Algebra of Morphisms

Grzegorz Bancerek Warsaw University Białystok

MML Identifier: CATALG_1.

The papers [22], [27], [15], [2], [23], [21], [28], [11], [12], [14], [9], [10], [19], [3], [26], [1], [4], [24], [18], [25], [17], [20], [6], [16], [5], [7], [8], and [13] provide the notation and terminology for this paper.

1. Preliminaries

Let I be a set and let A, f be functions. The functor $f \upharpoonright_I A$ yielding a many sorted function indexed by I is defined by:

(Def. 1) For every set i such that $i \in I$ holds $(f \upharpoonright_I A)(i) = f \upharpoonright A(i)$.

One can prove the following propositions:

- (1) For every set I and for every many sorted set A indexed by I holds $\mathrm{id}_{\mathrm{Union}\,A}\!\upharpoonright_I\!A=\mathrm{id}_A.$
- (2) Let I be a set, A, B be many sorted sets indexed by I, and f, g be functions. If $\operatorname{rng}_{\kappa}(f \upharpoonright_I A)(\kappa) \subseteq B$, then $(g \cdot f) \upharpoonright_I A = (g \upharpoonright_I B) \circ (f \upharpoonright_I A)$.
- (3) Let f be a function, I be a set, and A, B be many sorted sets indexed by I. Suppose that for every set i such that $i \in I$ holds $A(i) \subseteq \text{dom } f$ and $f^{\circ}A(i) \subseteq B(i)$. Then $f \upharpoonright_I A$ is a many sorted function from A into B.
- (4) Let A be a set, i be a natural number, and p be a finite sequence. Then $p \in A^i$ if and only if len p = i and rng $p \subseteq A$.
- (5) Let A be a set, i be a natural number, and p be a finite sequence of elements of A. Then $p \in A^i$ if and only if len p = i.
- (6) For every set A and for every natural number i holds $A^i \subseteq A^*$.
- (7) For every set A and for every natural number i holds $i \neq 0$ and $A = \emptyset$ iff $A^i = \emptyset$.

- (8) For all sets A, x holds $x \in A^1$ iff there exists a set a such that $a \in A$ and $x = \langle a \rangle$.
- (9) For all sets A, a such that $\langle a \rangle \in A^1$ holds $a \in A$.
- (10) For all sets A, x holds $x \in A^2$ iff there exist sets a, b such that $a \in A$ and $b \in A$ and $x = \langle a, b \rangle$.
- (11) For all sets A, a, b such that $\langle a, b \rangle \in A^2$ holds $a \in A$ and $b \in A$.
- (12) For all sets A, x holds $x \in A^3$ iff there exist sets a, b, c such that $a \in A$ and $b \in A$ and $c \in A$ and $x = \langle a, b, c \rangle$.
- (13) For all sets A, a, b, c such that $\langle a, b, c \rangle \in A^3$ holds $a \in A$ and $b \in A$ and $c \in A$.

Let A be a function. We say that A is mutually-disjoint if and only if:

(Def. 2) For all sets x, y such that $x \neq y$ holds A(x) misses A(y).

Let S be a non empty many sorted signature and let A be an algebra over S. We say that A is empty if and only if:

(Def. 3) The sorts of A are empty yielding.

We say that A is disjoint if and only if:

(Def. 4) The sorts of A are mutually-disjoint.

Let S be a non empty many sorted signature. Note that every algebra over S which is non-empty is also non empty.

Let S be a non-empty non void many sorted signature and let X be a non-empty many sorted set indexed by the carrier of S. One can check that Free(X) is disjoint.

Let S be a non empty non void many sorted signature. Observe that there exists an algebra over S which is strict, non-empty, and disjoint.

Let S be a non empty non void many sorted signature and let A be a non empty algebra over S. One can verify that the sorts of A is non empty yielding.

One can verify that there exists a function which is non empty yielding.

2. Signature of a category

Let A be a set. The functor CatSign(A) yielding a strict many sorted signature is defined by the conditions (Def. 5).

