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The papers [5], [4], [8], [6], [2], [7], [10], [12], [3], [1], [9], [13], and [11] provide
the terminology and notation for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention: 71, ro, r3 are sequences of
real numbers, s1, s, s3 are complex sequences, k, n, m are natural numbers,
and p, r are elements of R.

The following propositions are true:

(1) (n+1)4+0i#0c and 0+ (n+ 1) # Oc.

(2) If for every n holds ri(n) = 0, then for every m holds
(> a0 Ir1l(@))ren(m) = 0.

(3) If for every n holds ri(n) = 0, then 7, is absolutely summable.

Let us note that there exists a sequence of real numbers which is absolutely
summable.

One can check that every sequence of real numbers which is summable is
also convergent.

One can verify that every sequence of real numbers which is absolutely sum-
mable is also summable.

One can check that there exists a sequence of real numbers which is absolu-
tely summable.

Next we state several propositions:
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(4) Suppose r is convergent. Let given p. Suppose 0 < p. Then there exists
n such that for all natural numbers m, [ such that n < m and n <[ holds
[ri(m) —ri(D)] <p.

(5) If for every n holds r1(n) < p, then for all natural numbers n, [ holds
(X a=o(ri)(@))ren(n +1) = _a—o(r1)(a))ren(n) <p- L.

(6) If for every m holds ri(n) < p, then for every n holds
(X azo(ri)(@))sen(n) <p- (n+1).

(7) If for every n such that n < m holds ra(n) < p - r3(n), then
(Xa=o(r2)(@))ren(m) < p- (3oq—o(rs)(c))ren(m).

(8) Suppose that for every n such that n < m holds ra(n) < p - r3(n).
Let given n. Suppose n < m. Let [ be a natural number. If n +
I < m, then (35 _o(r2)(@))sen(n + 1) — (X a—o(r2)(a))sen(n) < p-
(O a=o(rs)(@))ren(n +1) = (-6=0(r3)(@))xen(n)).

(9) If for every n holds 0 < ri(n), then for all n, m such that
n < m holds [(3_0_o(r1)(a))ren(m) — (3o—o(r)(@))ren(n)| =
(55 _o(r)(@))ner(m) — (35 _o(r)(@))wen(n) and for every n holds
|(XCao(r)(@))ren(n)] = (Xa—o(r1)(@))ren(n).

(10) If s9 is convergent and s is convergent and lim(sy — s3) = Oc, then
lim s = lim s3.

2. THE OPERATIONS ON COMPLEX SEQUENCES

In the sequel z denotes an element of C and N7 denotes an increasing sequ-
ence of naturals.
Let z be an element of C. The functor (2").en yielding a complex sequence
is defined as follows:
(Def. 1)  (2%)ken(0) = 1¢ and for every n holds (2").en(n + 1) = (27)ken(n) - 2.
Let z be an element of C and let n be a natural number. The functor 2y
yielding an element of C is defined by:
(Def. 2) 28 = (2")ken(n).
The following proposition is true
(11) 2§ = 1c.
Let ¢ be a complex sequence. The functor R(c) yields a sequence of real
numbers and is defined as follows:
(Def. 3) For every n holds £(c)(n) = R(c(n)).
Let ¢ be a complex sequence. The functor I(c) yielding a sequence of real
numbers is defined as follows:
(Def. 4) For every n holds (c)(n) = I(e(n)).
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We now state a number of propositions:

(12) [2] < RG]+ [3(2)].
(13) |R(2)| < |z] and |S(2)] < |#].

(14) R(s2) = RN(s3) and J(s2) = J(s3) iff s9 = s3.

(15)  R(s2) + R(s3) = R(s2 + s3) and I(s2) + I(s3) = J(s2 + s3).

(16) —R(s1) = R(—s1) and —F(s1) = I(—s1).

(17) 7-R(z) =R((r+0i) - 2) and - I(z) = S((r + 07) - 2)

(18) R(s2) — RN(s3) = R(s2 — s3) and F(s2) — F(s3) = J(s2 — 53)

(19) rR(s1) = R((r+0¢) s1) and r I(s1) = I((r + 07) s1).

(20) R(zs1) = R(z) R(s1)—(2) I(s1) and F(z s1) = R(2) S(s1)+(2) R(s1)
(21) R(s2s3) = R(s2) N(s3) — I(s2) I(s3) and J(s2s3) = R(s2) I(s3) +

I(s2) R(s3).
Let s1 be a complex sequence and let N7 be an increasing sequence of natu-
rals. The functor s; V7 yielding a complex sequence is defined by:
(Def. 5) For every n holds (s1 N1)(n) = s1(N1(n)).
Next we state the proposition
(22) R(s1 N1) = R(s1) - N1 and I(s1 N1) = I(s1) - V1.
Let s1 be a complex sequence and let k& be a natural number. The functor
s1 T k yields a complex sequence and is defined by:
(Def. 6) For every n holds (s1 1 k)(n) = s1(n + k).
The following proposition is true
(23) R(s1) Tk=R(s1Tk)and I(s1) Tk =(s1 1 k).
Let s1 be a complex sequence. The functor (3 . _(s1)())ken yields a com-
plex sequence and is defined as follows:

