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The notation and terminology used in this paper are introduced in the following
papers: [19], [22], [11], [23], [24], [9], [10], [1], [4], [18], [15], [17], [20], [2], [21],
[3], [16], [13], [5], [6], [14], [25], [12], [8], and [7].

1. Preliminaries

In this article we present several logical schemes. The scheme SubrelstrEx
concerns a non empty relational structure A, a set B, and a unary predicate P,

and states that:
There exists a non empty full strict relational substructure S of
A such that for every element x of A holds x is an element of S
if and only if P[x]

provided the following conditions are met:
• P[B],
• B ∈ the carrier of A.

The scheme RelstrEq deals with non empty relational structures A, B, a
unary predicate P, and a binary predicate Q, and states that:

The relational structure of A = the relational structure of B
provided the following conditions are met:
• For every set x holds x is an element of A iff P[x],
• For every set x holds x is an element of B iff P[x],
• For all elements a, b of A holds a ¬ b iff Q[a, b],
• For all elements a, b of B holds a ¬ b iff Q[a, b].

1This work has been partially supported by the Office of Naval Research Grant N00014-95-
1-1336.
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The scheme SubrelstrEq1 deals with a non empty relational structure A,

non empty full relational substructures B, C of A, and a unary predicate P, and
states that:

The relational structure of B = the relational structure of C

provided the following conditions are satisfied:

• For every set x holds x is an element of B iff P[x],

• For every set x holds x is an element of C iff P[x].

The scheme SubrelstrEq2 concerns a non empty relational structure A, non
empty full relational substructures B, C of A, and a unary predicate P, and
states that:

The relational structure of B = the relational structure of C

provided the parameters have the following properties:

• For every element x of A holds x is an element of B iff P[x],

• For every element x of A holds x is an element of C iff P[x].

The following four propositions are true:

(1) For all binary relations R, Q holds R ⊆ Q iff R` ⊆ Q` and R` ⊆ Q iff
R ⊆ Q`.

(2) For every binary relation R and for every setX holds (R|2X)` = R`|2X.

(3) Let L, S be relational structures. Then
(i) S is a relational substructure of L iff Sop is a relational substructure of

Lop, and

(ii) Sop is a relational substructure of L iff S is a relational substructure of
Lop.

(4) Let L, S be relational structures. Then

(i) S is a full relational substructure of L iff Sop is a full relational sub-
structure of Lop, and

(ii) Sop is a full relational substructure of L iff S is a full relational sub-
structure of Lop.

Let L be a relational structure and let S be a full relational substructure of
L. Then Sop is a strict full relational substructure of Lop.

Let X be a set and let L be a non empty relational structure. Observe that
X 7−→ L is nonempty.

Let S be a relational structure and let T be a non empty reflexive relatio-
nal structure. One can verify that there exists a map from S into T which is
monotone.

Let L be a non empty relational structure. One can check that every map
from L into L which is projection is also monotone and idempotent.

Let S, T be non empty reflexive relational structures and let f be a monotone
map from S into T . One can verify that f◦ is monotone.

Let L be a 1-sorted structure. Note that idL is one-to-one.

Let L be a non empty reflexive relational structure. One can check that idL
is sups-preserving and infs-preserving.

The following proposition is true
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(5) Let L be a relational structure and S be a subset of L. Then idS is a
map from sub(S) into L and for every map f from sub(S) into L such
that f = idS holds f is monotone.

Let L be a non empty reflexive relational structure. Note that there exists
a map from L into L which is sups-preserving, infs-preserving, closure, kernel,
and one-to-one.
One can prove the following proposition

(6) Let L be a non empty reflexive relational structure, c be a closure map
from L into L, and x be an element of L. Then c(x) ­ x.

Let S, T be 1-sorted structures, let f be a function from the carrier of S

into the carrier of T , and let R be a 1-sorted structure. Let us assume that the
carrier of R ⊆ the carrier of S. The functor f↾R yields a map from R into T

and is defined by:

(Def. 1) f↾R = f↾the carrier of R.

