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1. Preliminaries

Let I be a set and let A, f be functions. The functor f↾IA yielding a many
sorted function indexed by I is defined by:

(Def. 1) For every set i such that i ∈ I holds (f↾IA)(i) = f↾A(i).

One can prove the following propositions:

(1) For every set I and for every many sorted set A indexed by I holds
idUnionA↾IA = idA.

(2) Let I be a set, A, B be many sorted sets indexed by I, and f , g be
functions. If rngκ(f↾IA)(κ) ⊆ B, then (g · f)↾IA = (g↾IB) ◦ (f↾IA).

(3) Let f be a function, I be a set, and A, B be many sorted sets indexed
by I. Suppose that for every set i such that i ∈ I holds A(i) ⊆ dom f and
f◦A(i) ⊆ B(i). Then f↾IA is a many sorted function from A into B.

(4) Let A be a set, i be a natural number, and p be a finite sequence. Then
p ∈ Ai if and only if len p = i and rng p ⊆ A.

(5) Let A be a set, i be a natural number, and p be a finite sequence of
elements of A. Then p ∈ Ai if and only if len p = i.

(6) For every set A and for every natural number i holds Ai ⊆ A∗.

(7) For every set A and for every natural number i holds i 6= 0 and A = ∅
iff Ai = ∅.
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(8) For all sets A, x holds x ∈ A1 iff there exists a set a such that a ∈ A

and x = 〈a〉.

(9) For all sets A, a such that 〈a〉 ∈ A1 holds a ∈ A.

(10) For all sets A, x holds x ∈ A2 iff there exist sets a, b such that a ∈ A

and b ∈ A and x = 〈a, b〉.

(11) For all sets A, a, b such that 〈a, b〉 ∈ A2 holds a ∈ A and b ∈ A.

(12) For all sets A, x holds x ∈ A3 iff there exist sets a, b, c such that a ∈ A

and b ∈ A and c ∈ A and x = 〈a, b, c〉.

(13) For all sets A, a, b, c such that 〈a, b, c〉 ∈ A3 holds a ∈ A and b ∈ A and
c ∈ A.

Let A be a function. We say that A is mutually-disjoint if and only if:

(Def. 2) For all sets x, y such that x 6= y holds A(x) misses A(y).

Let S be a non empty many sorted signature and let A be an algebra over
S. We say that A is empty if and only if:

(Def. 3) The sorts of A are empty yielding.

We say that A is disjoint if and only if:

(Def. 4) The sorts of A are mutually-disjoint.

Let S be a non empty many sorted signature. Note that every algebra over
S which is non-empty is also non empty.
Let S be a non empty non void many sorted signature and let X be a non-

empty many sorted set indexed by the carrier of S. One can check that Free(X)
is disjoint.
Let S be a non empty non void many sorted signature. Observe that there

exists an algebra over S which is strict, non-empty, and disjoint.
Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S. One can verify that the sorts of A is non empty yielding.
One can verify that there exists a function which is non empty yielding.

2. Signature of a category

Let A be a set. The functor CatSign(A) yielding a strict many sorted signa-
ture is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of CatSign(A) = [: {0}, A2 :],
(ii) the operation symbols of CatSign(A) = [: {1}, A1 :] ∪ [: {2}, A3 :],
(iii) for every set a such that a ∈ A holds (the arity of CatSign(A))(〈〈1,
〈a〉〉〉) = ε and (the result sort of CatSign(A))(〈〈1, 〈a〉〉〉) = 〈〈0, 〈a, a〉〉〉, and

(iv) for all sets a, b, c such that a ∈ A and b ∈ A and c ∈ A holds (the arity
of CatSign(A))(〈〈2, 〈a, b, c〉〉〉) = 〈〈〈0, 〈b, c〉〉〉, 〈〈0, 〈a, b〉〉〉〉 and (the result sort
of CatSign(A))(〈〈2, 〈a, b, c〉〉〉) = 〈〈0, 〈a, c〉〉〉.

Let A be a set. Observe that CatSign(A) is feasible.
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Let A be a non empty set. Observe that CatSign(A) is non empty and non
void.
Instead of a feasible many sorted signature we will use a signature.
Let S be a signature. We say that S is categorial if and only if:

(Def. 6) There exists a set A such that CatSign(A) is a subsignature of S and
the carrier of S = [: {0}, A2 :].

