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Summary. In the article concepts and facts necessary to continue forma-
lization of theory of continuous lattices according to [10] are introduced.
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The notation and terminology used here are introduced in the following papers:
[17], [22], [21], [23], [7], [13], [2], [1], [3], [5], [9], [19], [16], [14], [24], [11], [12],
[15], [6], [18], [20], [8], and [4].

1. Preliminaries

One can prove the following propositions:

(1) For all sets X, A, B such that A ∈ FinX and B ⊆ A holds B ∈ FinX.

(2) For every set X and for every family F of subsets of X such that F ⊆
FinX holds

⋂
F ∈ FinX.

Let X be a non empty set. Let us observe that X is trivial if and only if:

(Def. 1) For all elements x, y of X holds x = y.

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-
1336.
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2. Families of complements

We now state a number of propositions:

(3) For every set X and for every family F of subsets of X and for every
subset P of X holds P c ∈ F c iff P ∈ F.

(4) For every set X and for every family F of subsets of X holds F ≈ F c.

(5) For all sets X, Y such that X ≈ Y and X is countable holds Y is
countable.

(6) For every set X and for every family F of subsets of X holds (F c)c = F.

(7) For every set X and for every family F of subsets of X and for every
subset P of X holds P c ∈ F c iff P ∈ F.

(8) For every set X and for all families F , G of subsets of X such that
F c ⊆ Gc holds F ⊆ G.

(9) For every set X and for all families F , G of subsets of X holds F c ⊆ G

iff F ⊆ Gc.

(10) For every set X and for all families F , G of subsets of X such that
F c = Gc holds F = G.

(11) For every set X and for all families F , G of subsets of X holds (F ∪G)c =
F c ∪Gc.

(12) For every set X and for every family F of subsets of X such that F =
{X} holds F c = {∅}.

Let X be a set and let F be an empty family of subsets of X. Observe that
F c is empty.
The following propositions are true:

(13) Let X be a 1-sorted structure, F be a family of subsets of X, and P be
a subset of the carrier of X. Then P ∈ F c if and only if −P ∈ F.

(14) Let X be a 1-sorted structure, F be a family of subsets of X, and P be
a subset of the carrier of X. Then −P ∈ F c if and only if P ∈ F.

(15) For every 1-sorted structure X and for every family F of subsets of X
holds Intersect(F c) = −

⋃
F.

(16) For every 1-sorted structure X and for every family F of subsets of X
holds

⋃
(F c) = −Intersect(F ).

3. Topological preliminaries

One can prove the following four propositions:

(17) Let T be a non empty topological space and A, B be subsets of the
carrier of T . Suppose B ⊆ A and A is closed and for every subset C of the
carrier of T such that B ⊆ C and C is closed holds A ⊆ C. Then A = B.
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(18) Let T be a topological structure, B be a basis of T , and V be a subset of
T . If V is open, then V =

⋃
{G,G ranges over subsets of T : G ∈ B ∧ G ⊆

V }.

(19) Let T be a topological structure, B be a basis of T , and S be a subset
of T . If S ∈ B, then S is open.

(20) Let T be a non empty topological space, B be a basis of T , and V be a
subset of T . Then IntV =

⋃
{G,G ranges over subsets of T : G ∈ B ∧ G ⊆

V }.

4. Baire Spaces

Let T be a non empty topological structure and let x be a point of T . A
family of subsets of T is called a basis of x if it satisfies the conditions (Def. 2).

(Def. 2)(i) It ⊆ the topology of T ,
(ii) x ∈ Intersect(it), and
(iii) for every subset S of T such that S is open and x ∈ S there exists a
subset V of T such that V ∈ it and V ⊆ S.

Next we state three propositions:

(21) Let T be a non empty topological structure, x be a point of T , B be a
basis of x, and V be a subset of T . If V ∈ B, then V is open and x ∈ V.

(22) Let T be a non empty topological structure, x be a point of T , B be a
basis of x, and V be a subset of the carrier of T . If x ∈ V and V is open,
then there exists a subset W of T such that W ∈ B and W ⊆ V.

