Algebraic Operation on Subsets of Many Sorted Sets

Agnieszka Julia Marasik Warsaw University Białystok

MML Identifier: CLOSURE3.

The terminology and notation used in this paper are introduced in the following papers: [14], [17], [13], [12], [18], [3], [4], [1], [6], [5], [15], [16], [2], [11], [9], [7], [8], and [10].

1. Preliminaries

Let S be a non empty 1-sorted structure. One can verify that the 1-sorted structure of S is non empty.

We now state three propositions:

- (1) For every non empty set I and for all many sorted sets M, N indexed by I holds M+N=N.
- (2) Let I be a set, M, N be many sorted sets indexed by I, and F be a family of many sorted subsets indexed by M. If $N \in F$, then $\bigcap |:F:| \subseteq N$.
- (3) Let S be a non void non empty many sorted signature, M_1 be a strict non-empty algebra over S, and F be a family of many sorted subsets indexed by the sorts of M_1 . Suppose $F \subseteq \text{SubSorts}(M_1)$. Let B be a subset of M_1 . If $B = \bigcap |:F:|$, then B is operations closed.

2. Relationships between Subsets Families

Let I be a set, let M be a many sorted set indexed by I, let B be a family of many sorted subsets indexed by M, and let A be a family of many sorted subsets indexed by M. We say that A is finer than B if and only if:

(Def. 1) For every set a such that $a \in A$ there exists a set b such that $b \in B$ and $a \subseteq b$.

Let us observe that the predicate A is finer than B is reflexive. We say that B is coarser than A if and only if:

(Def. 2) For every set b such that $b \in B$ there exists a set a such that $a \in A$ and $a \subseteq b$.

Let us notice that the predicate B is coarser than A is reflexive.

We now state two propositions:

- (4) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B*, *C* be families of many sorted subsets indexed by *M*. If *A* is finer than *B* and *B* is finer than *C*, then *A* is finer than *C*.
- (5) Let I be a set, M be a many sorted set indexed by I, and A, B, C be families of many sorted subsets indexed by M. If A is coarser than B and B is coarser than C, then A is coarser than C.

Let I be a non empty set and let M be a many sorted set indexed by I. The functor supp(M) yielding a set is defined by:

(Def. 3) $\operatorname{supp}(M) = \{x, x \text{ ranges over elements of } I \colon M(x) \neq \emptyset\}.$

We now state four propositions:

- (6) For every non empty set I and for every non-empty many sorted set M indexed by I holds $M = \emptyset_I + M \upharpoonright \operatorname{supp}(M)$.
- (7) Let I be a non empty set and M_2 , M_3 be non-empty many sorted sets indexed by I. If $\operatorname{supp}(M_2) = \operatorname{supp}(M_3)$ and $M_2 \upharpoonright \operatorname{supp}(M_2) = M_3 \upharpoonright \operatorname{supp}(M_3)$, then $M_2 = M_3$.
- (8) Let I be a non empty set, M be a many sorted set indexed by I, and x be an element of I. If $x \notin \text{supp}(M)$, then $M(x) = \emptyset$.
- (9) Let I be a non empty set, M be a many sorted set indexed by I, x be an element of Bool(M), i be an element of I, and y be a set. Suppose $y \in x(i)$. Then there exists an element a of Bool(M) such that $y \in a(i)$ and a is locally-finite and supp(a) is finite and $a \subseteq x$.

Let I be a set, let M be a many sorted set indexed by I, and let A be a family of many sorted subsets indexed by M. The functor $\mathrm{MSUnion}(A)$ yielding a many sorted subset indexed by M is defined by:

(Def. 4) For every set i such that $i \in I$ holds $(MSUnion(A))(i) = \bigcup \{f(i), f \text{ ranges over elements of Bool}(M): <math>f \in A\}$.

Let I be a set, let M be a many sorted set indexed by I, and let B be a non empty family of many sorted subsets indexed by M. We see that the element of B is a many sorted set indexed by I.

Let I be a set, let M be a many sorted set indexed by I, and let A be an empty family of many sorted subsets indexed by M. One can check that MSUnion(A) is empty yielding.