Let us note that every non empty signature which is categorial is also non
void.
One can check that there exists a signature which is categorial, non empty,

and strict.
A cat-signature is a categorial signature.
Let A be a set. A signature is said to be a cat-signature of A if:

(Def. 7) CatSign(A) is a subsignature of it and the carrier of it = [: {0}, A2 :].

One can prove the following proposition

(14) For all sets A1, A2 and for every cat-signature S of A1 such that S is a
cat-signature of A2 holds A1 = A2.

Let A be a set. Note that every cat-signature of A is categorial.
Let A be a non empty set. Note that every cat-signature of A is non empty.
Let A be a set. Observe that there exists a cat-signature of A which is strict.
Let A be a set. Then CatSign(A) is a strict cat-signature of A.
Let S be a many sorted signature. The functor underlayS is defined by the

condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ underlayS if and only if there exists a set a

and there exists a function f such that 〈〈a, f〉〉 ∈ (the carrier of S) ∪ (the
operation symbols of S) and x ∈ rng f.

One can prove the following proposition

(15) For every set A holds underlayCatSign(A) = A.

Let S be a many sorted signature. We say that S is δ-concrete if and only if
the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from N into N such that
(i) for every set s such that s ∈ the carrier of S there exists a natural
number i and there exists a finite sequence p such that s = 〈〈i, p〉〉 and
len p = f(i) and [: {i}, (underlayS)f(i) :] ⊆ the carrier of S, and

(ii) for every set o such that o ∈ the operation symbols of S there exists a
natural number i and there exists a finite sequence p such that o = 〈〈i, p〉〉
and len p = f(i) and [: {i}, (underlay S)f(i) :] ⊆ the operation symbols of
S.

Let A be a set. One can check that CatSign(A) is δ-concrete.
Observe that there exists a cat-signature which is δ-concrete, non empty,

and strict. Let A be a set. One can check that there exists a cat-signature of A
which is δ-concrete and strict.
The following propositions are true:
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(16) Let S be a δ-concrete many sorted signature and x be a set. Suppose
x ∈ the carrier of S or x ∈ the operation symbols of S. Then there exists
a natural number i and there exists a finite sequence p such that x = 〈〈i,
p〉〉 and rng p ⊆ underlayS.

(17) Let S be a δ-concrete many sorted signature, i be a set, and p1, p2 be
finite sequences. Suppose that

(i) 〈〈i, p1〉〉 ∈ the carrier of S and 〈〈i, p2〉〉 ∈ the carrier of S, or
(ii) 〈〈i, p1〉〉 ∈ the operation symbols of S and 〈〈i, p2〉〉 ∈ the operation sym-
bols of S.

Then len p1 = len p2.

(18) Let S be a δ-concrete many sorted signature, i be a set, and p1, p2 be
finite sequences such that len p2 = len p1 and rng p2 ⊆ underlayS. Then

(i) if 〈〈i, p1〉〉 ∈ the carrier of S, then 〈〈i, p2〉〉 ∈ the carrier of S, and
(ii) if 〈〈i, p1〉〉 ∈ the operation symbols of S, then 〈〈i, p2〉〉 ∈ the operation
symbols of S.

(19) Every δ-concrete categorial non empty signature S is a cat-signature of
underlayS.

3. Symbols of categorial signatures

Let S be a non empty cat-signature and let s be a sort symbol of S. Note
that s2 is relation-like and function-like.

Let S be a non empty δ-concrete many sorted signature and let s be a sort
symbol of S. Observe that s2 is relation-like and function-like.

Let S be a non void δ-concrete many sorted signature and let o be an ele-
ment of the operation symbols of S. One can verify that o2 is relation-like and
function-like.

Let S be a non empty cat-signature and let s be a sort symbol of S. One
can verify that s2 is finite sequence-like.

Let S be a non empty δ-concrete many sorted signature and let s be a sort
symbol of S. Observe that s2 is finite sequence-like.

Let S be a non void δ-concrete many sorted signature and let o be an element
of the operation symbols of S. Observe that o2 is finite sequence-like.

Let a be a set. The functor idsyma is defined as follows:

(Def. 10) idsym a = 〈〈1, 〈a〉〉〉.

Let b be a set. The functor homsym(a, b) is defined as follows:

(Def. 11) homsym(a, b) = 〈〈0, 〈a, b〉〉〉.

Let c be a set. The functor compsym(a, b, c) is defined as follows:

(Def. 12) compsym(a, b, c) = 〈〈2, 〈a, b, c〉〉〉.