(23) Let T be a non empty topological structure and P be a family of subsets
of T . Suppose P ⊆ the topology of T and for every point x of T there
exists a basis B of x such that B ⊆ P. Then P is a basis of T .

Let T be a non empty topological space. We say that T is Baire if and only
if the condition (Def. 3) is satisfied.

(Def. 3) Let F be a family of subsets of T . Suppose F is countable and for
every subset S of T such that S ∈ F holds S is everywhere dense. Then
Intersect(F ) is dense.

We now state the proposition

(24) Let T be a non empty topological space. Then T is Baire if and only if
for every family F of subsets of T such that F is countable and for every
subset S of T such that S ∈ F holds S is nowhere dense holds

⋃
F is

boundary.

5. Sober Spaces

Let T be a topological structure and let S be a subset of T . We say that S

is irreducible if and only if the conditions (Def. 4) are satisfied.



292 andrzej trybulec

(Def. 4)(i) S is non empty and closed, and
(ii) for all subsets S1, S2 of T such that S1 is closed and S2 is closed and

S = S1 ∪ S2 holds S1 = S or S2 = S.

Let T be a topological structure. Observe that every subset of T which is
irreducible is also non empty.
Let T be a non empty topological space, let S be a subset of the carrier of

T , and let p be a point of T . We say that p is dense point of S if and only if:

(Def. 5) p ∈ S and S ⊆ {p}.

We now state two propositions:

(25) Let T be a non empty topological space and S be a subset of the carrier
of T . Suppose S is closed. Let p be a point of T . If p is dense point of S,
then S = {p}.

(26) For every non empty topological space T and for every point p of T holds

{p} is irreducible.

Let T be a non empty topological space. Observe that there exists a subset
of T which is irreducible.
Let T be a non empty topological space. We say that T is sober if and only

if the condition (Def. 6) is satisfied.

(Def. 6) Let S be an irreducible subset of T . Then there exists a point p of T

such that p is dense point of S and for every point q of T such that q is
dense point of S holds p = q.

We now state four propositions:

(27) For every non empty topological space T and for every point p of T holds

p is dense point of {p}.

(28) For every non empty topological space T and for every point p of T holds
p is dense point of {p}.

(29) Let T be a non empty topological space and G, F be subsets of T . If G
is open and F is closed, then F \G is closed.

(30) For every Hausdorff non empty topological space T holds every irredu-
cible subset of T is trivial.

Let T be a Hausdorff non empty topological space. Observe that every subset
of T which is irreducible is also trivial.
We now state the proposition

(31) Every Hausdorff non empty topological space is sober.

Let us note that every non empty topological space which is Hausdorff is
also sober.
One can verify that there exists a non empty topological space which is

sober.
The following two propositions are true:

(32) Let T be a non empty topological space. Then T is T0 if and only if for

all points p, q of T such that {p} = {q} holds p = q.

(33) Every sober non empty topological space is T0.
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Let us note that every non empty topological space which is sober is also
T0.
Let X be a set. The functor CofinTopX yields a strict topological structure

and is defined as follows:

(Def. 7) The carrier of CofinTopX = X and (the topology of CofinTopX)c =
{X} ∪ FinX.

Let X be a non empty set. Note that CofinTopX is non empty.
Let X be a set. Note that CofinTopX is topological space-like.
Next we state two propositions:

(34) For every non empty set X and for every subset P of CofinTopX holds
P is closed iff P = X or P is finite.

(35) For every non empty topological space T such that T is a T1 space and

for every point p of T holds {p} = {p}.

Let X be a non empty set. Note that CofinTopX is a T1 space.
Let X be an infinite set. One can check that CofinTopX is non sober.
Let us observe that there exists a non empty topological space which is a T1

space and non sober.

6. More on regular spaces

One can prove the following two propositions:

(36) Let T be a non empty topological space. Then T is a T3 space if and
only if for every point p of T and for every subset P of the carrier of T
such that p ∈ IntP there exists a subset Q of T such that Q is closed and
Q ⊆ P and p ∈ IntQ.

(37) Let T be a non empty topological space. Suppose T is a T3 space. Then
T is locally-compact if and only if for every point x of T there exists a
subset Y of T such that x ∈ IntY and Y is compact.
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