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Summary. Mizar formalization of pp. 105-108 of [15] which continues [34].
We found a simplification for the proof of Corollary 1.15, in the last case, see the
proof in the Mizar article for details.

MML Identifier: WAYBEL14.

The terminology and notation used in this paper are introduced in the following
articles: [30], [37], [10], [2], [25], [14], [29], [38], [8], [9], [35], [3], [1], [36], [27],
[39], [13], [26], [31], [17], [28], [18], [12], [4], [16], [41], [19], [20], [33], [6], [32], [5],
[11], [21], [7], [40], [23], [24], [22], and [34].

1. PRELIMINARIES

The following propositions are true:

(1) Let X be a set and F' be a finite family of subsets of X. Then there
exists a finite family G of subsets of X such that G C F and | JG = F
and for every subset g of X such that g € G holds g Z | J(G \ {g}).

(2) Let S be a 1-sorted structure and X be a subset of the carrier of S. Then
—X = the carrier of S if and only if X is empty.

(3) Let R be an antisymmetric transitive non empty relational structure
with g.1.b.’s and z, y be elements of R. Then [(xMy) = |z N |y.

(4) Let R be an antisymmetric transitive non empty relational structure
with Lu.b.’s and z, y be elements of R. Then [(zUy) =Tz N Ty.

IThis work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

@ 1997 Warsaw University - Bialystok

441 ISSN 1426-2630



442 CZESEAW BYLINSKI AND PIOTR RUDNICKI

(5) Let L be a complete antisymmetric non empty relational structure and
X be a lower subset of L. If sup X € X, then X = |sup X.

(6) Let L be a complete antisymmetric non empty relational structure and
X be an upper subset of L. If inf X € X, then X = Tinf X.

(7) Let R be a non empty reflexive transitive relational structure and z, y
be elements of R. Then x < y if and only if Ty C fz.

(8) Let R be a non empty reflexive transitive relational structure and z, y
be elements of R. Then z < y if and only if |z C ly.

(9) Let R be a complete reflexive antisymmetric non empty relational struc-
ture and z be an element of R. Then sup |z <  and z < inf fz.

(10) For every lower-bounded antisymmetric non empty relational structure
L holds 7(Lz) = the carrier of L.

(11) For every upper-bounded antisymmetric non empty relational structure
L holds [(Tr) = the carrier of L.

(12) For every poset P with Lu.b.’s and for all elements z, y of P holds
fzUfy € Tz Uy).

(13) For every poset P with g.l.b.’s and for all elements z, y of P holds
lenly C l(zNy).

(14) Let R be a non empty poset with L.u.b.’s and [ be an element of R. Then
l is co-prime if and only if for all elements x, y of R such that [ < z Uy
holds I <z orl <y.

(15) For every complete non empty poset P and for every non empty subset
V of P holds |inf V' = ({]u,u ranges over elements of P: u € V}.

(16) For every complete non empty poset P and for every non empty subset
V of P holds TsupV = ({Tu,u ranges over elements of P: u € V}.

Let L be a sup-semilattice and let x be an element of L.
Note that compactbelow(x) is directed.
We now state four propositions:

(17) Let T be a non empty topological space, S be an irreducible subset of
T, and V be an element of (the topology of T', C). If V' = —S, then V is
prime.

(18) Let T be a non empty topological space and x, y be elements of (the
topology of T, C). Then x Uy =z Uy and x My =z Ny.

(19) Let T be a non empty topological space and V be an element of (the
topology of T'; C). Then V is prime if and only if for all elements X, Y of
(the topology of T', C) such that X NY CV holds X CV orY C V.

(20) Let T be a non empty topological space and V' be an element of (the

topology of T, C). Then V is co-prime if and only if for all elements X, YV’
of (the topology of T', C) such that V C X UY holds VC X or V C Y.
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Let T be a non empty topological space. One can check that (the topology
of T, C) is distributive.
The following propositions are true:

(21) Let T be a non empty topological space, L be a TopLattice, ¢t be a point
of T', [ be a point of L, and X be a family of subsets of the carrier of L.
Suppose the topological structure of T" = the topological structure of L
and t =1 and X is a basis of . Then X is a basis of t.

