Miscellaneous Facts about Relation Structure ${ }^{1}$

Agnieszka Julia Marasik
Warsaw University
Białystok

Summary. In the article notation and facts necessary to start with formalization of continuous lattices according to [5] are introduced.

MML Identifier: YELLOW_5.

The papers [1], [3], [4], [2], [6], and [7] provide the terminology and notation for this paper.

1. Introduction

One can prove the following propositions:
(1) For every reflexive antisymmetric relational structure L with l.u.b.'s and for every element a of L holds $a \sqcup a=a$.
(2) For every reflexive antisymmetric relational structure L with g.l.b.'s and for every element a of L holds $a \sqcap a=a$.
(3) Let L be a transitive antisymmetric relational structure with l.u.b.'s and a, b, c be elements of L. If $a \sqcup b \leqslant c$, then $a \leqslant c$.
(4) Let L be a transitive antisymmetric relational structure with g.l.b.'s and a, b, c be elements of L. If $c \leqslant a \sqcap b$, then $c \leqslant a$.
(5) Let L be an antisymmetric transitive relational structure with l.u.b.'s and g.l.b.'s and a, b, c be elements of L. Then $a \sqcap b \leqslant a \sqcup c$.

[^0](6) Let L be an antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If $a \leqslant b$, then $a \sqcap c \leqslant b \sqcap c$.
(7) Let L be an antisymmetric transitive relational structure with l.u.b.'s and a, b, c be elements of L. If $a \leqslant b$, then $a \sqcup c \leqslant b \sqcup c$.
(8) For every sup-semilattice L and for all elements a, b of L such that $a \leqslant b$ holds $a \sqcup b=b$.
(9) For every sup-semilattice L and for all elements a, b, c of L such that $a \leqslant c$ and $b \leqslant c$ holds $a \sqcup b \leqslant c$.
(10) For every semilattice L and for all elements a, b of L such that $b \leqslant a$ holds $a \sqcap b=b$.

2. Difference in Relation Structure

We now state the proposition
(11) For every Boolean lattice L and for all elements x, y of L holds y is a complement of x iff $y=\neg x$.
Let L be a non empty relational structure and let a, b be elements of L. The functor $a \backslash b$ yielding an element of L is defined as follows:
(Def. 1) $a \backslash b=a \sqcap \neg b$.
Let L be a non empty relational structure and let a, b be elements of L. The functor $a \doteq b$ yields an element of L and is defined as follows:
(Def. 2) $\quad a \doteq b=(a \backslash b) \sqcup(b \backslash a)$.
Let L be an antisymmetric relational structure with g.l.b.'s and l.u.b.'s and let a, b be elements of L. Let us notice that the functor $a-b$ is commutative.

Let L be a non empty relational structure and let a, b be elements of L. We say that a meets b if and only if:
(Def. 3) $\quad a \sqcap b \neq \perp_{L}$.
We introduce a misses b as antonym of a meets b.
Let L be an antisymmetric relational structure with g.l.b.'s and let a, b be elements of L. Let us note that the predicate a meets b is symmetric. We introduce a misses b as antonym of a meets b.

Next we state a number of propositions:
(12) Let L be an antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b, c be elements of L. If $a \leqslant c$, then $a \backslash b \leqslant c$.
(13) Let L be an antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b, c be elements of L. If $a \leqslant b$, then $a \backslash c \leqslant b \backslash c$.
(14) Let L be an antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b be elements of L. Then $a \backslash b \leqslant a$.
(15) Let L be an antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b be elements of L. Then $a \backslash b \leqslant a \div b$.
(16) For every lattice L and for all elements a, b, c of L such that $a \backslash b \leqslant c$ and $b \backslash a \leqslant c$ holds $a \doteq b \leqslant c$.
(17) For every lattice L and for every element a of L holds a meets a iff $a \neq \perp_{L}$.
(18) Let L be an antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b, c be elements of L. Then $a \sqcap(b \backslash c)=a \sqcap b \backslash c$.
(19) Let L be an antisymmetric transitive relational structure with g.l.b.'s. Suppose L is distributive. Let a, b, c be elements of L. If $a \sqcap b \sqcup a \sqcap c=a$, then $a \leqslant b \sqcup c$.
(20) For every lattice L such that L is distributive and for all elements a, b, c of L holds $a \sqcup b \sqcap c=(a \sqcup b) \sqcap(a \sqcup c)$.
(21) For every lattice L such that L is distributive and for all elements a, b, c of L holds $(a \sqcup b) \backslash c=(a \backslash c) \sqcup(b \backslash c)$.

