
FORMALIZED MATHEMATICS

Volume 6, Number 4, 1997

University of Białystok

Algebraic and Arithmetic Lattices. Part II1

Robert Milewski

University of Białystok

Summary. The article is a translation of [13, pp. 89–92]

MML Identifier: WAYBEL15.

The articles [21], [22], [1], [8], [9], [12], [20], [19], [18], [3], [11], [17], [2], [4], [14],

[24], [6], [5], [10], [7], [23], [15], and [16] provide the notation and terminology

for this paper.

1. Preliminaries

The following propositions are true:

(1) Let R be a relational structure and S be a full relational substructure

of R. Then every full relational substructure of S is a full relational sub-

structure of R.

(2) Let X, Y , Z be non empty 1-sorted structures, f be a map from X into

Y , and g be a map from Y into Z. If f is onto and g is onto, then g · f is

onto.

(3) For every non empty 1-sorted structure X and for every subset Y of the

carrier of X holds (idX)◦Y = Y.

(4) For every set X and for every element a of 2X

⊆ holds ↑a = {Y ;Y ranges

over subsets of X: a ⊆ Y }.

(5) Let L be an upper-bounded non empty antisymmetric relational struc-

ture and a be an element of L. If ⊤L ¬ a, then a = ⊤L.
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(6) Let S, T be non empty posets, g be a map from S into T , and d be a

map from T into S. If g is onto and 〈〈g, d〉〉 is Galois, then T and Im d are

isomorphic.

(7) Let L1, L2, L3 be non empty posets, g1 be a map from L1 into L2, g2

be a map from L2 into L3, d1 be a map from L2 into L1, and d2 be a map

from L3 into L2. If 〈〈g1, d1〉〉 is Galois and 〈〈g2, d2〉〉 is Galois, then 〈〈g2 · g1,

d1 · d2〉〉 is Galois.

(8) Let L1, L2 be non empty posets, f be a map from L1 into L2, and f1

be a map from L2 into L1. Suppose f1 = (f qua function) −1 and f is

isomorphic. Then 〈〈f, f1〉〉 is Galois and 〈〈f1, f〉〉 is Galois.

(9) For every set X holds 2X

⊆ is arithmetic.

Next we state four propositions:

(10) Let L1, L2 be up-complete non empty posets and f be a map from L1 into

L2. If f is isomorphic, then for every element x of L1 holds f
◦↓↓x = ↓↓f(x).

(11) For all non empty posets L1, L2 such that L1 and L2 are isomorphic and

L1 is continuous holds L2 is continuous.

(12) Let L1, L2 be lattices. Suppose L1 and L2 are isomorphic and L1 is

lower-bounded and arithmetic. Then L2 is arithmetic.

(13) Let L1, L2, L3 be non empty posets, f be a map from L1 into L2, and

g be a map from L2 into L3. Suppose f is directed-sups-preserving and g

is directed-sups-preserving. Then g · f is directed-sups-preserving.

2. Maps Preserving Sup’s and Inf’s

One can prove the following propositions:

(14) Let L1, L2 be non empty relational structures, f be a map from L1 into

L2, and X be a subset of Im f. Then (f◦)
◦X = X.

(15) Let X be a set and c be a map from 2X

⊆ into 2X

⊆ . Suppose c is idempotent

and directed-sups-preserving. Then c◦ is directed-sups-preserving.

(16) Let L be a continuous complete lattice and p be a kernel map from L

into L. If p is directed-sups-preserving, then Im p is a continuous lattice.

(17) Let L be a continuous complete lattice and p be a projection map from

L into L. If p is directed-sups-preserving, then Im p is a continuous lattice.

(18) Let L be a lower-bounded lattice. Then L is continuous if and only if

there exists an arithmetic lower-bounded lattice A such that there exists

a map from A into L which is onto, infs-preserving, and directed-sups-

preserving.

(19) Let L be a lower-bounded lattice. Then L is continuous if and only if

there exists an algebraic lower-bounded lattice A such that there exists



algebraic and arithmetic lattices. part . . . 501

a map from A into L which is onto, infs-preserving, and directed-sups-

preserving.

(20) Let L be a lower-bounded lattice. Then L is continuous if and only if

there exists a set X and there exists a projection map p from 2X

⊆ into 2X

⊆

such that p is directed-sups-preserving and L and Im p are isomorphic.

3. Atoms Elements

Next we state two propositions:

(21) For every non empty relational structure L and for every element x of

L holds x ∈ PRIME(Lop) iff x is co-prime.

(22) Let L be a sup-semilattice and a be an element of L. Then a is co-prime

if and only if for all elements x, y of L such that a ¬ x⊔ y holds a ¬ x or

a ¬ y.

Let L be a non empty relational structure and let a be an element of L. We

say that a is an atom if and only if:

(Def. 1) ⊥L < a and for every element b of L such that ⊥L < b and b ¬ a holds

b = a.

Let L be a non empty relational structure. The functor ATOM(L) yielding

a subset of L is defined by:

(Def. 2) For every element x of L holds x ∈ ATOM(L) iff x is atom.

The following proposition is true

(23) For every Boolean lattice L and for every element a of L holds a is atom

iff a is co-prime and a 6= ⊥L.

Let L be a Boolean lattice. Observe that every element of L which is atom

is also co-prime.

Next we state several propositions:

(24) For every Boolean lattice L holds ATOM(L) = PRIME(Lop) \ {⊥L}.

(25) For every Boolean lattice L and for all elements x, a of L such that a is

atom holds a ¬ x iff a 6¬ ¬x.

(26) Let L be a complete Boolean lattice, X be a subset of L, and x be an

element of L. Then x ⊓ supX =
⊔

L
{x ⊓ y; y ranges over elements of L:

y ∈ X}.

(27) Let L be a lower-bounded antisymmetric non empty relational structure

with g.l.b.’s and x, y be elements of L. If x is atom and y is atom and

x 6= y, then x ⊓ y = ⊥L.

(28) Let L be a complete Boolean lattice, x be an element of L, and A be a

subset of L. If A ⊆ ATOM(L), then x ∈ A iff x is atom and x ¬ supA.



502 robert milewski

(29) Let L be a complete Boolean lattice and X, Y be subsets of L. If X ⊆

ATOM(L) and Y ⊆ ATOM(L), then X ⊆ Y iff supX ¬ supY.

4. More on the Boolean Lattice

One can prove the following propositions:

(30) For every Boolean lattice L holds L is arithmetic iff there exists a set X

such that L and 2X

⊆ are isomorphic.

(31) For every Boolean lattice L holds L is arithmetic iff L is algebraic.

(32) For every Boolean lattice L holds L is arithmetic iff L is continuous.

(33) For every Boolean lattice L holds L is arithmetic iff L is continuous and

Lop is continuous.

(34) For every Boolean lattice L holds L is arithmetic iff L is completely-

distributive.

(35) Let L be a Boolean lattice. Then L is arithmetic if and only if the

following conditions are satisfied:

(i) L is complete, and

(ii) for every element x of L there exists a subset X of L such that X ⊆

ATOM(L) and x = supX.
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