Next we state the proposition



algebra of morphisms 307

(20) Let A be a non empty set, S be a cat-signature of A, and a be an element
of A. Then
(i) idsym a ∈ the operation symbols of S, and
(ii) for every element b of A holds homsym(a, b) ∈ the carrier of S and for
every element c of A holds compsym(a, b, c) ∈ the operation symbols of S.

Let A be a non empty set and let a be an element of A. Then idsym a is an
operation symbol of CatSign(A). Let b be an element of A. Then homsym(a, b)
is a sort symbol of CatSign(A). Let c be an element of A. Then compsym(a, b, c)
is an operation symbol of CatSign(A).
We now state several propositions:

(21) For all sets a, b such that idsym a = idsym b holds a = b.

(22) For all sets a1, b1, a2, b2 such that homsym(a1, a2) = homsym(b1, b2)
holds a1 = b1 and a2 = b2.

(23) For all sets a1, b1, a2, b2, a3, b3 such that compsym(a1, a2, a3) =
compsym(b1, b2, b3) holds a1 = b1 and a2 = b2 and a3 = b3.

(24) Let A be a non empty set, S be a cat-signature of A and s be a sort sym-
bol of S. Then there exist elements a, b of A such that s = homsym(a, b).

(25) For every non empty set A and for every operation symbol o of
CatSign(A) holds o1 = 1 and len(o2) = 1 or o1 = 2 and len(o2) = 3.

(26) Let A be a non empty set and o be an operation symbol of CatSign(A).
If o1 = 1 or len(o2) = 1, then there exists an element a of A such that
o = idsym a.

(27) Let A be a non empty set and o be an operation symbol of CatSign(A).
If o1 = 2 or len(o2) = 3, then there exist elements a, b, c of A such that
o = compsym(a, b, c).

(28) For every non empty set A and for every element a of A holds
Arity(idsym a) = ε and the result sort of idsyma = homsym(a, a).

(29) For every non empty set A and for all elements a, b, c of A holds
Arity(compsym(a, b, c)) = 〈homsym(b, c),homsym(a, b)〉 and the result
sort of compsym(a, b, c) = homsym(a, c).

4. Signature homomorphism generated by a functor

Let C1, C2 be categories and let F be a functor from C1 to C2. The functor
ΥF yields a function from the carrier of CatSign(the objects of C1) into the
carrier of CatSign(the objects of C2) and is defined as follows:

(Def. 13) For every sort symbol s of CatSign(the objects of C1) holds ΥF (s) = 〈〈0,
ObjF · s2〉〉.

The functor ΨF yields a function from the operation symbols of CatSign(the
objects of C1) into the operation symbols of CatSign(the objects of C2) and is
defined as follows:
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(Def. 14) For every operation symbol o of CatSign(the objects of C1) holds
ΨF (o) = 〈〈o1, ObjF · o2〉〉.

The following propositions are true:

(30) For all categories C1, C2 and for every functor F from C1 to C2 and for
all objects a, b of C1 holds ΥF (homsym(a, b)) = homsym(F (a), F (b)).

(31) For all categories C1, C2 and for every functor F from C1 to C2 and for
every object a of C1 holds ΨF (idsym a) = idsymF (a).

(32) Let C1, C2 be categories, F be a functor from C1 to C2, and a, b, c be
objects of C1. Then ΨF (compsym(a, b, c)) = compsym(F (a), F (b), F (c)).

(33) Let C1, C2 be categories and F be a functor from C1 to C2. Then ΥF and
ΨF form morphism between CatSign(the objects of C1) and CatSign(the
objects of C2).

5. Algebra of morphisms

Next we state the proposition

(34) For every non empty set C and for every algebra A over CatSign(C) and
for every element a of C holds Args(idsym a,A) = {ε}.

The scheme CatAlgEx deals with non empty sets A, B, a binary functor F
yielding a set, a 5-ary functor G yielding a set, and a unary functor H yielding
a set, and states that:

There exists a strict algebra A over CatSign(A) such that
(i) for all elements a, b of A holds (the sorts of

A)(homsym(a, b)) = F(a, b),
(ii) for every element a of A holds (Den(idsym a,A))(ε) =
H(a), and
(iii) for all elements a, b, c of A and for all elements
f , g of B such that f ∈ F(a, b) and g ∈ F(b, c) holds
(Den(compsym(a, b, c), A))(〈g, f〉) = G(a, b, c, g, f)

provided the parameters have the following properties:
• For all elements a, b of A holds F(a, b) ⊆ B,
• For every element a of A holds H(a) ∈ F(a, a),
• For all elements a, b, c of A and for all elements f , g of B such
that f ∈ F(a, b) and g ∈ F(b, c) holds G(a, b, c, g, f) ∈ F(a, c).

