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Summary. For mappings from a metric space to a metric space, a notion
of uniform continuity is defined. If we introduce natural topologies to the metric
spaces, a uniformly continuous function becomes continuous. On the other hand,
if the domain is compact, a continuous function is uniformly continuous. For this
proof, Lebesgue’s covering lemma is also proved. An arc, which is homeomorphic
to [0,1], can be devided into small segments, as small as one wishes.

MML Identifier: UNIFORM1.

The notation and terminology used in this paper have been introduced in the

following articles: [35], [41], [40], [34], [28], [23], [1], [43], [38], [27], [39], [31], [11],

[33], [10], [30], [26], [42], [2], [7], [8], [4], [19], [20], [18], [29], [15], [9], [14], [36],

[17], [21], [16], [6], [22], [13], [24], [3], [5], [32], [12], [25], and [37].

1. Lebesgue’s Covering Lemma

We adopt the following rules: s, s1, s2, t, r, r1, r2 are real numbers, n, m

are natural numbers, and X, Y are non empty metric spaces.

The following two propositions are true:

(1) t− r − (t− s) = −r + s and t− r − (t− s) = s− r.

(2) For every r such that r > 0 there exists a natural number n such that

n > 0 and 1

n
< r.
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Let X, Y be non empty metric structures and let f be a map from X into

Y . We say that f is uniformly continuous if and only if the condition (Def. 1)

is satisfied.

(Def. 1) Let given r. Suppose 0 < r. Then there exists s such that 0 < s and

for all elements u1, u2 of the carrier of X such that ρ(u1, u2) < s holds

ρ(fu1
, fu2

) < r.

Next we state several propositions:

(3) Let X be a non empty topological space,M be a metric space, and f be

a map from X intoMtop. Suppose f is continuous. Let r be a real number,

u be an element of the carrier of M , and P be a subset of the carrier of

Mtop. If P = Ball(u, r), then f−1(P ) is open.

(4) Let N ,M be metric spaces and f be a map from Ntop intoMtop. Suppose

that for every real number r and for every element u of the carrier of N

and for every element u1 of the carrier ofM such that r > 0 and u1 = f(u)

there exists s such that s > 0 and for every element w of the carrier of

N and for every element w1 of the carrier of M such that w1 = f(w) and

ρ(u,w) < s holds ρ(u1, w1) < r. Then f is continuous.

(5) Let N be a metric space, M be a non empty metric space, and f be a

map from Ntop intoMtop. Suppose f is continuous. Let r be a real number,

u be an element of the carrier of N , and u1 be an element of the carrier

of M . Suppose r > 0 and u1 = f(u). Then there exists s such that

(i) s > 0, and

(ii) for every element w of the carrier of N and for every element w1 of the

carrier of M such that w1 = f(w) and ρ(u,w) < s holds ρ(u1, w1) < r.

(6) Let N , M be non empty metric spaces, f be a map from N into M , and

g be a map from Ntop into Mtop. If f = g and f is uniformly continuous,

then g is continuous.

(7) Let N be a non empty metric space and G be a family of subsets of Ntop.

Suppose G is a cover of Ntop and open and Ntop is compact. Then there

exists r such that

(i) r > 0, and

(ii) for all elements w1, w2 of the carrier of N such that ρ(w1, w2) < r there

exists a subset G1 of the carrier of Ntop such that w1 ∈ G1 and w2 ∈ G1

and G1 ∈ G.
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2. Uniformity of Continuous Functions on Compact Spaces

Next we state three propositions:

(8) Let N , M be non empty metric spaces, f be a map from N into M , and

g be a map from Ntop into Mtop. Suppose g = f and Ntop is compact and

g is continuous. Then f is uniformly continuous.

(9) Let g be a map from I into En

T and f be a map from [0, 1]M into E
n. If

g is continuous and f = g, then f is uniformly continuous.

(10) Let P be a subset of the carrier of En

T, Q be a non empty subset of the

carrier of En, g be a map from I into (En

T)↾P, and f be a map from [0, 1]M
into En↾Q. If P = Q and g is continuous and f = g, then f is uniformly

continuous.

3. Segmentation of Arcs

We now state four propositions:

(11) For every map g from I into En

T there exists a map f from [0, 1]M into

En such that f = g.

(12) For every r such that r ­ 0 holds ⌈r⌉ ­ 0 and ⌊r⌋ ­ 0 and ⌈r⌉ is a

natural number and ⌊r⌋ is a natural number.

(13) For all r, s holds |r − s| = |s− r|.

(14) For all r1, r2, s1, s2 such that r1 ∈ [s1, s2] and r2 ∈ [s1, s2] holds |r1−r2| ¬

s2 − s1.

Let I1 be a finite sequence of elements of R. We say that I1 is decreasing if

and only if:

(Def. 2) For all n, m such that n ∈ dom I1 and m ∈ dom I1 and n < m holds

I1(n) > I1(m).

We now state the proposition

(15) Let e be a real number, g be a map from I into En

T, and p1, p2 be elements

of En

T. Suppose e > 0 and g is continuous and one-to-one and g(0) = p1

and g(1) = p2. Then there exists a finite sequence h of elements of R such

that

(i) h(1) = 1,

(ii) h(lenh) = 0,

(iii) 5 ¬ lenh,

(iv) rng h ⊆ the carrier of I,

(v) h is decreasing, and
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(vi) for every natural number i and for every subset Q of the carrier of I

and for every subset W of the carrier of En such that 1 ¬ i and i < lenh

and Q = [πi+1h, πih] and W = g◦Q holds ØW < e.
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