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1. Preliminaries

The scheme RecChoice deals with a set A and a ternary predicate P, and

states that:

There exists a function f such that dom f = N and f(0) = A and

for every element n of N holds P[n, f(n), f(n + 1)]

provided the following condition is satisfied:

• For every natural number n and for every set x there exists a set

y such that P[n, x, y].

One can prove the following propositions:

(1) For every function f and for every function yielding function F such that

f =
⋃
rngF holds dom f =

⋃
rng(domκ F (κ)).

(2) For all non empty sets A, B holds [:
⋃

A,
⋃

B :] =
⋃
{[: a, b :]; a ranges

over elements of A, b ranges over elements of B: a ∈ A ∧ b ∈ B}.

(3) For every non empty set A such that A is ⊆-linear holds [:
⋃

A,
⋃

A :] =
⋃
{[: a, a :]; a ranges over elements of A: a ∈ A}.
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2. An equivalence lattice of a set

In the sequel X is a non empty set.

Let A be a non empty set. The functor EqRelPoset(A) yielding a poset is

defined as follows:

(Def. 1) EqRelPoset(A) = Poset(EqRelLatt(A)).

Let A be a non empty set. One can check that EqRelPoset(A) is non empty

and has g.l.b.’s and l.u.b.’s.

One can prove the following propositions:

(4) Let A be a non empty set and x be a set. Then x ∈ the carrier of

EqRelPoset(A) if and only if x is an equivalence relation of A.

(5) For every non empty set A and for all elements x, y of the carrier of

EqRelLatt(A) holds x ⊑ y iff x ⊆ y.

(6) For every non empty set A and for all elements a, b of EqRelPoset(A)

holds a ¬ b iff a ⊆ b.

(7) For every lattice L and for all elements a, b of Poset(L) holds a⊓b = ·a⊓·b.

(8) For every non empty set A and for all elements a, b of EqRelPoset(A)

holds a ⊓ b = a ∩ b.

(9) For every lattice L and for all elements a, b of Poset(L) holds a⊔b = ·a⊔·b.

(10) Let A be a non empty set, a, b be elements of EqRelPoset(A), and E1, E2

be equivalence relations of A. If a = E1 and b = E2, then a⊔ b = E1 ⊔E2.

(11) Let L be a lattice, X be a set, and b be an element of L. Then b ¬ X if

and only if b ¬ X ∩ the carrier of L.

Let L be a non empty relational structure. Let us observe that L is complete

if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let X be a subset of L. Then there exists an element a of L such that

a ¬ X and for every element b of L such that b ¬ X holds b ¬ a.

Let A be a non empty set. Note that EqRelPoset(A) is complete.

3. A type of a sublattice of equivalence lattice of a set

Let L1, L2 be lattices. One can check that there exists a map from L1 into

L2 which is meet-preserving and join-preserving.

Let L1, L2 be lattices. A homomorphism from L1 to L2 is a meet-preserving

join-preserving map from L1 into L2.

Let L be a lattice. One can check that there exists a relational substructure

of L which is meet-inheriting, join-inheriting, and strict.
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Let L1, L2 be lattices and let f be a homomorphism from L1 to L2. Then

Im f is a strict full sublattice of L2.

We follow the rules: e, e1, e2 denote equivalence relations of X and x, y

denote sets.

Let us consider X, let f be a non empty finite sequence of elements of X,

let us consider x, y, and let R be a binary relation. We say that x and y are

joint by f and R if and only if:

(Def. 3) f(1) = x and f(len f) = y and for every natural number i such that

1 ¬ i and i < len f holds 〈〈f(i), f(i + 1)〉〉 ∈ R.

One can prove the following propositions:

(12) Let x be a set, o be a natural number, R be a binary relation, and f be

a non empty finite sequence of elements of X. If R is reflexive in X and

f = o 7→ x, then x and x are joint by f and R.

(13) Let x, y, z be sets, R be a binary relation, and f , g be non empty finite

sequences of elements of X. Suppose R is reflexive in X and x and y are

joint by f and R and y and z are joint by g and R. Then there exists a

non empty finite sequence h of elements of X such that h = f a g and x

and z are joint by h and R.

(14) Let x, y be sets, R be a binary relation, and n, m be natural numbers.

Suppose that

(i) n ¬ m,

(ii) R is reflexive in X, and

(iii) there exists a non empty finite sequence f of elements of X such that

len f = n and x and y are joint by f and R.

Then there exists a non empty finite sequence h of elements of X such

that lenh = m and x and y are joint by h and R.

Let us considerX and let Y be a sublattice of EqRelPoset(X). Let us assume

that there exists e such that e ∈ the carrier of Y e 6= idX . And let us assume

that there exists a natural number o such that for all e1, e2, x, y such that

e1 ∈ the carrier of Y and e2 ∈ the carrier of Y and 〈〈x, y〉〉 ∈ e1 ⊔ e2 there exists

a non empty finite sequence F of elements of X such that lenF = o and x and

y are joint by F and e1 ∪ e2. The type of Y is a natural number and is defined

by the conditions (Def. 4).