We now state the proposition

(10) Let I be a set, M be a many sorted set indexed by I, and A be a family of many sorted subsets indexed by M. Then $MSUnion(A) = \bigcup |A| \cdot A$.

Let I be a set, let M be a many sorted set indexed by I, and let A, B be families of many sorted subsets indexed by M. Then $A \cup B$ is a family of many sorted subsets indexed by M.

The following propositions are true:

- (11) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. Then $\mathrm{MSUnion}(A \cup B) = \mathrm{MSUnion}(A) \cup \mathrm{MSUnion}(B)$.
- (12) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. If $A \subseteq B$, then $\mathrm{MSUnion}(A) \subseteq \mathrm{MSUnion}(B)$.

Let I be a set, let M be a many sorted set indexed by I, and let A, B be families of many sorted subsets indexed by M. Then $A \cap B$ is a family of many sorted subsets indexed by M.

One can prove the following propositions:

- (13) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. Then $\mathrm{MSUnion}(A \cap B) \subseteq \mathrm{MSUnion}(A) \cap \mathrm{MSUnion}(B)$.
- (14) Let I be a set, M be a many sorted set indexed by I, and A_1 be a set. Suppose that for every set x such that $x \in A_1$ holds x is a family of many sorted subsets indexed by M. Let A, B be families of many sorted subsets indexed by M. Suppose $B = \{MSUnion(X), X \text{ ranges over families of many sorted subsets indexed by <math>M: X \in A_1\}$ and $A = \bigcup A_1$. Then MSUnion(B) = MSUnion(A).
- (15) Let I be a non empty set, M, N be many sorted sets indexed by I, and A be a family of many sorted subsets indexed by M. If for every many sorted set x indexed by I holds $x \subseteq N$, then $\mathrm{MSUnion}(A) \subseteq N$.

3. Algebraic Operation on Subsets of Many Sorted Sets

Let I be a non empty set, let M be a many sorted set indexed by I, and let S be a set operation in M. We say that S is algebraic if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let x be an element of Bool(M). Suppose x = S(x). Then there exists a family A of many sorted subsets indexed by M such that $A = \{S(a), a \text{ ranges over elements of } Bool(M) : a \text{ is locally-finite } \land \text{ supp}(a) \text{ is finite } \land a \subseteq x\}$ and x = MSUnion(A).

Let I be a non empty set and let M be a many sorted set indexed by I. Note that there exists a set operation in M which is algebraic, reflexive, monotonic, and idempotent.

Let S be a non empty 1-sorted structure and let I_1 be a closure system of S. We say that I_1 is algebraic if and only if:

(Def. 6) $ClOp(I_1)$ is algebraic.

Let S be a non-void non-empty many sorted signature and let M_1 be a non-empty algebra over S. The functor SubAlgCl(M_1) yields a strict closure system structure over S and is defined by:

(Def. 7) The sorts of SubAlgCl(M_1) = the sorts of M_1 and the family of SubAlgCl(M_1) = SubSorts(M_1).

One can prove the following proposition

(16) Let S be a non void non empty many sorted signature and M_1 be a strict non-empty algebra over S. Then SubSorts (M_1) is an absolutely-multiplicative family of many sorted subsets indexed by the sorts of M_1 .

Let S be a non void non empty many sorted signature and let M_1 be a strict non-empty algebra over S. Note that SubAlgCl(M_1) is absolutely-multiplicative.

Let S be a non void non empty many sorted signature and let M_1 be a strict non-empty algebra over S. Observe that SubAlgCl(M_1) is algebraic.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [7] Artur Korniłowicz. Certain facts about families of subsets of many sorted sets. Formalized Mathematics, 5(3):451–456, 1996.

- [8] Artur Korniłowicz. Definitions and basic properties of boolean & union of many sorted sets. Formalized Mathematics, 5(2):279–281, 1996.
- [9] Artur Korniłowicz. On the closure operator and the closure system of many sorted sets. Formalized Mathematics, 5(4):543–551, 1996.
- [10] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [11] Andrzej Nedzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [13] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990
- [15] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [16] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [17] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 23, 1997