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Summary. Finite-dimensional real linear spaces are defined. The dimen-
sion of such spaces is the cardinality of a basis. Obviously, each two basis have
the same cardinality. We prove the Steinitz theorem and the Exchange Lemma.
We also investigate some fundamental facts involving the dimension of real linear
spaces.

MML Identifier: RLVECT 5.

The notation and terminology used here are introduced in the following papers:

[10], [19], [9], [7], [2], [20], [4], [5], [18], [1], [6], [3], [13], [15], [8], [17], [12], [16],

[14], and [11].

1. Prelimiaries

For simplicity, we follow the rules: V denotes a real linear space, W denotes

a subspace of V , x denotes a set, n denotes a natural number, v denotes a vector

of V , K1, K2 denote linear combinations of V , and X denotes a subset of the

carrier of V .

We now state a number of propositions:

(1) If X is linearly independent and the support of K1 ⊆ X and the support

of K2 ⊆ X and
∑

K1 =
∑

K2, then K1 = K2.

(2) Let V be a real linear space and A be a subset of V . If A is linearly

independent, then there exists a basis I of V such that A ⊆ I.

(3) Let L be a linear combination of V and x be a vector of V . Then x ∈ the

support of L if and only if there exists v such that x = v and L(v) 6= 0.
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(4) For every finite set X such that n ¬ X there exists a finite subset A of

X such that A = n.

(5) Let L be a linear combination of V , F , G be finite sequences of elements

of the carrier of V , and P be a permutation of domF. If G = F · P, then
∑

(L F ) =
∑

(L G).

(6) Let L be a linear combination of V and F be a finite sequence of elements

of the carrier of V . If the support of L misses rngF, then
∑

(L F ) = 0V .

(7) Let F be a finite sequence of elements of the carrier of V . Suppose F is

one-to-one. Let L be a linear combination of V . If the support of L ⊆ rngF,

then
∑

(L F ) =
∑

L.

(8) Let L be a linear combination of V and F be a finite sequence of elements

of the carrier of V . Then there exists a linear combination K of V such

that the support of K = rngF ∩ the support of L and L F = K F.

(9) Let L be a linear combination of V , A be a subset of V , and F be

a finite sequence of elements of the carrier of V . Suppose rngF ⊆ the

carrier of Lin(A). Then there exists a linear combination K of A such that
∑

(L F ) =
∑

K.

(10) Let L be a linear combination of V and A be a subset of V . Suppose the

support of L ⊆ the carrier of Lin(A). Then there exists a linear combina-

tion K of A such that
∑

L =
∑

K.

(11) Let L be a linear combination of V . Suppose the support of L ⊆ the

carrier of W . Let K be a linear combination of W . Suppose K = L↾the

carrier of W . Then the support of L = the support of K and
∑

L =
∑

K.

(12) Let K be a linear combination of W . Then there exists a linear com-

bination L of V such that the support of K = the support of L and
∑

K =
∑

L.

(13) Let L be a linear combination of V . Suppose the support of L ⊆ the

carrier of W . Then there exists a linear combination K of W such that

the support of K = the support of L and
∑

K =
∑

L.

(14) For every basis I of V and for every vector v of V holds v ∈ Lin(I).

(15) Let A be a subset of W . Suppose A is linearly independent. Then there

exists a subset B of V such that B is linearly independent and B = A.

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the

carrier of W . Then there exists a subset B of W such that B is linearly

independent and B = A.

(17) For every basis A of W there exists a basis B of V such that A ⊆ B.

(18) Let A be a subset of V . Suppose A is linearly independent. Let v be a

vector of V . If v ∈ A, then for every subset B of V such that B = A \ {v}

holds v /∈ Lin(B).
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(19) Let I be a basis of V and A be a non empty subset of V . Suppose A

misses I. Let B be a subset of V . If B = I∪A, then B is linearly-dependent.

(20) For every subset A of V such that A ⊆ the carrier of W holds Lin(A) is

a subspace of W .

(21) For every subset A of V and for every subset B of W such that A = B

holds Lin(A) = Lin(B).

2. The Steinitz Theorem

Next we state two propositions:

(22) Let A, B be finite subsets of V and v be a vector of V . Suppose v ∈

Lin(A ∪ B) and v /∈ Lin(B). Then there exists a vector w of V such that

w ∈ A and w ∈ Lin(((A ∪B) \ {w}) ∪ {v}).

(23) Let A,B be finite subsets of V . Suppose the RLS structure of V = Lin(A)

and B is linearly independent. Then B ¬ A and there exists a finite

subset C of V such that C ⊆ A and C = A − B and the RLS structure

of V = Lin(B ∪ C).

3. Finite Dimensional Vector Spaces

Let V be a real linear space. We say that V is finite dimensional if and only

if:

(Def. 1) There exists a finite subset of the carrier of V which is a basis of V .

Let us observe that there exists a real linear space which is strict and finite

dimensional.

Let V be a real linear space. Let us observe that V is finite dimensional if

and only if:

(Def. 2) There exists a finite subset of V which is a basis of V .

We now state several propositions:

(24) If V is finite dimensional, then every basis of V is finite.

(25) If V is finite dimensional, then for every subset A of V such that A is

linearly independent holds A is finite.

(26) If V is finite dimensional, then for all bases A, B of V holds A = B.

(27) 0V is finite dimensional.

(28) If V is finite dimensional, then W is finite dimensional.
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Let V be a real linear space. One can check that there exists a subspace of

V which is finite dimensional and strict.

Let V be a finite dimensional real linear space. Observe that every subspace

of V is finite dimensional.

Let V be a finite dimensional real linear space. Note that there exists a

subspace of V which is strict.

4. The Dimension of a Vector Space

Let V be a real linear space. Let us assume that V is finite dimensional. The

functor dim(V ) yields a natural number and is defined as follows:

(Def. 3) For every basis I of V holds dim(V ) = I .

We use the following convention: V is a finite dimensional real linear space,

W , W1, W2 are subspaces of V , and u, v are vectors of V .

Next we state a number of propositions:

(29) dim(W ) ¬ dim(V ).

(30) For every subset A of V such that A is linearly independent holds A =

dim(Lin(A)).

(31) dim(V ) = dim(ΩV ).

(32) dim(V ) = dim(W ) iff ΩV = ΩW .

(33) dim(V ) = 0 iff ΩV = 0V .

(34) dim(V ) = 1 iff there exists v such that v 6= 0V and ΩV = Lin({v}).

(35) dim(V ) = 2 iff there exist u, v such that u 6= v and {u, v} is linearly

independent and ΩV = Lin({u, v}).

(36) dim(W1 + W2) + dim(W1 ∩W2) = dim(W1) + dim(W2).

(37) dim(W1 ∩W2) ­ (dim(W1) + dim(W2))− dim(V ).

(38) If V is the direct sum ofW1 andW2, then dim(V ) = dim(W1)+dim(W2).

(39) n ¬ dim(V ) iff there exists a strict subspaceW of V such that dim(W ) =

n.

Let V be a finite dimensional real linear space and let n be a natural number.

The functor Subn(V ) yields a set and is defined as follows:

(Def. 4) x ∈ Subn(V ) iff there exists a strict subspace W of V such that W = x

and dim(W ) = n.

The following propositions are true:

(40) If n ¬ dim(V ), then Subn(V ) is non empty.

(41) If dim(V ) < n, then Subn(V ) = ∅.

(42) Subn(W ) ⊆ Subn(V ).
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