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Summary. In this article Birkhoff Variety Theorem for many sorted alge-
bras is proved. A class of algebras is represented by predicate P. Notation P[A],
where A is an algebra, means that A is in class P. All algebras in our class are
many sorted over many sorted signature S. The properties of varieties:

• a class P of algebras is abstract
• a class P of algebras is closed under subalgebras
• a class P of algebras is closed under congruences
• a class P of algebras is closed under products

are published in this paper as:

• for all non-empty algebras A, B over S such that A and B are isomorphic
and P[A] holds P[B]
• for every non-empty algebra A over S and for strict non-empty subalgebra

B of A such that P[A] holds P[B]
• for every non-empty algebra A over S and for every congruence R of A

such that P[A] holds P[A/R]
• Let I be a set and F be an algebra family of I over A. Suppose that for
every set i such that i ∈ I there exists an algebra A over A such that
A = F (i) and P[A]. ThenP[

∏
F ].

This paper is formalization of parts of [29].

MML Identifier: BIRKHOFF.

The notation and terminology used in this paper have been introduced in the

following articles: [24], [28], [20], [5], [30], [25], [3], [4], [22], [31], [1], [23], [26],

[15], [27], [2], [6], [13], [10], [21], [18], [16], [19], [14], [11], [8], [7], [9], [17], and

[12].

Let S be a non empty non void many sorted signature, let X be a non-empty

many sorted set indexed by the carrier of S, let A be a non-empty algebra over

S, and let F be a many sorted function from X into the sorts of A. The functor

F# yielding a many sorted function from Free(X) into A is defined by:
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(Def. 1) F# is a homomorphism of Free(X) into A and F# ↾ FreeGenerator(X) =

F ◦ Reverse(X).

We now state the proposition

(1) Let S be a non empty non void many sorted signature, A be a non-empty

algebra over S, X be a non-empty many sorted set indexed by the carrier

of S, and F be a many sorted function from X into the sorts of A. Then

rng
κ
F (κ) ⊆ rng

κ
F#(κ).

In this article we present several logical schemes. The scheme ExFreeAlg 1

concerns a non empty non void many sorted signature A, a non-empty algebra

B over A, and a unary predicate P, and states that:

There exists a strict non-empty algebra A over A and there exists

a many sorted function F from B into A such that

(i) P[A],

(ii) F is an epimorphism of B onto A, and

(iii) for every non-empty algebra B over A and for every many

sorted function G from B into B such that G is a homomorphism

of B into B and P[B] there exists a many sorted function H

from A into B such that H is a homomorphism of A into B and

H ◦ F = G and for every many sorted function K from A into B

such that K ◦ F = G holds H = K

provided the following conditions are met:

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B], and

• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over

A such that A = F (i) and P[A]. Then P[
∏

F ].

The scheme ExFreeAlg 2 concerns a non empty non void many sorted signa-

ture A, a non-empty many sorted set B indexed by the carrier of A, and a unary

predicate P, and states that:

There exists a strict non-empty algebra A over A and there exists

a many sorted function F from B into the sorts of A such that

(i) P[A], and

(ii) for every non-empty algebra B over A and for every many

sorted function G from B into the sorts of B such that P[B] there

exists a many sorted function H from A into B such that H is a

homomorphism of A into B and H ◦ F = G and for every many

sorted function K from A into B such that K is a homomorphism

of A into B and K ◦ F = G holds H = K

provided the following requirements are met:
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• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B], and

• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over

A such that A = F (i) and P[A]. Then P[
∏

F ].

The scheme Ex hash concerns a non empty non void many sorted signature

A, non-empty algebras B, C over A, a many sorted function D from the carrier

of A 7−→ N into the sorts of B, a many sorted function E from the carrier of

A 7−→ N into the sorts of C, and a unary predicate P, and states that:

There exists a many sorted function H from B into C such that

H is a homomorphism of B into C and E# = H ◦ D#

provided the parameters have the following properties:

• P[C], and

• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose

P[C]. Then there exists a many sorted function h from B into C

such that h is a homomorphism of B into C and G = h ◦ D.

The scheme EqTerms concerns a non empty non void many sorted signature

A, a non-empty algebra B over A, a many sorted function C from the carrier of

A 7−→ N into the sorts of B, a sort symbol D of A, elements E , F of the sorts

of TA(N)(D), and a unary predicate P, and states that:

For every non-empty algebra B over A such that P[B] holds B |=

〈〈E , F〉〉

provided the parameters have the following properties:

• C#(D)(E) = C#(D)(F), and

• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose

P[C]. Then there exists a many sorted function h from B into C

such that h is a homomorphism of B into C and G = h ◦ C.