- (Def. 5)(i) The carrier of $CatSign(A) = [\{0\}, A^2],$
 - (ii) the operation symbols of $CatSign(A) = [\{1\}, A^1] \cup [\{2\}, A^3],$
 - (iii) for every set a such that $a \in A$ holds (the arity of CatSign(A))($\langle 1, \langle a \rangle \rangle$) = ε and (the result sort of CatSign(A))($\langle 1, \langle a \rangle \rangle$) = $\langle 0, \langle a, a \rangle \rangle$, and
 - (iv) for all sets a, b, c such that $a \in A$ and $b \in A$ and $c \in A$ holds (the arity of CatSign(A))($\langle 2, \langle a, b, c \rangle \rangle$) = $\langle \langle 0, \langle b, c \rangle \rangle$, $\langle 0, \langle a, b \rangle \rangle \rangle$ and (the result sort of CatSign(A))($\langle 2, \langle a, b, c \rangle \rangle$) = $\langle 0, \langle a, c \rangle \rangle$.

Let A be a set. Observe that CatSign(A) is feasible.

Let A be a non empty set. Observe that CatSign(A) is non empty and non void.

Instead of a feasible many sorted signature we will use a signature.

Let S be a signature. We say that S is categorial if and only if:

(Def. 6) There exists a set A such that CatSign(A) is a subsignature of S and the carrier of $S = [\{0\}, A^2]$.

Let us note that every non empty signature which is categorial is also non void.

One can check that there exists a signature which is categorial, non empty, and strict.

A cat-signature is a categorial signature.

Let A be a set. A signature is said to be a cat-signature of A if:

(Def. 7) CatSign(A) is a subsignature of it and the carrier of it = $[\{0\}, A^2]$.

One can prove the following proposition

(14) For all sets A_1 , A_2 and for every cat-signature S of A_1 such that S is a cat-signature of A_2 holds $A_1 = A_2$.

Let A be a set. Note that every cat-signature of A is categorial.

Let A be a non empty set. Note that every cat-signature of A is non empty.

Let A be a set. Observe that there exists a cat-signature of A which is strict.

Let A be a set. Then CatSign(A) is a strict cat-signature of A.

Let S be a many sorted signature. The functor underlay S is defined by the condition (Def. 8).

(Def. 8) Let x be a set. Then $x \in \text{underlay } S$ if and only if there exists a set a and there exists a function f such that $\langle a, f \rangle \in \text{(the carrier of } S) \cup \text{(the operation symbols of } S)$ and $x \in \text{rng } f$.

One can prove the following proposition

(15) For every set A holds underlay CatSign(A) = A.

Let S be a many sorted signature. We say that S is δ -concrete if and only if the condition (Def. 9) is satisfied.

- (Def. 9) There exists a function f from \mathbb{N} into \mathbb{N} such that
 - (i) for every set s such that $s \in$ the carrier of S there exists a natural number i and there exists a finite sequence p such that $s = \langle i, p \rangle$ and len p = f(i) and $[\{i\}, \text{ (underlay } S)^{f(i)}] \subseteq \text{ the carrier of } S$, and
 - (ii) for every set o such that $o \in$ the operation symbols of S there exists a natural number i and there exists a finite sequence p such that $o = \langle i, p \rangle$ and len p = f(i) and $[\{i\}, (\text{underlay } S)^{f(i)}] \subseteq$ the operation symbols of S

Let A be a set. One can check that CatSign(A) is δ -concrete.

Observe that there exists a cat-signature which is δ -concrete, non empty, and strict. Let A be a set. One can check that there exists a cat-signature of A which is δ -concrete and strict.

