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paper.

1. PRELIMINARIES

The scheme RecChoice deals with a set A and a ternary predicate P, and
states that:

There exists a function f such that dom f = N and f(0) = A and
for every element n of N holds Pn, f(n), f(n + 1)]
provided the following condition is satisfied:

e For every natural number n and for every set « there exists a set
y such that P[n, z,y].

One can prove the following propositions:

(1) For every function f and for every function yielding function F' such that
f=Urng F holds dom f = |Jrng(dom,, F'(k)).

(2) For all non empty sets A, B holds [|JA, UB] = U{la, b];a ranges
over elements of A, b ranges over elements of B: a € A N b€ B}.

(3) For every non empty set A such that A is C-linear holds [JA, JA] =
(U{[ @, a];a ranges over elements of A: a € A}.
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2. AN EQUIVALENCE LATTICE OF A SET

In the sequel X is a non empty set.
Let A be a non empty set. The functor EqRelPoset(A) yielding a poset is
defined as follows:
(Def. 1) EqRelPoset(A) = Poset(EqRelLatt(A)).
Let A be a non empty set. One can check that EqRelPoset(A) is non empty
and has g.l.b.’s and l.u.b.’s.
One can prove the following propositions:
(4) Let A be a non empty set and x be a set. Then x € the carrier of
EqRelPoset(A) if and only if  is an equivalence relation of A.
(5) For every non empty set A and for all elements z, y of the carrier of
EqRelLatt(A) holds x C y iff x C y.
(6) For every non empty set A and for all elements a, b of EqRelPoset(A)
holds a < b iff a C b.
(7) For every lattice L and for all elements a, b of Poset(L) holds alb = "al1b.

(8) For every non empty set A and for all elements a, b of EqRelPoset(A)
holds amMb=anb.
(9) For every lattice L and for all elements a, b of Poset(L) holds allb = "all'b.
(10) Let A be anon empty set, a, b be elements of EqRelPoset(A), and E, Ey
be equivalence relations of A. If a = E7 and b = E5, then alUb = E1 L Es.
(11) Let L be a lattice, X be a set, and b be an element of L. Then b < X if
and only if b < X Nthe carrier of L.
Let L be a non empty relational structure. Let us observe that L is complete
if and only if the condition (Def. 2) is satisfied.
(Def. 2) Let X be a subset of L. Then there exists an element a of L such that
a < X and for every element b of L such that b < X holds b < a.
Let A be a non empty set. Note that EqRelPoset(A) is complete.

3. A TYPE OF A SUBLATTICE OF EQUIVALENCE LATTICE OF A SET

Let Lq, Lo be lattices. One can check that there exists a map from L; into
Lo which is meet-preserving and join-preserving.

Let Ly, Lo be lattices. A homomorphism from L, to Ly is a meet-preserving
join-preserving map from L; into Ls.

Let L be a lattice. One can check that there exists a relational substructure
of L which is meet-inheriting, join-inheriting, and strict.
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Let Ly, Ly be lattices and let f be a homomorphism from L; to Ls. Then
Im f is a strict full sublattice of Ls.

We follow the rules: e, e1, es denote equivalence relations of X and x, y
denote sets.

Let us consider X, let f be a non empty finite sequence of elements of X,
let us consider z, y, and let R be a binary relation. We say that z and y are
joint by f and R if and only if:

(Def. 3)  f(1) = = and f(len f) = y and for every natural number i such that
1 <iandi<lenf holds (f(i), f(i+1)) € R.

One can prove the following propositions:

(12) Let = be a set, o be a natural number, R be a binary relation, and f be
a non empty finite sequence of elements of X. If R is reflexive in X and
f =0+ z, then z and x are joint by f and R.

(13) Let z, y, z be sets, R be a binary relation, and f, g be non empty finite
sequences of elements of X. Suppose R is reflexive in X and x and y are
joint by f and R and y and z are joint by g and R. Then there exists a
non empty finite sequence h of elements of X such that h = f ~ ¢ and =
and z are joint by h and R.

(14) Let x, y be sets, R be a binary relation, and n, m be natural numbers.
Suppose that
() n<m,
(ii) R is reflexive in X, and
(iii)  there exists a non empty finite sequence f of elements of X such that
len f =n and z and y are joint by f and R.
Then there exists a non empty finite sequence h of elements of X such
that len h = m and x and y are joint by h and R.

Let us consider X and let Y be a sublattice of EqRelPoset(X). Let us assume
that there exists e such that e € the carrier of Y e # idx. And let us assume
that there exists a natural number o such that for all ey, es, =, y such that
e1 € the carrier of Y and ey € the carrier of Y and (z, y) € e U e there exists
a non empty finite sequence F' of elements of X such that len F' = 0 and x and
y are joint by F' and e; U es. The type of Y is a natural number and is defined
by the conditions (Def. 4).