Let C be a category. The functor MSAlg(C) yielding a strict algebra over
CatSign(the objects of C) is defined by the conditions (Def. 15).

(Def. 15)(i) For all objects a, b of C holds (the sorts of MSAlg(C))(homsym(a, b)) =
hom(a, b),

(ii) for every object a of C holds (Den(idsym a,MSAlg(C)))(ε) = ida, and
(iii) for all objects a, b, c of C and for all morphisms f , g of C such
that dom f = a and cod f = b and dom g = b and cod g = c holds
(Den(compsym(a, b, c),MSAlg(C)))(〈g, f〉) = g · f.
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The following propositions are true:

(35) For every category A and for all objects a, b of A holds (the sorts of
MSAlg(A))(homsym(a, b)) = hom(a, b).

(36) For every category A and for every object a of A holds
Result(idsym a,MSAlg(A)) = hom(a, a).

(37) For every category A and for all objects a, b, c of A

holds Args(compsym(a, b, c),MSAlg(A)) =
∏
〈hom(b, c),hom(a, b)〉 and

Result(compsym(a, b, c),MSAlg(A)) = hom(a, c).

Let C be a category. Note that MSAlg(C) is disjoint and feasible.

One can prove the following propositions:

(38) Let C1, C2 be categories and F be a functor from C1 to C2. Then
F ↾the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1) is a many sor-
ted function from MSAlg(C1) into MSAlg(C2)↾(ΥF ,ΨF )CatSign(the ob-
jects of C1).

(39) Let C be a category, a, b, c be objects of C, and x be a set. Then
x ∈ Args(compsym(a, b, c),MSAlg(C)) if and only if there exist morphisms
g, f of C such that x = 〈g, f〉 and dom f = a and cod f = b and dom g = b

and cod g = c.

(40) Let C1, C2 be categories, F be a functor from C1 to C2, a, b, c be ob-
jects of C1, and f , g be morphisms of C1. Suppose f ∈ hom(a, b) and
g ∈ hom(b, c). Let x be an element of Args(compsym(a, b, c),MSAlg(C1)).
Suppose x = 〈g, f〉. Let H be a many sorted function from MSAlg(C1)
into MSAlg(C2)↾(ΥF ,ΨF )CatSign(the objects of C1). Suppose H =
F ↾the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1). ThenH#x =
〈F (g), F (f)〉.

(41) For every category C and for every object a of C holds (Den(idsym a,

MSAlg(C)))(∅) = ida.

(42) Let C be a category, a, b, c be objects of C, and f , g be morphisms
of C. If f ∈ hom(a, b) and g ∈ hom(b, c), then (Den(compsym(a, b, c),
MSAlg(C)))(〈g, f〉) = g · f.

(43) Let C be a category, a, b, c, d be objects of C, and f , g, h

be morphisms of C. Suppose f ∈ hom(a, b) and g ∈ hom(b, c)
and h ∈ hom(c, d). Then (Den(compsym(a, c, d),MSAlg(C)))(〈h,

(Den(compsym(a, b, c),MSAlg(C)))(〈g, f〉)〉) = (Den(compsym(a, b, d),
MSAlg(C)))(〈(Den(compsym(b, c, d),MSAlg(C)))(〈h, g〉), f〉).

(44) Let C be a category, a, b be objects of C, and f be a morphism of C. If
f ∈ hom(a, b), then (Den(compsym(a, b, b),MSAlg(C)))(〈idb, f〉) = f and
(Den(compsym(a, a, b),MSAlg(C)))(〈f, ida〉) = f.

(45) Let C1, C2 be categories and F be a functor from C1 to C2.
Then there exists a many sorted function H from MSAlg(C1) into
MSAlg(C2)↾(ΥF ,ΨF )CatSign(the objects of C1) such that

(i) H = F ↾the carrier of CatSign(the objects of C1)the sorts of MSAlg(C1), and
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(ii) H is a homomorphism of MSAlg(C1) into MSAlg(C2)↾(ΥF ,ΨF )CatSign(the
objects of C1).
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