The following propositions are true:

- (16) Let S be a δ -concrete many sorted signature and x be a set. Suppose $x \in$ the carrier of S or $x \in$ the operation symbols of S. Then there exists a natural number i and there exists a finite sequence p such that $x = \langle i, p \rangle$ and $\operatorname{rng} p \subseteq \operatorname{underlay} S$.
- (17) Let S be a δ -concrete many sorted signature, i be a set, and p_1 , p_2 be finite sequences. Suppose that
 - (i) $\langle i, p_1 \rangle \in \text{the carrier of } S \text{ and } \langle i, p_2 \rangle \in \text{the carrier of } S, \text{ or } S \in S$
 - (ii) $\langle i, p_1 \rangle \in \text{the operation symbols of } S \text{ and } \langle i, p_2 \rangle \in \text{the operation symbols of } S$.

Then len $p_1 = \text{len } p_2$.

- (18) Let S be a δ -concrete many sorted signature, i be a set, and p_1 , p_2 be finite sequences such that len $p_2 = \text{len } p_1$ and $\text{rng } p_2 \subseteq \text{underlay } S$. Then
 - (i) if $\langle i, p_1 \rangle \in$ the carrier of S, then $\langle i, p_2 \rangle \in$ the carrier of S, and
 - (ii) if $\langle i, p_1 \rangle \in$ the operation symbols of S, then $\langle i, p_2 \rangle \in$ the operation symbols of S.
- (19) Every δ -concrete categorial non empty signature S is a cat-signature of underlay S.

3. Symbols of categorial signatures

Let S be a non empty cat-signature and let s be a sort symbol of S. Note that s_2 is relation-like and function-like.

Let S be a non empty δ -concrete many sorted signature and let s be a sort symbol of S. Observe that s_2 is relation-like and function-like.

Let S be a non void δ -concrete many sorted signature and let o be an element of the operation symbols of S. One can verify that o_2 is relation-like and function-like.

Let S be a non empty cat-signature and let s be a sort symbol of S. One can verify that s_2 is finite sequence-like.

Let S be a non empty δ -concrete many sorted signature and let s be a sort symbol of S. Observe that s_2 is finite sequence-like.

Let S be a non void δ -concrete many sorted signature and let o be an element of the operation symbols of S. Observe that o_2 is finite sequence-like.

Let a be a set. The functor idsym a is defined as follows:

(Def. 10) idsym $a = \langle 1, \langle a \rangle \rangle$.

Let b be a set. The functor homsym(a, b) is defined as follows:

(Def. 11) homsym $(a, b) = \langle 0, \langle a, b \rangle \rangle$.

Let c be a set. The functor compsym(a, b, c) is defined as follows:

(Def. 12) compsym $(a, b, c) = \langle 2, \langle a, b, c \rangle \rangle$.

Next we state the proposition

- (20) Let A be a non empty set, S be a cat-signature of A, and a be an element of A. Then
 - (i) idsym $a \in$ the operation symbols of S, and
 - (ii) for every element b of A holds $\operatorname{homsym}(a,b) \in \operatorname{the carrier}$ of S and for every element c of A holds $\operatorname{compsym}(a,b,c) \in \operatorname{the operation}$ symbols of S.

Let A be a non empty set and let a be an element of A. Then $\operatorname{idsym} a$ is an operation symbol of $\operatorname{CatSign}(A)$. Let b be an element of A. Then $\operatorname{homsym}(a,b)$ is a sort symbol of $\operatorname{CatSign}(A)$. Let c be an element of A. Then $\operatorname{compsym}(a,b,c)$ is an operation symbol of $\operatorname{CatSign}(A)$.

We now state several propositions:

