else J) = {a} ∪ UsedIntLoc(I) ∪
UsedIntLoc(J) and UsedIntLoc(if a > 0 then I else J) = {a} ∪
UsedIntLoc(I) ∪UsedIntLoc(J).

(30) For every macro instruction I and for every instruction-location l of
SCMFSA holds UsedIntLoc(Directed(I, l)) = UsedIntLoc(I).

(31) For every integer location a and for every macro instruction I holds
UsedIntLoc(Times(a, I)) = UsedIntLoc(I) ∪ {a, intloc(0)}.

(32) For all sets x1, x2, x3 holds {x2, x1} ∪ {x3, x1} = {x1, x2, x3}.
(33) UsedInt∗ Loc(StopSCMFSA

) = ∅.
(34) UsedInt∗ Loc(Goto(l)) = ∅.
(35) For all macro instructions I, J and for every integer location a

holds UsedInt∗ Loc(if a = 0 then I else J) = UsedInt∗ Loc(I) ∪
UsedInt∗ Loc(J) and UsedInt∗ Loc(if a > 0 then I else J)
= UsedInt∗ Loc(I) ∪UsedInt∗ Loc(J).

(36) For every macro instruction I and for every instruction-location l of
SCMFSA holds UsedInt∗ Loc(Directed(I, l)) = UsedInt∗ Loc(I).

(37) For every integer location a and for every macro instruction I holds
UsedInt∗ Loc(Times(a, I)) = UsedInt∗ Loc(I).

Let f be a finite sequence location and let t be a finite sequence of elements
of Z. Then f 7−→. t is a finite partial state of SCMFSA.

One can prove the following propositions:

(38) Every finite sequence of elements of Z is a finite sequence of elements of
R.

(39) Let t be a finite sequence of elements of Z. Then there exists a finite
sequence u of elements of R such that t and u are fiberwise equipotent
and u is a finite sequence of elements of Z and non-increasing.

(40) dom((intloc(0)7−→. 1)+· Start-At(insloc(0))) = {intloc(0), ICSCMFSA}.
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(41) For every macro instruction I holds dom Initialized(I) = dom I ∪
{intloc(0), ICSCMFSA}.

(42) Let w be a finite sequence of elements of Z, f be a finite sequence loca-
tion, and I be a macro instruction. Then dom(Initialized(I)+·(f 7−→. w)) =
dom I ∪ {intloc(0), ICSCMFSA , f}.

(43) For every instruction-location l of SCMFSA holds ICSCMFSA 6= l.

(44) For every integer location a and for every macro instruction I holds
card Times(a, I) = card I + 12.

(45) For all instructions i2, i3, i4 of SCMFSA holds card(i2;i3;i4) = 6, where
i2 = b4:=b3, b4 = intloc(3 + 1), b3 = intloc(2 + 1), i3 = SubFrom(b3, a0),
a0 = intloc(0), i4 = b5:=f0b3 , b5 = intloc(4 + 1), and f0 = fsloc(0).

(46) Let t be a finite sequence of elements of Z, f be a finite sequence location,
and I be a macro instruction. Then dom Initialized(I) ∩ dom(f 7−→. t) = ∅.

(47) Let w be a finite sequence of elements of Z, f be a finite sequence loca-
tion, and I be a macro instruction. Then Initialized(I)+·(f 7−→. w) starts
at insloc(0).

(48) Let I, J be macro instructions, k be a natural number, and i be
an instruction of SCMFSA. If k < card J and i = J(insloc(k)), then
(I;J)(insloc(card I + k)) = IncAddr(i, card I).

(49) Suppose that
(i) i1 = a:=b, or
(ii) i1 = AddTo(a, b), or
(iii) i1 = SubFrom(a, b), or
(iv) i1 = MultBy(a, b), or
(v) i1 = Divide(a, b), or
(vi) i1 = goto l1, or
(vii) i1 = if a = 0 goto l1, or
(viii) i1 = if a > 0 goto l1, or
(ix) i1 = b:=fa, or
(x) i1 = fa:=b, or
(xi) i1 = a:=lenf, or
(xii) i1 = f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉.

Then i1 6= haltSCMFSA .

(50) Let I, J be macro instructions, k be a natural number, and i be
an instruction of SCMFSA. Suppose for every natural number n holds
IncAddr(i, n) = i and i 6= haltSCMFSA and k = card I. Then
(I;i;J)(insloc(k)) = i and (I;i;J)(insloc(k + 1)) = goto insloc(card I + 2).

(51) Let I, J be macro instructions and k be a natural number. If k = card I,

then (I;(a:=b);J)(insloc(k)) = a:=b and (I;(a:=b);J)(insloc(k + 1)) =
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goto insloc(card I + 2).
(52) Let I, J be macro instructions and k be a natural number. If k = card I,

then (I;(a:=lenf);J)(insloc(k)) = a:=lenf and (I;(a:=lenf);J)(insloc(k +
1)) = goto insloc(card I + 2).

(53) Let w be a finite sequence of elements of Z, f be a finite sequence
location, s be a state of SCMFSA, and I be a macro instruction. If
Initialized(I)+·(f 7−→. w) ⊆ s, then I ⊆ s.