(Def. 4)(i) For all e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the carrier

of Y and 〈〈x, y〉〉 ∈ e1 ⊔ e2 there exists a non empty finite sequence F of

elements of X such that lenF = (the type of Y )+ 2 and x and y are joint

by F and e1 ∪ e2, and

(ii) there exist e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the

carrier of Y and 〈〈x, y〉〉 ∈ e1 ⊔ e2 and it is not true that there exists a non

empty finite sequence F of elements of X such that lenF = (the type of

Y ) + 1 and x and y are joint by F and e1 ∪ e2.
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One can prove the following proposition

(15) Let Y be a sublattice of EqRelPoset(X) and n be a natural number.

Suppose that

(i) there exists e such that e ∈ the carrier of Y and e 6= idX , and

(ii) for all e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the carrier

of Y and 〈〈x, y〉〉 ∈ e1 ⊔ e2 there exists a non empty finite sequence F of

elements of X such that lenF = n + 2 and x and y are joint by F and

e1 ∪ e2.

Then the type of Y ¬ n.

4. A meet-representation of a lattice

In the sequel A is a non empty set and L is a lower-bounded lattice.

Let us consider A, L.

(Def. 5) A function from [:A, A :] into the carrier of L is said to be a bifunction

from A into L.

Let us consider A, L, let f be a bifunction from A into L, and let x, y be

elements of A. Then f(x, y) is an element of L.

Let us consider A, L and let f be a bifunction from A into L. We say that

f is symmetric if and only if:

(Def. 6) For all elements x, y of A holds f(x, y) = f(y, x).

We say that f is zeroed if and only if:

(Def. 7) For every element x of A holds f(x, x) = ⊥L.

We say that f satisfies triangle inequality if and only if:

(Def. 8) For all elements x, y, z of A holds f(x, y) ⊔ f(y, z) ­ f(x, z).

Let us consider A, L. Observe that there exists a bifunction from A into L

which is symmetric and zeroed and satisfies triangle inequality.

Let us consider A, L. A distance function of A, L is a symmetric zeroed

bifunction from A into L satisfying triangle inequality.

Let us consider A, L and let d be a distance function of A, L. The functor

α(d) yielding a map from L into EqRelPoset(A) is defined by the condition

(Def. 9).

(Def. 9) Let e be an element of L. Then there exists an equivalence relation E of

A such that E = (α(d))(e) and for all elements x, y of A holds 〈〈x, y〉〉 ∈ E

iff d(x, y) ¬ e.

The following two propositions are true:

(16) For every distance function d of A, L holds α(d) is meet-preserving.

(17) For every distance function d of A, L such that d is onto holds α(d) is

one-to-one.
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5. Jónson’s theorem

Let A be a set. The functor A∗ is defined as follows:

(Def. 10) A∗ = A ∪ {{A}, {{A}}, {{{A}}}}.

Let A be a set. One can verify that A∗ is non empty.

Let us consider A, L, let d be a bifunction from A into L, and let q be an

element of [:A, A, the carrier of L, the carrier of L :]. The functor d∗q yields a

bifunction from A∗ into L and is defined by the conditions (Def. 11).

(Def. 11)(i) For all elements u, v of A holds d∗q(u, v) = d(u, v),

(ii) d∗q({A}, {A}) = ⊥L,

(iii) d∗q({{A}}, {{A}}) = ⊥L,

(iv) d∗q({{{A}}}, {{{A}}}) = ⊥L,

(v) d∗q({{A}}, {{{A}}}) = q3,

(vi) d∗q({{{A}}}, {{A}}) = q3,

(vii) d∗q({A}, {{A}}) = q4,

(viii) d∗q({{A}}, {A}) = q4,

(ix) d∗q({A}, {{{A}}}) = q3 ⊔ q4,

(x) d∗q({{{A}}}, {A}) = q3 ⊔ q4, and

(xi) for every element u of A holds d∗q(u, {A}) = d(u, q1) ⊔ q3 and d∗q({A},

u) = d(u, q1) ⊔ q3 and d∗q(u, {{A}}) = d(u, q1) ⊔ q3 ⊔ q4 and d∗q({{A}},

u) = d(u, q1)⊔q3⊔q4 and d∗q(u, {{{A}}}) = d(u, q2)⊔q4 and d∗q({{{A}}},

u) = d(u, q2) ⊔ q4.

Next we state several propositions:

(18) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be an

element of [:A, A, the carrier of L, the carrier of L :]. Then d∗q is zeroed.