- (21) For all sets a, b such that idsym a = idsym b holds a = b.
- (22) For all sets a_1 , b_1 , a_2 , b_2 such that $homsym(a_1, a_2) = homsym(b_1, b_2)$ holds $a_1 = b_1$ and $a_2 = b_2$.
- (23) For all sets a_1 , b_1 , a_2 , b_2 , a_3 , b_3 such that $compsym(a_1, a_2, a_3) = compsym(b_1, b_2, b_3)$ holds $a_1 = b_1$ and $a_2 = b_2$ and $a_3 = b_3$.
- (24) Let A be a non empty set, S be a cat-signature of A and s be a sort symbol of S. Then there exist elements a, b of A such that s = homsym(a, b).
- (25) For every non empty set A and for every operation symbol o of CatSign(A) holds $o_1 = 1$ and $len(o_2) = 1$ or $o_1 = 2$ and $len(o_2) = 3$.
- (26) Let A be a non empty set and o be an operation symbol of CatSign(A). If $o_1 = 1$ or $len(o_2) = 1$, then there exists an element a of A such that o = idsym a.
- (27) Let A be a non empty set and o be an operation symbol of CatSign(A). If $o_1 = 2$ or len(o_2) = 3, then there exist elements a, b, c of A such that o = compsym(a, b, c).
- (28) For every non empty set A and for every element a of A holds $Arity(idsym a) = \varepsilon$ and the result sort of idsym a = homsym(a, a).
- (29) For every non empty set A and for all elements a, b, c of A holds $Arity(compsym(a, b, c)) = \langle homsym(b, c), homsym(a, b) \rangle$ and the result sort of compsym(a, b, c) = homsym(a, c).

4. Signature homomorphism generated by a functor

Let C_1 , C_2 be categories and let F be a functor from C_1 to C_2 . The functor Υ_F yields a function from the carrier of CatSign(the objects of C_1) into the carrier of CatSign(the objects of C_2) and is defined as follows:

(Def. 13) For every sort symbol s of CatSign(the objects of C_1) holds $\Upsilon_F(s) = \langle 0, \text{Obj } F \cdot s_2 \rangle$.

The functor Ψ_F yields a function from the operation symbols of CatSign(the objects of C_1) into the operation symbols of CatSign(the objects of C_2) and is defined as follows:

(Def. 14) For every operation symbol o of CatSign(the objects of C_1) holds $\Psi_F(o) = \langle o_1, \text{Obj } F \cdot o_2 \rangle$.

The following propositions are true:

- (30) For all categories C_1 , C_2 and for every functor F from C_1 to C_2 and for all objects a, b of C_1 holds $\Upsilon_F(\text{homsym}(a,b)) = \text{homsym}(F(a), F(b))$.
- (31) For all categories C_1 , C_2 and for every functor F from C_1 to C_2 and for every object a of C_1 holds $\Psi_F(\operatorname{idsym} a) = \operatorname{idsym} F(a)$.
- (32) Let C_1 , C_2 be categories, F be a functor from C_1 to C_2 , and a, b, c be objects of C_1 . Then $\Psi_F(\text{compsym}(a, b, c)) = \text{compsym}(F(a), F(b), F(c))$.
- (33) Let C_1 , C_2 be categories and F be a functor from C_1 to C_2 . Then Υ_F and Ψ_F form morphism between CatSign(the objects of C_1) and CatSign(the objects of C_2).

5. Algebra of Morphisms

Next we state the proposition

(34) For every non empty set C and for every algebra A over CatSign(C) and for every element a of C holds $Args(idsym a, A) = \{\varepsilon\}$.

The scheme CatAlgEx deals with non empty sets \mathcal{A} , \mathcal{B} , a binary functor \mathcal{F} yielding a set, a 5-ary functor \mathcal{G} yielding a set, and a unary functor \mathcal{H} yielding a set, and states that:

There exists a strict algebra A over CatSign(A) such that

- (i) for all elements a, b of \mathcal{A} holds (the sorts of A)(homsym(a,b)) = $\mathcal{F}(a,b)$,
- (ii) for every element a of \mathcal{A} holds $(\operatorname{Den}(\operatorname{idsym} a, A))(\varepsilon) = \mathcal{H}(a)$, and
- (iii) for all elements a, b, c of \mathcal{A} and for all elements f, g of \mathcal{B} such that $f \in \mathcal{F}(a,b)$ and $g \in \mathcal{F}(b,c)$ holds $(\mathrm{Den}(\mathrm{compsym}(a,b,c),A))(\langle g,f \rangle) = \mathcal{G}(a,b,c,g,f)$

provided the parameters have the following properties:

- For all elements a, b of \mathcal{A} holds $\mathcal{F}(a, b) \subseteq \mathcal{B}$,
- For every element a of A holds $\mathcal{H}(a) \in \mathcal{F}(a,a)$,
- For all elements a, b, c of \mathcal{A} and for all elements f, g of \mathcal{B} such that $f \in \mathcal{F}(a, b)$ and $g \in \mathcal{F}(b, c)$ holds $\mathcal{G}(a, b, c, g, f) \in \mathcal{F}(a, c)$.