(Def. 4)(i) For all eq, ea, x, y such that e; € the carrier of Y and ez € the carrier
of Y and (z, y) € e; U eg there exists a non empty finite sequence F' of
elements of X such that len F' = (the type of Y') 4+ 2 and x and y are joint
by F and e; U eg, and

(ii)  there exist eq, e2, x, y such that e; € the carrier of Y and es € the
carrier of Y and (x, y) € e; Ueg and it is not true that there exists a non
empty finite sequence F' of elements of X such that len F' = (the type of
Y) + 1 and z and y are joint by F' and e; U es.
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One can prove the following proposition

(15) Let Y be a sublattice of EqRelPoset(X) and n be a natural number.

Suppose that

(i)  there exists e such that e € the carrier of Y and e # idx, and

(ii)  for all ey, e, x, y such that e; € the carrier of Y and eg € the carrier
of Y and (z, y) € e; U e there exists a non empty finite sequence F' of
elements of X such that len ' = n + 2 and = and y are joint by F' and
e1 Ues.
Then the type of Y < n.

4. A MEET-REPRESENTATION OF A LATTICE

In the sequel A is a non empty set and L is a lower-bounded lattice.
Let us consider A, L.

(Def. 5) A function from [ A, A] into the carrier of L is said to be a bifunction

from A into L.
Let us consider A, L, let f be a bifunction from A into L, and let z, y be
elements of A. Then f(z, y) is an element of L.
Let us consider A, L and let f be a bifunction from A into L. We say that
f is symmetric if and only if:
(Def. 6) For all elements z, y of A holds f(x, y) = f(y, z).
We say that f is zeroed if and only if:
(Def. 7) For every element = of A holds f(z, z) = L.
We say that f satisfies triangle inequality if and only if:

(Def. 8) For all elements z, y, z of A holds f(z, y) U f(y, z) > f(z, 2).

Let us consider A, L. Observe that there exists a bifunction from A into L
which is symmetric and zeroed and satisfies triangle inequality.

Let us consider A, L. A distance function of A, L is a symmetric zeroed
bifunction from A into L satisfying triangle inequality.

Let us consider A, L and let d be a distance function of A, L. The functor
a(d) yielding a map from L into EqRelPoset(A) is defined by the condition
(Def. 9).

(Def. 9) Let e be an element of L. Then there exists an equivalence relation E of
A such that E = (a(d))(e) and for all elements xz, y of A holds (z, y) € E
iff d(z, y) <e.

The following two propositions are true:
(16) For every distance function d of A, L holds a(d) is meet-preserving.

(17) For every distance function d of A, L such that d is onto holds a(d) is
one-to-one.
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5. JONSON’S THEOREM

Let A be a set. The functor A* is defined as follows:

(Def. 10) A" = AU{{A}, {{A}} {{{A}}}}.
Let A be a set. One can verify that A* is non empty.
Let us consider A, L, let d be a bifunction from A into L, and let ¢ be an
element of [ A, A, the carrier of L, the carrier of LJ. The functor d yields a
bifunction from A* into L and is defined by the conditions (Def. 11).

(Def. 11)(i) ~ For all elements u, v of A holds d;(u, v) = d(u, v),

(i) dz({4}, {A}) = Lu,
(iii)  da({{A}}, {{4}}) = Li,
(iv)  d({{{A}}} {{{4}}}) = Lo,
v)  da({{AH} {{{AH})) = gs,
(vi)  dy({{{A}}}, {{4}}) = gs,
(vii)  dg({A}, {{A}}) = ga,
(vii)  dg({{A}}, {4}) = aa,
(ix) dy({A}, {{{A}}}) = asUaa,
(x)  di({{{A}}}, {A}) = g3 U g4, and
(xi)  for every element u of A holds dj(u, {A}) = d(u, q1) U g3 and d({A},

u) = d(u, g1) U g3 and d;(u {{A}}) = d(u, q1) U g3 Uqq and d;({{A}},
u) = d(u, q1)Ugslga and d*( {{{A}}}) = d(u, g2)Uqa and di({{{A}}},
u) = d(u, q2) L gq.

Next we state several propositions:

(18) Let d be a bifunction from A into L. Suppose d is zeroed. Let ¢ be an
element of [ A, A, the carrier of L, the carrier of L ]. Then dj is zeroed.

(19) Let d be a bifunction from A into L. Suppose d is symmetric. Let ¢
be an element of [ A, A, the carrier of L, the carrier of L]. Then dy is
symmetric.