(19) Let d be a bifunction from A into L. Suppose d is symmetric. Let q

be an element of [:A, A, the carrier of L, the carrier of L :]. Then d∗q is

symmetric.

(20) Let d be a bifunction from A into L. Suppose d is symmetric and satisfies

triangle inequality. Let q be an element of [:A, A, the carrier of L, the

carrier of L :]. If d(q1, q2) ¬ q3 ⊔ q4, then d∗q satisfies triangle inequality.

(21) For every set A holds A ⊆ A∗.

(22) Let d be a bifunction from A into L and q be an element of [:A, A, the

carrier of L, the carrier of L :]. Then d ⊆ d∗q .

Let us consider A, L and let d be a bifunction from A into L. The functor

DistEsti(d) yields a cardinal number and is defined as follows:

(Def. 12) DistEsti(d) ≈ {〈〈x, y, a, b〉〉; x ranges over elements of A, y ranges over

elements of A, a ranges over elements of L, b ranges over elements of L:

d(x, y) ¬ a ⊔ b}.
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We now state the proposition

(23) For every distance function d of A, L holds DistEsti(d) 6= ∅.

In the sequel T denotes a transfinite sequence and O, O1, O2 denote ordinal

numbers.

Let us consider A and let us consider O. The functor ConsecutiveSet(A,O)

is defined by the condition (Def. 13).

(Def. 13) There exists a transfinite sequence L0 such that

(i) ConsecutiveSet(A,O) = lastL0,

(ii) domL0 = succO,

(iii) L0(∅) = A,

(iv) for every ordinal number C and for every set z such that succC ∈ succO

and z = L0(C) holds L0(succC) = z∗, and

(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 = L0↾C

holds L0(C) =
⋃
rngL1.

We now state three propositions:

(24) ConsecutiveSet(A, ∅) = A.

(25) ConsecutiveSet(A, succO) = (ConsecutiveSet(A,O))∗.

(26) Suppose O 6= ∅ and O is a limit ordinal number and domT = O

and for every ordinal number O1 such that O1 ∈ O holds T (O1) =

ConsecutiveSet(A,O1). Then ConsecutiveSet(A, O) =
⋃
rng T.

Let us consider A and let us consider O. Note that ConsecutiveSet(A, O) is

non empty.

One can prove the following proposition

(27) A ⊆ ConsecutiveSet(A,O).

Let us consider A, L and let d be a bifunction from A into L. A transfinite

sequence of elements of [:A, A, the carrier of L, the carrier of L :] is said to be

a sequence of quadruples of d if it satisfies the conditions (Def. 14).

(Def. 14)(i) dom it is a cardinal number,

(ii) it is one-to-one, and

(iii) rng it = {〈〈x, y, a, b〉〉; x ranges over elements of A, y ranges over elements

of A, a ranges over elements of L, b ranges over elements of L: d(x, y) ¬

a ⊔ b}.

Let us consider A, L, let d be a bifunction from A into L, let q be a se-

quence of quadruples of d, and let us consider O. Let us assume that O ∈

dom q. The functor Quadr(q, O) yielding an element of [:ConsecutiveSet(A,O),

ConsecutiveSet(A,O), the carrier of L, the carrier of L :] is defined as follows:

(Def. 15) Quadr(q,O) = q(O).

One can prove the following proposition
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(28) Let d be a bifunction from A into L and q be a sequence of quadruples

of d. Then O ∈ DistEsti(d) if and only if O ∈ dom q.

Let us consider A, L and let z be a set. Let us assume that z is a bifunction

from A into L. The functor BiFun(z,A, L) yields a bifunction from A into L

and is defined as follows:

(Def. 16) BiFun(z, A, L) = z.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence

of quadruples of d, and let us consider O. The functor ConsecutiveDelta(q, O)

is defined by the condition (Def. 17).

(Def. 17) There exists a transfinite sequence L0 such that

(i) ConsecutiveDelta(q, O) = lastL0,

(ii) domL0 = succO,

(iii) L0(∅) = d,

(iv) for every ordinal number C and for every set z such

that succC ∈ succO and z = L0(C) holds L0(succC) =

(BiFun(z,ConsecutiveSet(A, C), L))∗
Quadr(q,C), and

(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 = L0↾C

holds L0(C) =
⋃
rngL1.

Next we state four propositions:

(29) For every bifunction d from A into L and for every sequence q of qu-

adruples of d holds ConsecutiveDelta(q, ∅) = d.

(30) For every bifunction d from A into L and for every sequ-

ence q of quadruples of d holds ConsecutiveDelta(q, succO) =

(BiFun(ConsecutiveDelta(q, O),ConsecutiveSet(A,O), L))∗
Quadr(q,O).