One can prove the following propositions:

(7) Let S, T be relational structures, R be a relational substructure of S,
and f be a function from the carrier of S into the carrier of T . Then
f↾R = f↾the carrier of R and for every set x such that x ∈ the carrier of
R holds (f↾R)(x) = f(x).

(8) Let S, T be relational structures and f be a map from S into T . Suppose
f is one-to-one. Let R be a relational substructure of S. Then f↾R is one-
to-one.

Let S, T be non empty reflexive relational structures, let f be a monotone
map from S into T , and let R be a relational substructure of S. Note that f↾R

is monotone.
One can prove the following proposition

(9) Let S, T be non empty relational structures, R be a non empty relational
substructure of S, f be a map from S into T , and g be a map from T into
S. Suppose f is one-to-one and g = f−1. Then g↾ Im(f↾R) is a map from
Im(f↾R) into R and g↾ Im(f↾R) = (f↾R)−1.

2. The lattice of closure operators

Let S be a relational structure and let T be a non empty reflexive relational
structure. Note that MonMaps(S, T ) is non empty.
Next we state the proposition

(10) Let S be a relational structure, T be a non empty reflexive relational
structure, and x be a set. Then x is an element of MonMaps(S, T ) if and
only if x is a monotone map from S into T .

Let L be a non empty reflexive relational structure. The functor ClOpers(L)
yields a non empty full strict relational substructure of MonMaps(L,L) and is
defined by:
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(Def. 2) For every map f from L into L holds f is an element of ClOpers(L) iff
f is closure.

The following propositions are true:

(11) Let L be a non empty reflexive relational structure and x be a set. Then
x is an element of ClOpers(L) if and only if x is a closure map from L into
L.

(12) Let X be a set, L be a non empty relational structure, f , g be functions
from X into the carrier of L, and x, y be elements of LX . If x = f and
y = g, then x ¬ y iff f ¬ g.

(13) Let L be a complete lattice, c1, c2 be maps from L into L, and x, y be
elements of ClOpers(L). If x = c1 and y = c2, then x ¬ y iff c1 ¬ c2.

(14) Let L be a reflexive relational structure and S1, S2 be full relational
substructures of L. Suppose the carrier of S1 ⊆ the carrier of S2. Then S1

is a relational substructure of S2.

(15) Let L be a complete lattice and c1, c2 be closure maps from L into L.
Then c1 ¬ c2 if and only if Im c2 is a relational substructure of Im c1.

3. The lattice of closure systems

Let L be a relational structure. The functor Sub(L) yields a strict non empty
relational structure and is defined by the conditions (Def. 3).

(Def. 3)(i) For every set x holds x is an element of Sub(L) iff x is a strict relational
substructure of L, and

(ii) for all elements a, b of Sub(L) holds a ¬ b iff there exists a relational
structure R such that b = R and a is a relational substructure of R.

One can prove the following proposition

(16) Let L, R be relational structures and x, y be elements of Sub(L). Suppose
y = R. Then x ¬ y if and only if x is a relational substructure of R.

Let L be a relational structure. One can verify that Sub(L) is reflexive an-
tisymmetric and transitive.

Let L be a relational structure. Observe that Sub(L) is complete.

Let L be a complete lattice. Note that every relational substructure of L

which is infs-inheriting is also non empty and every relational substructure of L
which is sups-inheriting is also non empty.

Let L be a relational structure. A system of L is a full relational substructure
of L.

Let L be a non empty relational structure and let S be a system of L. We
introduce S is closure as a synonym of S is infs-inheriting.

Let L be a non empty relational structure. Observe that sub(ΩL) is infs-
inheriting and sups-inheriting.
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Let L be a non empty relational structure. The functor ClosureSystems(L)
yields a full strict non empty relational substructure of Sub(L) and is defined
by the condition (Def. 4).

(Def. 4) Let R be a strict relational substructure of L. Then R is an element of
ClosureSystems(L) if and only if R is infs-inheriting and full.

Next we state two propositions:

(17) Let L be a non empty relational structure and x be a set. Then x is an
element of ClosureSystems(L) if and only if x is a strict closure system of
L.