The scheme FreeIsGen deals with a non empty non void many sorted signa-

ture A, a non-empty many sorted set B indexed by the carrier of A, a strict

non-empty algebra C over A, a many sorted function D from B into the sorts of

C, and a unary predicate P, and states that:

D ◦ B is a non-empty generator set of C

provided the parameters satisfy the following conditions:

• Let C be a non-empty algebra over A and G be a many sorted

function from B into the sorts of C. Suppose P[C]. Then there

exists a many sorted function H from C into C such that

(i) H is a homomorphism of C into C,

(ii) H ◦ D = G, and
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(iii) for every many sorted function K from C into C such that

K is a homomorphism of C into C and K ◦ D = G holds H = K,

• P[C], and

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B].

The scheme Hash is onto deals with a non empty non void many sorted

signature A, a strict non-empty algebra B over A, a many sorted function C

from the carrier of A 7−→ N into the sorts of B, and a unary predicate P, and

states that:

C# is an epimorphism of Free((the carrier of A) 7−→ N) onto B

provided the following conditions are satisfied:

• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose

P[C]. Then there exists a many sorted function H from B into C

such that

(i) H is a homomorphism of B into C,

(ii) H ◦ C = G, and

(iii) for every many sorted function K from B into C such that

K is a homomorphism of B into C and K ◦ C = G holds H = K,

• P[B], and

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B].

The scheme FinGenAlgInVar concerns a non empty non void many sorted

signature A, a strict finitely-generated non-empty algebra B over A, a non-

empty algebra C over A, a many sorted function D from the carrier of A 7−→ N

into the sorts of C, and two unary predicates P, Q, and states that:

P[B]

provided the parameters satisfy the following conditions:

• Q[B],

• P[C],

• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose

Q[C]. Then there exists a many sorted function h from C into C

such that h is a homomorphism of C into C and G = h ◦ D,

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B], and

• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R].

The scheme QuotEpi concerns a non empty non void many sorted signature

A, non-empty algebras B, C over A, and a unary predicate P, and states that:

P[C]

provided the following conditions are satisfied:
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• There exists a many sorted function from B into C which is an

epimorphism of B onto C,

• P[B],

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B], and

• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R].

The scheme AllFinGen deals with a non empty non void many sorted si-

gnature A, a non-empty algebra B over A, and a unary predicate P, and states

that:

P[B]

provided the parameters satisfy the following conditions:

• For every strict non-empty finitely-generated subalgebra B of B

holds P[B],

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B],

• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R], and

• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over

A such that A = F (i) and P[A]. Then P[
∏

F ].

The scheme FreeInModIsInVar 1 deals with a non empty non void many

sorted signature A, a non-empty algebra B over A, and two unary predicates

P, Q, and states that:

Q[B]

provided the following requirements are met:

• Let A be a non-empty algebra over A. Then Q[A] if and only

if for every sort symbol s of A and for every element e of (the

equations of A)(s) such that for every non-empty algebra B over

A such that P[B] holds B |= e holds A |= e, and

• P[B].

The scheme FreeInModIsInVar deals with a non empty non void many sorted

signature A, a strict non-empty algebra B over A, a many sorted function C from

the carrier of A 7−→ N into the sorts of B, and two unary predicates P, Q, and

states that:

P[B]

provided the parameters meet the following conditions:

• Let A be a non-empty algebra over A. Then Q[A] if and only

if for every sort symbol s of A and for every element e of (the
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equations of A)(s) such that for every non-empty algebra B over

A such that P[B] holds B |= e holds A |= e,

• Let C be a non-empty algebra over A and G be a many sorted

function from (the carrier ofA) 7−→ N into the sorts of C. Suppose

Q[C]. Then there exists a many sorted function H from B into C

such that

(i) H is a homomorphism of B into C,

(ii) H ◦ C = G, and

(iii) for every many sorted function K from B into C such that

K is a homomorphism of B into C and K ◦ C = G holds H = K,

• Q[B],

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B], and

• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over

A such that A = F (i) and P[A]. Then P[
∏

F ].

The scheme Birkhoff deals with a non empty non void many sorted signature

A and a unary predicate P, and states that:

There exists a set E of equations of A such that for every non-

empty algebra A over A holds P[A] iff A |= E

provided the parameters meet the following conditions:

• For all non-empty algebras A, B over A such that A and B are

isomorphic and P[A] holds P[B],

• For every non-empty algebra A over A and for every strict non-

empty subalgebra B of A such that P[A] holds P[B],

• For every non-empty algebra A over A and for every congruence

R of A such that P[A] holds P[A/R], and

• Let I be a set and F be an algebra family of I over A. Suppose

that for every set i such that i ∈ I there exists an algebra A over

A such that A = F (i) and P[A]. Then P[
∏

F ].
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