(31) Let d be a bifunction from A into L and q be a sequence of quadruples

of d. Suppose O 6= ∅ and O is a limit ordinal number and domT =

O and for every ordinal number O1 such that O1 ∈ O holds T (O1) =

ConsecutiveDelta(q,O1). Then ConsecutiveDelta(q,O) =
⋃
rng T.

(32) If O1 ⊆ O2, then ConsecutiveSet(A,O1) ⊆ ConsecutiveSet(A,O2).

Let O be a non empty ordinal number. Note that every element of O is

ordinal-like.

Next we state the proposition

(33) Let d be a bifunction from A into L and q be a sequence of quadruples of

d. Then ConsecutiveDelta(q, O) is a bifunction from ConsecutiveSet(A,O)

into L.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence

of quadruples of d, and let us consider O. Then ConsecutiveDelta(q,O) is a

bifunction from ConsecutiveSet(A,O) into L.

Next we state several propositions:
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(34) For every bifunction d from A into L and for every sequence q of qu-

adruples of d holds d ⊆ ConsecutiveDelta(q, O).

(35) For every bifunction d from A into L and for every sequence q of

quadruples of d such that O1 ⊆ O2 holds ConsecutiveDelta(q, O1) ⊆

ConsecutiveDelta(q, O2).

(36) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be a

sequence of quadruples of d. Then ConsecutiveDelta(q, O) is zeroed.

(37) Let d be a bifunction from A into L. Suppose d is symmetric. Let q be a

sequence of quadruples of d. Then ConsecutiveDelta(q, O) is symmetric.

(38) Let d be a bifunction from A into L. Suppose d is symmetric and

satisfies triangle inequality. Let q be a sequence of quadruples of d. If

O ⊆ DistEsti(d), then ConsecutiveDelta(q, O) satisfies triangle inequality.

(39) Let d be a distance function of A, L and q be a sequence of quadruples of

d. If O ⊆ DistEsti(d), then ConsecutiveDelta(q, O) is a distance function

of ConsecutiveSet(A,O), L.

Let us consider A, L and let d be a bifunction from A into L. The functor

NextSet(d) is defined as follows:

(Def. 18) NextSet(d) = ConsecutiveSet(A,DistEsti(d)).

Let us consider A, L and let d be a bifunction from A into L. One can check

that NextSet(d) is non empty.

Let us consider A, L, let d be a bifunction from A into L, and let q be a

sequence of quadruples of d. The functor NextDelta(q) is defined as follows:

(Def. 19) NextDelta(q) = ConsecutiveDelta(q,DistEsti(d)).

Let us consider A, L, let d be a distance function of A, L, and let q be

a sequence of quadruples of d. Then NextDelta(q) is a distance function of

NextSet(d), L.

Let us consider A, L, let d be a distance function of A, L, let A1 be a non

empty set, and let d1 be a distance function of A1, L. We say that (A1, d1) is

extension of (A, d) if and only if:

(Def. 20) There exists a sequence q of quadruples of d such that A1 = NextSet(d)

and d1 = NextDelta(q).

The following proposition is true

(40) Let d be a distance function of A, L, A1 be a non empty set, and d1 be

a distance function of A1, L. Suppose (A1, d1) is extension of (A, d). Let

x, y be elements of A and a, b be elements of L. Suppose d(x, y) ¬ a ⊔ b.

Then there exist elements z1, z2, z3 of A1 such that d1(x, z1) = a and

d1(z2, z3) = a and d1(z1, z2) = b and d1(z3, y) = b.

Let us consider A, L and let d be a distance function of A, L. A function is

called an extension sequence of (A, d) if it satisfies the conditions (Def. 21).

(Def. 21)(i) dom it = N,
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(ii) it(0) = 〈〈A, d〉〉, and

(iii) for every natural number n there exists a non empty set A′ and there

exists a distance function d′ of A′, L and there exists a non empty set

A1 and there exists a distance function d1 of A1, L such that (A1, d1) is

extension of (A′, d′) and it(n) = 〈〈A′, d′〉〉 and it(n + 1) = 〈〈A1, d1〉〉.

Next we state two propositions:

(41) Let d be a distance function of A, L, S be an extension sequence of

(A, d), and k, l be natural numbers. If k ¬ l, then S(k)1 ⊆ S(l)1.

(42) Let d be a distance function of A, L, S be an extension sequence of

(A, d), and k, l be natural numbers. If k ¬ l, then S(k)2 ⊆ S(l)2.

Let us consider L. The functor δ0(L) yields a distance function of the carrier

of L, L and is defined by:

(Def. 22) For all elements x, y of the carrier of L holds if x 6= y, then (δ0(L))(x,

y) = x ⊔ y and if x = y, then (δ0(L))(x, y) = ⊥L.

We now state two propositions:

(43) δ0(L) is onto.

(44) There exists a non empty set A and there exists a homomorphism f from

L to EqRelPoset(A) such that f is one-to-one and the type of Im f ¬ 3.
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