(Def. 7) (30 _o(s1)(@))ren(0) = s1(0) and for every n holds (35 _(s1)(a))wen(n+
1) = (3a—o(s1)(@))ken(n) + s1(n +1).
Let s1 be a complex sequence. The functor ) s; yields an element of C and
is defined as follows:

(Def. 8) 37 s1 = lm((3_q—0(s1)(@))ren)-

Next we state a number of propositions:

(24) If for every m holds si(n) = O¢, then for every m holds
(Xa=o(s1)(@))ren(m) = Oc.
(25) If for every m holds sij(n) = O¢, then for every m holds

(X0 Is11(@))xen(m) = 0.
(26)  (Xon—o R(s1)(@)ren = R((i=o(s1)(a))wen) and (35— S(s1)(@))sen =
S((Xh=o(51)(@))nen)-
(27)  (Xa=o(s2)(a))wen + (Xazo(s3)(@)ren = (Xa—o(52 + 53)(@))sen-
(> a=0(32)(@))ren — (Xon—o(s3)(@))nen = (Pa=o(52 — 53)(@)) xeN-
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(29)  (Xa=o(zs1)(@))nen
(30) [ a=o(s1)(@))ren(k
(31) 1 a=o(s1)(@))ren(m
—(Xa=o Is11(@))ren(n )I
(32) (Xa—oR(s1)(a))ren Th =R((Z5—o(s51)(@))ren T k) and
(>a=0 \S(Sl)(a))neN Tk =S((a=o(s51)(@)ren T k).
(33) If for every n holds sa(n) = s1(0), then (3o _o(s1 T 1)(@))ken =
(XCa=o(s51)(@))ren T1 = s2.
(34) (O-h_yIs1](@))ken is non-decreasing.
Let s1 be a complex sequence. Note that (>~ |s1](c))xen is non-decreasing.
Next we state three propositions:

(35) If for every m such that n < m holds sa(n) = s3(n), then
(>a=o(s2)(@))ren(m) = (-6-0(s3)(@))wen(m).

(36) If 1¢ # z, then for every n holds (3°5_ ((2%)ken)(@))ren(n) = 1@—z§}:1

(37) If z # 1¢ and for every n holds s;(n+ 1) = z - s1(n), then for every n

holds (3_5_o(s1)(a))ren(n) = 51(0) - 1C1f_§: :

=z (22:0(51)(0));@@-
)| < (EZ:O Is1|(c))ren(k)-
|
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3. CONVERGENCE OF COMPLEX SEQUENCES

Next we state four propositions:

(38) Let a, b be sequences of real numbers and ¢ be a complex sequence.
Suppose that for every n holds R(c(n)) = a(n) and I(c(n)) = b(n). Then
a is convergent and b is convergent if and only if ¢ is convergent.

(39) Let a, b be convergent sequences of real numbers and ¢ be a complex
sequence. Suppose that for every n holds R(c(n)) = a(n) and S(c(n)) =
b(n). Then c is convergent and lim ¢ = lim a + lim bi.

(40) Let a, b be sequences of real numbers and ¢ be a convergent complex
sequence. Suppose that for every n holds R(c(n)) = a(n) and I(c(n)) =
b(n). Then a is convergent and b is convergent and lima = R(limc) and
limb = (limc).

(41) For every convergent complex sequence ¢ holds R(c) is convergent and
() is convergent and lim R(c) = R(lim ¢) and lim F(c) = F(lim ¢).

Let ¢ be a convergent complex sequence. Observe that R(c) is convergent
and (c) is convergent.
The following propositions are true:

(42) Let ¢ be a complex sequence. Suppose R(c) is convergent and J(c) is
convergent. Then c is convergent and R(lim ¢) = lim %(c) and F(limc) =
lim (c).
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(43) If 0 < |z| and |z] < 1 and s1(0) = z and for every n holds s1(n + 1) =
s1(n) - z, then s; is convergent and lim s; = Oc.

(44) 1If |2| < 1 and for every n holds s1(n) = 2™, then s; is convergent and
lim s; = Oc¢.

(45) If r > 0 and there exists m such that for every n such that n > m holds
|si(n)| = r, then |s1| is not convergent or lim |s;| # 0.

(46) s1 is convergent iff for every p such that 0 < p there exists n such that
for every m such that n < m holds |s1(m) — s1(n)| < p.

(47) Suppose s is convergent. Let given p. Suppose 0 < p. Then there exists
n such that for all natural numbers m, [ such that n < m and n <[ holds
[s1(m) = s1(1)] < p.

(48) If for every n holds |si(n)| < r1(n) and 7 is convergent and limr; = 0,
then s1 is convergent and lim s; = Oc.