(54) Let w be a finite sequence of elements of Z, f be a finite sequence
location, s be a state of SCMFSA, and I be a macro instruction. If
Initialized(I)+·(f 7−→. w) ⊆ s, then s(f) = w and s(intloc(0)) = 1.

(55) For every finite sequence location f and for every integer location a and
for every state s of SCMFSA holds {a, ICSCMFSA , f} ⊆ dom s.

(56) For every macro instruction p and for every state s of SCMFSA holds
UsedInt∗ Loc(p) ∪UsedIntLoc(p) ⊆ dom s.

(57) Let s be a state of SCMFSA, I be a macro instruction, and f be a finite
sequence location. Then (Result(s+· Initialized(I)))(f) = (IExec(I, s))(f).

2. The Program Code for Buble Sort

Let f be a finite sequence location. The functor bubble-sort(f) yields a macro
instruction and is defined as follows:

(Def. 1) bubble-sort(f) = i5;
(a1:=lenf);
Times(a1,

(a2:=a1);
SubFrom(a2, a0);
(a3:=lenf);
Times(a2,

(a4:=a3);
SubFrom(a3, a0);
(a5:=fa3);
(a6:=fa4);
SubFrom(a6, a5);
(if a6 > 0 then (a6:=fa4);(fa3 :=a6);(fa4 :=a5) else (StopSCMFSA

)))),
where i5 = (a2:=a0);(a3:=a0);(a4:=a0);(a5:=a0);(a6:=a0),
a2 = intloc(2), a0 = intloc(0), a3 = intloc(3), a4 = intloc(4), a5 =
intloc(5), a6 = intloc(6), and a1 = intloc(1).

The macro instruction the bubble sort algorithm is defined by:

(Def. 2) The bubble sort algorithm = bubble-sort(fsloc(0)).
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The following propositions are true:

(58) For every finite sequence location f holds UsedIntLoc(bubble-sort(f)) =
{a0, a1, a2, a3, a4, a5, a6}, where a0 = intloc(0), a1 = intloc(1), a2 =
intloc(2), a3 = intloc(3), a4 = intloc(4), a5 = intloc(5), and a6 = intloc(6).

(59) For every finite sequence location f holds UsedInt∗ Loc(bubble-sort(f)) =
{f}.

3. Defining Relationship Between the Input and Output of
Sorting Algorithms

The partial function Sorting-Function from FinPartSt(SCMFSA) to
FinPartSt(SCMFSA) is defined by the condition (Def. 3).

(Def. 3) Let p, q be finite partial states of SCMFSA. Then 〈〈p, q〉〉 ∈
Sorting-Function if and only if there exists a finite sequence t of elements
of Z and there exists a finite sequence u of elements of R such that t and
u are fiberwise equipotent and u is a finite sequence of elements of Z and
non-increasing and p = fsloc(0)7−→. t and q = fsloc(0)7−→. u.

We now state two propositions:

(60) For every set p holds p ∈ dom Sorting-Function iff there exists a finite
sequence t of elements of Z such that p = fsloc(0)7−→. t.

(61) Let t be a finite sequence of elements of Z. Then there exists a finite
sequence u of elements of R such that

(i) t and u are fiberwise equipotent,
(ii) u is non-increasing and a finite sequence of elements of Z, and
(iii) (Sorting-Function)(fsloc(0)7−→. t) = fsloc(0)7−→. u.

4. The Basic Property of Buble Sort

Next we state several propositions:

(62) For every finite sequence location f holds card bubble-sort(f) = 63.

(63) For every finite sequence location f and for every natural number k such
that k < 63 holds insloc(k) ∈ dom bubble-sort(f).

(64) bubble-sort(fsloc(0)) is keepInt0 1 and InitHalting.

(65) Let s be a state of SCMFSA. Then
(i) s(f0) and (IExec(bubble-sort(f0), s))(f0) are fiberwise equipotent, and
(ii) for all natural numbers i, j such that i  1 and j ¬ len s(f0) and i < j

and for all integers x1, x2 such that x1 = (IExec(bubble-sort(f0), s))(f0)(i)
and x2 = (IExec(bubble-sort(f0), s))(f0)(j) holds x1  x2,
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where f0 = fsloc(0).
(66) Let i be a natural number, s be a state of SCMFSA, and w be a finite

sequence of elements of Z. Suppose Initialized(the bubble sort algorithm)
+·(fsloc(0)7−→. w) ⊆ s. Then IC(Computation(s))(i) ∈ dom (the bubble sort
algorithm).

(67) Let s be a state of SCMFSA and t be a finite sequence of elements of Z.
Suppose Initialized(the bubble sort algorithm) +·(fsloc(0)7−→. t) ⊆ s. Then
there exists a finite sequence u of elements of R such that

(i) t and u are fiberwise equipotent,
(ii) u is non-increasing and a finite sequence of elements of Z, and
(iii) (Result(s))(fsloc(0)) = u.

5. The Correctness and Autonomousness of Buble Sort Algorithm

We now state two propositions:

(68) For every finite sequence w of elements of Z holds Initialized(the bubble
sort algorithm) +·(fsloc(0)7−→. w) is autonomic.

(69) Initialized(the bubble sort algorithm) computes Sorting-Function.
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