(22) Let L be a TopLattice and x be an element of L. Suppose that for every
subset X of L such that X is open holds X is upper. Then Tz is compact.

2. THE SCOTT TOPOLOGY?

For simplicity, we use the following convention: L is a complete Scott To-
pLattice, x is an element of L, X, Y are subsets of L, V, W are elements of
(o(L),C), and V; is a subset of (o(L),C).

Let L be a complete lattice. One can check that (L) is non empty.

The following four propositions are true:

(23) o(L) = the topology of L.

(24) X €o(L) iff X is open.

(25) For every filtered subset X of L such that V; = {—|z: 2 € X} holds V;
is directed.

(26) If X is open and z € X, then inf X < z.

Let R be a non empty reflexive relational structure and let f be a map
from [ R, R] into R. We say that f is jointly Scott-continuous if and only if the
condition (Def. 1) is satisfied.

(Def. 1) Let T be a non empty topological space. Suppose the topological struc-
ture of T' = ConvergenceSpace(the Scott convergence of R). Then there
exists a map fi from [ 7, T'] into T such that f; = f and f; is continuous.

One can prove the following propositions:
(27) If V = X, then V is co-prime iff X is filtered and upper.

(28) If V = X and there exists « such that X = — |z, then V is prime and
V' # the carrier of L.

(29) If V = X and Uy, is jointly Scott-continuous and V' is prime and V' # the
carrier of L, then there exists = such that X = —|x.

(30) If L is continuous, then Uy, is jointly Scott-continuous.

(31) If Uy is jointly Scott-continuous, then L is sober.

2g(L) = sigma L, as defined in [34, p. 316, Def. 12] and Uy = sup_op(L), as defined in [21,
p. 163, Def. 5].
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(32) If L is continuous, then L is compact, locally-compact, sober, and Baire.
(33) If L is continuous and X € (L), then X = J{fz: 2 € X}.
(34) If for every X such that X € o(L) holds X = [J{fz : v € X}, then L is

continuous.

(35) If L is continuous, then there exists a basis B of = such that for every
X such that X € B holds X is open and filtered.

(36) If L is continuous, then (o(L), C) is continuous.

(37) Suppose for every x there exists a basis B of z such that for every Y
such that Y € B holds Y is open and filtered and (¢(L), C) is continuous.
Then z = | |;{inff X :2 € X N X €o(L)}.

(38) 1If for every x holds z = | |, {inf X : x € X A X € o(L)}, then L is
continuous.

(39) The following statements are equivalent
(i)  for every x there exists a basis B of x such that for every Y such that
Y € B holds Y is open and filtered,
(ii)  for every V there exists V; such that V' = sup V; and for every W such
that W € V; holds W is co-prime.

(40) For every V there exists V; such that V' = sup V; and for every W such
that W € V; holds W is co-prime and (o (L), C) is continuous if and only
if (¢(L), C) is completely-distributive.

(41) (o(L),<) is completely-distributive iff (o(L),C) is continuous and
((o(L), C))°P is continuous.

(42) 1If L is algebraic, then there exists a basis B of L such that B = {]z :
x € the carrier of CompactSublatt(L)}.

(43) Given a basis B of L such that B = {lx : = € the carrier of
CompactSublatt(L)}. Then (o(L),C) is algebraic and for every V there
exists Vj such that V = sup V4 and for every W such that W € Vj holds
W is co-prime.

(44) Suppose (o(L), C) is algebraic and for every V there exists V; such that
V = supV; and for every W such that W € V; holds W is co-prime.
Then there exists a basis B of L such that B = {z : € the carrier of
CompactSublatt(L)}.

(45) If there exists a basis B of L such that B = {{z : « € the carrier of
CompactSublatt(L)}, then L is algebraic.
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