4. SUMMABLE AND ABSOLUTELY SUMMABLE COMPLEX SEQUENCES

Let s1, s3 be complex sequences. We say that s; is a subsequence of so if
and only if:
(Def. 9) There exists N7 such that s; = sg Ny.
Next we state three propositions:
(49) 1If s; is a subsequence of sg, then R(s1) is a subsequence of £(s2) and
S(s1) is a subsequence of (s2).
(50) If s1 is a subsequence of sy and sg is a subsequence of s3, then s; is a
subsequence of s3.
(51) If s; is bounded, then there exists so which is a subsequence of s; and
convergent.
Let s1 be a complex sequence. We say that s; is summable if and only if:
(Def. 10)  (3-n_o(s1)())ken is convergent.
Let us observe that there exists a complex sequence which is summable.
Let s; be a summable complex sequence. Observe that (3 5 _(s1)(@))xen is
convergent.
Let us consider s;. We say that s; is absolutely summable if and only if:
(Def. 11) |s1] is summable.
One can prove the following proposition
(52) If for every n holds s;(n) = Oc, then s; is absolutely summable.
Let us observe that there exists a complex sequence which is absolutely
summable.
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Let s1 be an absolutely summable complex sequence. Observe that |s1] is
summable.
The following proposition is true
(53) If s is summable, then s; is convergent and lim s; = Oc.
One can verify that every complex sequence which is summable is also co-
nvergent.
We now state the proposition

(54) If s; is summable, then R(s1) is summable and J(s1) is summable and
Z S1 = Z %(81) + Z %(31)7;.
Let s1 be a summable complex sequence. One can verify that R(sq) is sum-
mable and (s1) is summable.
We now state two propositions:

(55) If so is summable and s is summable, then sy + s3 is summable and
d.(s2+s3) =) 52+ ss.
(56) If so is summable and s3 is summable, then sy — s3 is summable and
2(82 - 53) = ZSQ — 253.
Let s9, s3 be summable complex sequences. One can check that so + s3 is
summable and sy — s3 is summable.
The following proposition is true
(57) 1If s; is summable, then z s; is summable and > (zs1) = 2 - Y 1.
Let z be an element of C and let s; be a summable complex sequence. One
can check that z s; is summable.
The following two propositions are true:
(58) If R(s1) is summable and (s1) is summable, then s; is summable and
>os51=2_R(s1) + 2 S(s1)i.
(59) If s is summable, then for every n holds s; T n is summable.
Let s; be a summable complex sequence and let n be a natural number.
Note that s1 T n is summable.
One can prove the following propositions:
(60) If there exists n such that s; T n is summable, then s; is summable.
(61) If 51 is summable, then for every n holds > s1 = (3 _(s1)(@))ken(n)+
> (s1T(n+1)).

(62)  (>on_ols1](@))ken is upper bounded iff s1 is absolutely summable.

Let s; be an absolutely summable complex sequence. One can check that
(> on_ols1](a))ken is upper bounded.
One can prove the following two propositions:
(63) s1 is summable iff for every p such that 0 < p there exists n such
that for every m such that n < m holds (3 5_q(s1)(®))ken(m) —

(>a=o(s1)(@))ren(n)| < p.
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(64) If s; is absolutely summable, then s; is summable.

One can check that every complex sequence which is absolutely summable
is also summable.

Let us note that there exists a complex sequence which is absolutely sum-
mable.

The following propositions are true:

(65) If |z| <1, then (2%).ey is summable and 37 ((2%)xen) = &

lg—z"

(66) If |z| < 1 and for every n holds s1(n+1) = z-s1(n), then s; is summable
_ 51(0)

and > s = fé—_z.

(67) If ro is summable and there exists m such that for every n such that
m < n holds |s3(n)| < r2(n), then s3 is absolutely summable.

(68) Suppose for every n holds 0 < [s2|(n) and |s2|(n) < |s3|(n) and s3
is absolutely summable. Then sg is absolutely summable and > [s2| <
2 ssl-

(69) If for every n holds |s1|(n) > 0 and there exists m such that for every n

such that n > m holds % > 1, then s; is not absolutely summable.

(70) If for every n holds ra(n) = {/|s1|(n) and ra is convergent and limry < 1,
then s is absolutely summable.

(71) If for every n holds ro(n) = {/|s1]|(n) and there exists m such that for
every n such that m < n holds ra(n) > 1, then |s1] is not summable.

(72) 1If for every n holds ro(n) = {/|s1|(n) and rq is convergent and limry > 1,
then s; is not absolutely summable.

(73) Suppose [s1| is non-increasing and for every n holds ra(n) = 2™ - |s|(the
n-th power of 2). Then s; is absolutely summable if and only if ry is
summable.

(74) 1If p > 1 and for every n such that n > 1 holds |s1|(n) = -, then s; is

absolutely summable.

(75) 1If p < 1 and for every n such that n > 1 holds |s1|(n) = -5, then s; is
not absolutely summable.

(76) If for every n holds s1(n) # Oc and ra2(n) = lsllsll('#:)l) and ry is convergent
and limry < 1, then s; is absolutely summable.

(77) 1If for every n holds s1(n) # Oc and there exists m such that for every n

such that n > m holds Isllsll(lrz:)l) > 1, then s1 is not absolutely summable.
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