3. Lower-bound in Relation Structure

Next we state a number of propositions:
(22) Let L be a lower-bounded non empty antisymmetric relational structure and a be an element of L. If $a \leqslant \perp_{L}$, then $a=\perp_{L}$.
(23) Let L be a lower-bounded semilattice and a, b, c be elements of L. If $a \leqslant b$ and $a \leqslant c$ and $b \sqcap c=\perp_{L}$, then $a=\perp_{L}$.
(24) Let L be a lower-bounded antisymmetric relational structure with l.u.b.'s and a, b be elements of L. If $a \sqcup b=\perp_{L}$, then $a=\perp_{L}$ and $b=\perp_{L}$.
(25) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If $a \leqslant b$ and $b \sqcap c=\perp_{L}$, then $a \sqcap c=\perp_{L}$.
(26) For every lower-bounded semilattice L and for every element a of L holds $\perp_{L} \backslash a=\perp_{L}$.
(27) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If a meets b and $b \leqslant c$, then a meets c.
(28) Let L be a lower-bounded antisymmetric relational structure with g.l.b.'s and a be an element of L. Then $a \sqcap \perp_{L}=\perp_{L}$.
(29) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b, c be elements of L. If a meets $b \sqcap c$, then a meets b.
(30) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and l.u.b.'s and a, b, c be elements of L. If a meets $b \backslash c$, then a meets b.
(31) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a be an element of L. Then a misses \perp_{L}.
(32) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If a misses c and $b \leqslant c$, then a misses b.
(33) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If a misses b or a misses c, then a misses $b \sqcap c$.
(34) Let L be a lower-bounded lattice and a, b, c be elements of L. If $a \leqslant b$ and $a \leqslant c$ and b misses c, then $a=\perp_{L}$.
(35) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.'s and a, b, c be elements of L. If a misses b, then $a \sqcap c$ misses $b \sqcap c$.

4. Boolean Lattices

We adopt the following rules: L will denote a Boolean non empty relational structure and a, b, c, d will denote elements of L.

Next we state a number of propositions:
(36) $\quad a \sqcap b \sqcup b \sqcap c \sqcup c \sqcap a=(a \sqcup b) \sqcap(b \sqcup c) \sqcap(c \sqcup a)$.
(37) $a \sqcap \neg a=\perp_{L}$ and $a \sqcup \neg a=\top_{L}$.
(38) If $a \backslash b \leqslant c$, then $a \leqslant b \sqcup c$.
(39) $\neg(a \sqcup b)=\neg a \sqcap \neg b$ and $\neg(a \sqcap b)=\neg a \sqcup \neg b$.
(40) If $a \leqslant b$, then $\neg b \leqslant \neg a$.
(41) If $a \leqslant b$, then $c \backslash b \leqslant c \backslash a$.
(42) If $a \leqslant b$ and $c \leqslant d$, then $a \backslash d \leqslant b \backslash c$.
(43) If $a \leqslant b \sqcup c$, then $a \backslash b \leqslant c$ and $a \backslash c \leqslant b$.
(44) $\neg a \leqslant \neg(a \sqcap b)$ and $\neg b \leqslant \neg(a \sqcap b)$.
(45) $\neg(a \sqcup b) \leqslant \neg a$ and $\neg(a \sqcup b) \leqslant \neg b$.
(46) If $a \leqslant b \backslash a$, then $a=\perp_{L}$.
(47) If $a \leqslant b$, then $b=a \sqcup(b \backslash a)$.
(48) $a \backslash b=\perp_{L}$ iff $a \leqslant b$.
(49) If $a \leqslant b \sqcup c$ and $a \sqcap c=\perp_{L}$, then $a \leqslant b$.
(50) $a \sqcup b=(a \backslash b) \sqcup b$.
(51) $a \backslash(a \sqcup b)=\perp_{L}$.
(52) $\quad a \backslash a \sqcap b=a \backslash b$.
(53) $\quad(a \backslash b) \sqcap b=\perp_{L}$.
(54) $a \sqcup(b \backslash a)=a \sqcup b$.
(55) $a \sqcap b \sqcup(a \backslash b)=a$.
(56) $a \backslash(b \backslash c)=(a \backslash b) \sqcup a \sqcap c$.
(57) $\quad a \backslash(a \backslash b)=a \sqcap b$.
(58) $(a \sqcup b) \backslash b=a \backslash b$.
(59) $\quad a \sqcap b=\perp_{L}$ iff $a \backslash b=a$.
(60) $a \backslash(b \sqcup c)=(a \backslash b) \sqcap(a \backslash c)$.
(61) $a \backslash b \sqcap c=(a \backslash b) \sqcup(a \backslash c)$.
(62) $a \sqcap(b \backslash c)=a \sqcap b \backslash a \sqcap c$.
(63) $(a \sqcup b) \backslash a \sqcap b=(a \backslash b) \sqcup(b \backslash a)$.
(64) $a \backslash b \backslash c=a \backslash(b \sqcup c)$.
(65) $\neg\left(\perp_{L}\right)=\top_{L}$.
(66) $\neg\left(\top_{L}\right)=\perp_{L}$.
(67) $a \backslash a=\perp_{L}$.
(68) $a \backslash \perp_{L}=a$.
(69) $\neg(a \backslash b)=\neg a \sqcup b$.
(70) $a \sqcap b$ misses $a \backslash b$.
(71) $a \backslash b$ misses b.
(72) If a misses b, then $(a \sqcup b) \backslash b=a$.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
[4] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131-143, 1997.
[5] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[6] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145-152, 1997.
[7] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.

[^0]: ${ }^{1}$ This work was partially supported by the Office of Naval Research Grant N00014-95-11336.