(18) Let L be a non empty relational structure, R be a relational structure,
and x, y be elements of ClosureSystems(L). Suppose y = R. Then x ¬ y

if and only if x is a relational substructure of R.

4. Isomorphism between closure operators and closure systems

Let L be a non empty poset and let h be a closure map from L into L. Note
that Imh is infs-inheriting.
Let L be a non empty poset. The functor ClImageMap(L) yields a map from

ClOpers(L) into (ClosureSystems(L))op and is defined as follows:

(Def. 5) For every closure map c from L into L holds (ClImageMap(L))(c) = Im c.

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. The closure operation of S is a map from L into L and is defined
by:

(Def. 6) For every element x of L holds (the closure operation of S)(x) = ⌈−⌉L(↑x∩
the carrier of S).

Let L be a complete lattice and let S be a closure system of L. One can
verify that the closure operation of S is closure.
Next we state two propositions:

(19) Let L be a complete lattice and S be a closure system of L. Then Im (the
closure operation of S) = the relational structure of S.

(20) For every complete lattice L and for every closure map c from L into L

holds the closure operation of Im c = c.

Let L be a complete lattice. One can check that ClImageMap(L) is one-to-
one.
One can prove the following propositions:

(21) For every complete lattice L holds (ClImageMap(L))−1 is a map from
(ClosureSystems(L))op into ClOpers(L).

(22) Let L be a complete lattice and S be a strict closure system of L. Then
(ClImageMap(L))−1(S) = the closure operation of S.

Let L be a complete lattice. One can verify that ClImageMap(L) is isomor-
phic.
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The following proposition is true

(23) For every complete lattice L holds ClOpers(L) and (ClosureSystems(L))op

are isomorphic.

5. Isomorphism between closure operators preserving directed

sups and subalgebras

We now state three propositions:

(24) Let L be a relational structure, S be a full relational substructure of L,
and X be a subset of S. Then
(i) if X is a directed subset of L, then X is directed, and
(ii) if X is a filtered subset of L, then X is filtered.

(25) Let L be a complete lattice and S be a closure system of L. Then the clo-
sure operation of S is directed-sups-preserving if and only if S is directed-
sups-inheriting.

(26) Let L be a complete lattice and h be a closure map from L into L. Then
h is directed-sups-preserving if and only if Imh is directed-sups-inheriting.

Let L be a complete lattice and let S be a directed-sups-inheriting closure
system of L. Observe that the closure operation of S is directed-sups-preserving.
Let L be a complete lattice and let h be a directed-sups-preserving closure

map from L into L. Observe that Imh is directed-sups-inheriting.
Let L be a non empty reflexive relational structure. The functor ClOpers∗(L)

yields a non empty full strict relational substructure of ClOpers(L) and is defined
by the condition (Def. 7).

(Def. 7) Let f be a closure map from L into L. Then f is an element of
ClOpers∗(L) if and only if f is directed-sups-preserving.

Next we state the proposition

(27) Let L be a non empty reflexive relational structure and x be a set. Then
x is an element of ClOpers∗(L) if and only if x is a directed-sups-preserving
closure map from L into L.

Let L be a non empty relational structure. The functor Subalgebras(L) yields
a full strict non empty relational substructure of ClosureSystems(L) and is de-
fined by the condition (Def. 8).

(Def. 8) Let R be a strict closure system of L. Then R is an element of
Subalgebras(L) if and only if R is directed-sups-inheriting.

The following two propositions are true:

(28) Let L be a non empty relational structure and x be a set. Then x is
an element of Subalgebras(L) if and only if x is a strict directed-sups-
inheriting closure system of L.

(29) For every complete lattice L holds Im(ClImageMap(L)↾ClOpers∗(L)) =
(Subalgebras(L))op.
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Let L be a complete lattice. Note that (ClImageMap(L)↾ClOpers∗(L))◦ is
isomorphic.
The following proposition is true

(30) For every complete lattice L holds ClOpers∗(L) and (Subalgebras(L))op

are isomorphic.
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