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Summary. The main goal of the paper is to show logical equivalence of the
two definitions of the open subset: one from [2] and the other from [23]. This has
been used to show that the other two definitions are equivalent: the continuity
of the map as in [20] and in [22]. We used this to show that continuous and
one-to-one maps are monotone (see theorems 16 and 17 for details).

MML Identifier: JORDAN5A.

The terminology and notation used here are introduced in the following articles:

[26], [13], [27], [28], [4], [5], [24], [22], [17], [18], [10], [3], [23], [6], [25], [29], [16],

[14], [19], [11], [20], [8], [7], [9], [15], [21], [2], [1], and [12].

1. Preliminaries

One can prove the following four propositions:

(1) For all points p, q of E2
T
and for every subset P of E2

T
such that P is an

arc from p to q holds P is compact.

(2) For every real number r holds 0 ¬ r and r ¬ 1 iff r ∈ the carrier of I.

(3) For all points p1, p2 of E
2
T
and for all real numbers r1, r2 such that

(1− r1) · p1 + r1 · p2 = (1− r2) · p1 + r2 · p2 holds r1 = r2 or p1 = p2.

(4) Let p1, p2 be points of E
2
T
. Suppose p1 6= p2. Then there exists a map

f from I into (E2
T
)↾L(p1, p2) such that for every real number x such that

x ∈ [0, 1] holds f(x) = (1− x) · p1 + x · p2 and f is a homeomorphism and

f(0) = p1 and f(1) = p2.

1This paper was written while the author visited the Shinshu University in the winter of
1997.
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One can verify that E2
T
is arcwise connected.

One can check that there exists a subspace of E2
T
which is compact and non

empty.

The following proposition is true

(5) Let a, b be points of E2
T
, f be a path from a to b, P be a non empty

compact subspace of E2
T
, and g be a map from I into P . If f is one-to-one

and g = f and ΩP = rng f, then g is a homeomorphism.

2. Equivalence of analytical and topological definitions of

continuity

We now state a number of propositions:

(6) Let X be a subset of R. Then X ∈ the open set family of the metric

space of real numbers if and only if X is open.

(7) Let f be a map from R
1 into R

1, x be a point of R
1, g be a partial

function from R to R, and x1 be a real number. If f is continuous at x

and f = g and x = x1, then g is continuous in x1.

(8) Let f be a continuous map from R
1 into R

1 and g be a partial function

from R to R. If f = g, then g is continuous on R.

(9) Let f be a continuous one-to-one map from R
1 into R

1. Then

(i) for all points x, y of I and for all real numbers p, q, f1, f2 such that

x = p and y = q and p < q and f1 = f(x) and f2 = f(y) holds f1 < f2, or

(ii) for all points x, y of I and for all real numbers p, q, f1, f2 such that

x = p and y = q and p < q and f1 = f(x) and f2 = f(y) holds f1 > f2.

(10) Let r, g1, a, b be real numbers and x be an element of the carrier of

[a, b]M. If a ¬ b and x = r and g1 > 0 and ]r − g1, r + g1[ ⊆ [a, b], then

]r − g1, r + g1[ = Ball(x, g1).

(11) Let a, b be real numbers and X be a subset of R. Suppose a < b and

a /∈ X and b /∈ X. If X ∈ the open set family of [a, b]M, then X is open.

(12) For every open subset X of R and for all real numbers a, b such that

X ⊆ [a, b] holds a /∈ X and b /∈ X.

(13) Let a, b be real numbers, X be a subset of R, and V be a subset of the

carrier of [a, b]M. Suppose a ¬ b and V = X. If X is open, then V ∈ the

open set family of [a, b]M.

(14) Let a, b, c, d, x1 be real numbers, f be a map from [a, b]T into [c, d]T,

x be a point of [a, b]T, and g be a partial function from R to R. Suppose

a < b and c < d and f is continuous at x and f(a) = c and f(b) = d and

f is one-to-one and f = g and x = x1. Then g↾[a, b] is continuous in x1.
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(15) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, and g

be a partial function from R to R. Suppose f is continuous and one-to-one

and a < b and c < d and f = g and f(a) = c and f(b) = d. Then g is

continuous on [a, b].

3. On the monotonicity of continuous maps

One can prove the following propositions:

(16) Let a, b, c, d be real numbers and f be a map from [a, b]T into [c, d]T.

Suppose a < b and c < d and f is continuous and one-to-one and f(a) = c

and f(b) = d. Let x, y be points of [a, b]T and p, q, f1, f2 be real numbers.

If x = p and y = q and p < q and f1 = f(x) and f2 = f(y), then f1 < f2.

(17) Let f be a continuous one-to-one map from I into I. Suppose f(0) = 0

and f(1) = 1. Let x, y be points of I and p, q, f1, f2 be real numbers. If

x = p and y = q and p < q and f1 = f(x) and f2 = f(y), then f1 < f2.

(18) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, P

be a non empty subset of [a, b]T, and P1, Q1 be subsets of R
1. Suppose

a < b and c < d and P1 = P and f is continuous and one-to-one and P1 is

compact and f(a) = c and f(b) = d and f◦P = Q1. Then f(inf(Ω(P1))) =

inf(Ω(Q1)).

(19) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, P ,

Q be non empty subsets of [a, b]T, and P1, Q1 be subsets of R
1. Suppose

a < b and c < d and P1 = P and Q1 = Q and f is continuous and one-

to-one and P1 is compact and f(a) = c and f(b) = d and f◦P = Q. Then

f(sup(Ω(P1))) = sup(Ω(Q1)).

(20) For all real numbers a, b such that a ¬ b holds inf[a, b] = a and sup[a, b] =

b.

(21) Let a, b, c, d, e, f , g, h be real numbers and F be a map from [a, b]T
into [c, d]T. Suppose a < b and c < d and e < f and a ¬ e and f ¬ b

and F is a homeomorphism and F (a) = c and F (b) = d and g = F (e) and

h = F (f). Then F ◦[e, f ] = [g, h].

(22) Let P , Q be subsets of the carrier of E2
T
and p1, p2 be points of E

2
T
.

Suppose P meets Q and P ∩ Q is closed and P is an arc from p1 to p2.

Then there exists a point E1 of E
2
T
such that

(i) E1 ∈ P ∩Q, and

(ii) there exists a map g from I into (E2
T
)↾P and there exists a real number

s2 such that g is a homeomorphism and g(0) = p1 and g(1) = p2 and

g(s2) = E1 and 0 ¬ s2 and s2 ¬ 1 and for every real number t such that

0 ¬ t and t < s2 holds g(t) /∈ Q.
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(23) Let P , Q be subsets of the carrier of E2
T
and p1, p2 be points of E

2
T
.

Suppose P meets Q and P ∩ Q is closed and P is an arc from p1 to p2.

Then there exists a point E1 of E
2
T
such that

(i) E1 ∈ P ∩Q, and

(ii) there exists a map g from I into (E2
T
)↾P and there exists a real number

s2 such that g is a homeomorphism and g(0) = p1 and g(1) = p2 and

g(s2) = E1 and 0 ¬ s2 and s2 ¬ 1 and for every real number t such that

1 ­ t and t > s2 holds g(t) /∈ Q.
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