(20) Let d be a bifunction from A into L. Suppose d is symmetric and satisfies
triangle inequality. Let ¢ be an element of | A, A, the carrier of L, the
carrier of L]. If d(q1, g2) < g3 L qa, then d satisfies triangle inequality.

(21) For every set A holds A C A*.

(22) Let d be a bifunction from A into L and ¢ be an element of [ A, A, the
carrier of L, the carrier of L. Then d C dj.

Let us consider A, L and let d be a bifunction from A into L. The functor
DistEsti(d) yields a cardinal number and is defined as follows:
(Def. 12) DistEsti(d) ~ {{(z,y,a,b);z ranges over elements of A, y ranges over

elements of A, a ranges over elements of L, b ranges over elements of L:
d(z, y) < alUb}.
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We now state the proposition
(23) For every distance function d of A, L holds DistEsti(d) # 0.

In the sequel T denotes a transfinite sequence and O, O, O3 denote ordinal
numbers.

Let us consider A and let us consider O. The functor ConsecutiveSet(A, O)
is defined by the condition (Def. 13).

(Def. 13) There exists a transfinite sequence Lg such that
(i)  ConsecutiveSet(A, O) = last Ly,

(i) dom Lo = succ O,

(i) Lo(0) = A,

(iv)  for every ordinal number C and for every set z such that succ C' € succ O
and z = Lo(C) holds Lo(succ C) = z*, and
(v)  for every ordinal number C' and for every transfinite sequence Ly such

that C' € succ O and C' # () and C is a limit ordinal number and L1 = Ly[C

holds Lo(C) = Jrng L;.
We now state three propositions:
(24) ConsecutiveSet(A, () = A.
(25) ConsecutiveSet(A, succ O) = (ConsecutiveSet(A4, 0))*.
(26) Suppose O # () and O is a limit ordinal number and domT = O

and for every ordinal number O; such that O; € O holds T(0;) =
ConsecutiveSet(A, O1). Then ConsecutiveSet(A, O) = JrngT.

Let us consider A and let us consider O. Note that ConsecutiveSet(A, O) is
non empty.
One can prove the following proposition
(27) A C ConsecutiveSet(A, O).

Let us consider A, L and let d be a bifunction from A into L. A transfinite
sequence of elements of [ A, A, the carrier of L, the carrier of L] is said to be
a sequence of quadruples of d if it satisfies the conditions (Def. 14).

(Def. 14)(i) domit is a cardinal number,
(ii) it is one-to-one, and
(iii) rngit = {{x,y, a,b); z ranges over elements of A, y ranges over elements
of A, a ranges over elements of L, b ranges over elements of L: d(zx, y) <
allb}.

Let us consider A, L, let d be a bifunction from A into L, let ¢ be a se-
quence of quadruples of d, and let us consider O. Let us assume that O €
dom ¢. The functor Quadr(g, O) yielding an element of | ConsecutiveSet(A, O),
ConsecutiveSet(A4, O), the carrier of L, the carrier of L] is defined as follows:

(Def. 15) Quadr(gq,O) = ¢(O).

One can prove the following proposition
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(28) Let d be a bifunction from A into L and ¢ be a sequence of quadruples
of d. Then O € DistEsti(d) if and only if O € domg.
Let us consider A, L and let z be a set. Let us assume that z is a bifunction
from A into L. The functor BiFun(z, A, L) yields a bifunction from A into L
and is defined as follows:

(Def. 16) BiFun(z, A, L) = .
Let us consider A, L, let d be a bifunction from A into L, let ¢ be a sequence

of quadruples of d, and let us consider O. The functor ConsecutiveDelta(q, O)
is defined by the condition (Def. 17).

(Def. 17) There exists a transfinite sequence Lg such that
(i)  ConsecutiveDelta(g, O) = last Lo,

(i) dom Lo = succO,

(i) Lo(®) = d,

(iv) for every ordinal number C and for every set z such
that succC € succO and z = Lo(C) holds Lg(succC) =
(BiFun(z, ConsecutiveSet(A4, C'), L))auadr(q’c), and

(v)  for every ordinal number C' and for every transfinite sequence L; such
that C' € succ O and C' # () and C is a limit ordinal number and Ly = Ly|C
holds Lo(C) = Jrng L;.

Next we state four propositions:

(29) For every bifunction d from A into L and for every sequence ¢ of qu-
adruples of d holds ConsecutiveDelta(q, ) = d.

(30) For every bifunction d from A into L and for every sequ-
ence g of quadruples of d holds ConsecutiveDelta(g,succO) =
(BiFun(ConsecutiveDelta(q, O), ConsecutiveSet(A4, O), L))Z)uadr(q,O)‘

(31) Let d be a bifunction from A into L and g be a sequence of quadruples
of d. Suppose O # 0 and O is a limit ordinal number and domT =
O and for every ordinal number O; such that O; € O holds T(0;) =
ConsecutiveDelta(g, O1). Then ConsecutiveDelta(q, O) = (Jrng 7.

(32) If O1 C Oq, then ConsecutiveSet(A, O1) C ConsecutiveSet(A, O2).

Let O be a non empty ordinal number. Note that every element of O is
ordinal-like.
Next we state the proposition
(33) Let d be a bifunction from A into L and g be a sequence of quadruples of
d. Then ConsecutiveDelta(g, O) is a bifunction from ConsecutiveSet(A, O)
into L.
Let us consider A, L, let d be a bifunction from A into L, let ¢ be a sequence
of quadruples of d, and let us consider O. Then ConsecutiveDelta(q, O) is a
bifunction from ConsecutiveSet(A, O) into L.
Next we state several propositions:
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(34) For every bifunction d from A into L and for every sequence ¢ of qu-
adruples of d holds d C ConsecutiveDelta(q, O).

(35) For every bifunction d from A into L and for every sequence q of
quadruples of d such that O; C Oy holds ConsecutiveDelta(q, O1) C
ConsecutiveDelta(g, O2).

(36) Let d be a bifunction from A into L. Suppose d is zeroed. Let ¢ be a
sequence of quadruples of d. Then ConsecutiveDelta(g, O) is zeroed.

(37) Let d be a bifunction from A into L. Suppose d is symmetric. Let ¢ be a
sequence of quadruples of d. Then ConsecutiveDelta(g, O) is symmetric.

(38) Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let ¢ be a sequence of quadruples of d. If
O C DistEsti(d), then ConsecutiveDelta(q, O) satisfies triangle inequality.

(39) Let d be a distance function of A, L and ¢ be a sequence of quadruples of
d. If O C DistEsti(d), then ConsecutiveDelta(g, O) is a distance function
of ConsecutiveSet(A, O), L.

Let us consider A, L and let d be a bifunction from A into L. The functor
NextSet(d) is defined as follows:
(Def. 18) NextSet(d) = ConsecutiveSet(A, DistEsti(d)).
Let us consider A, L and let d be a bifunction from A into L. One can check
that NextSet(d) is non empty.
Let us consider A, L, let d be a bifunction from A into L, and let ¢ be a
sequence of quadruples of d. The functor NextDelta(q) is defined as follows:
(Def. 19) NextDelta(q) = ConsecutiveDelta(g, DistEsti(d)).

Let us consider A, L, let d be a distance function of A, L, and let ¢ be
a sequence of quadruples of d. Then NextDelta(q) is a distance function of
NextSet(d), L.

Let us consider A, L, let d be a distance function of A, L, let A; be a non
empty set, and let d; be a distance function of A;, L. We say that (Ay,d;) is
extension of (A,d) if and only if:

(Def. 20) There exists a sequence g of quadruples of d such that A; = NextSet(d)
and d; = NextDelta(q).
The following proposition is true
(40) Let d be a distance function of A, L, Ay be a non empty set, and d; be
a distance function of A, L. Suppose (A1,d;) is extension of (A, d). Let
x, y be elements of A and a, b be elements of L. Suppose d(z, y) < alUb.
Then there exist elements z1, z2, z3 of A; such that dy(z, z1) = a and
di(z2, z3) = a and dy(z1, z2) = b and dy(z3, y) = b.
Let us consider A, L and let d be a distance function of A, L. A function is
called an extension sequence of (A, d) if it satisfies the conditions (Def. 21).

(Def. 21)(i) domit =N,
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(ii)  it(0) = (A, d), and

(ili)  for every natural number n there exists a non empty set A" and there
exists a distance function d’ of A’, L and there exists a non empty set
A; and there exists a distance function d; of A, L such that (Aj,dy) is
extension of (A',d’) and it(n) = (A’, d’) and it(n + 1) = (Ay, d1).

Next we state two propositions:

(41) Let d be a distance function of A, L, S be an extension sequence of
(A,d), and k, [ be natural numbers. If £ <[, then S(k); C S(1)1.

(42) Let d be a distance function of A, L, S be an extension sequence of
(A,d), and k, | be natural numbers. If k£ <, then S(k)2 C S(1)2.

Let us consider L. The functor dy(L) yields a distance function of the carrier
of L, L and is defined by:

(Def. 22) For all elements z, y of the carrier of L holds if = # y, then (do(L))(z,
y) =z Uy and if © =y, then (0o(L))(z, y) = L.
We now state two propositions:
(43) do(L) is onto.
(44) There exists a non empty set A and there exists a homomorphism f from
L to EqRelPoset(A) such that f is one-to-one and the type of Im f < 3.
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