Let C be a category. The functor MSAlg(C) yielding a strict algebra over CatSign(the objects of <math>C) is defined by the conditions (Def. 15).

- (Def. 15)(i) For all objects a, b of C holds (the sorts of MSAlg(C))(homsym(a, b)) = hom(a, b),
 - (ii) for every object a of C holds $(Den(idsym a, MSAlg(C)))(\varepsilon) = id_a$, and
 - (iii) for all objects a, b, c of C and for all morphisms f, g of C such that dom f = a and cod f = b and dom g = b and cod g = c holds $(\text{Den}(\text{compsym}(a, b, c), \text{MSAlg}(C)))(\langle g, f \rangle) = g \cdot f$.

The following propositions are true:

- (35) For every category A and for all objects a, b of A holds (the sorts of MSAlg(A))(homsym(a, b)) = hom(a, b).
- (36) For every category A and for every object a of A holds Result(idsym a, MSAlg(A)) = hom(a, a).
- (37) For every category A and for all objects a, b, c of A holds $\operatorname{Args}(\operatorname{compsym}(a,b,c),\operatorname{MSAlg}(A)) = \prod \langle \operatorname{hom}(b,c),\operatorname{hom}(a,b) \rangle$ and $\operatorname{Result}(\operatorname{compsym}(a,b,c),\operatorname{MSAlg}(A)) = \operatorname{hom}(a,c)$.
 - Let C be a category. Note that MSAlg(C) is disjoint and feasible. One can prove the following propositions:
- (38) Let C_1 , C_2 be categories and F be a functor from C_1 to C_2 . Then $F|_{\text{the carrier of CatSign(the objects of } C_1)}$ the sorts of $\text{MSAlg}(C_1)$ is a many sorted function from $\text{MSAlg}(C_1)$ into $\text{MSAlg}(C_2)|_{(\Upsilon_F, \Psi_F)}$ CatSign(the objects of C_1).
- (39) Let C be a category, a, b, c be objects of C, and x be a set. Then $x \in \operatorname{Args}(\operatorname{compsym}(a,b,c),\operatorname{MSAlg}(C))$ if and only if there exist morphisms g, f of C such that $x = \langle g, f \rangle$ and $\operatorname{dom} f = a$ and $\operatorname{cod} f = b$ and $\operatorname{dom} g = b$ and $\operatorname{cod} g = c$.
- (40) Let C_1 , C_2 be categories, F be a functor from C_1 to C_2 , a, b, c be objects of C_1 , and f, g be morphisms of C_1 . Suppose $f \in \text{hom}(a,b)$ and $g \in \text{hom}(b,c)$. Let x be an element of $\text{Args}(\text{compsym}(a,b,c), \text{MSAlg}(C_1))$. Suppose $x = \langle g, f \rangle$. Let H be a many sorted function from $\text{MSAlg}(C_1)$ into $\text{MSAlg}(C_2) \upharpoonright_{(\Upsilon_F, \Psi_F)} \text{CatSign}(\text{the objects of } C_1)$. Suppose $H = F \upharpoonright_{\text{the carrier of CatSign}(\text{the objects of } C_1)}$ the sorts of $\text{MSAlg}(C_1)$. Then $H \# x = \langle F(g), F(f) \rangle$.
- (41) For every category C and for every object a of C holds (Den(idsym a, $MSAlg(C)))(\emptyset) = id_a$.
- (42) Let C be a category, a, b, c be objects of C, and f, g be morphisms of C. If $f \in \text{hom}(a,b)$ and $g \in \text{hom}(b,c)$, then $(\text{Den}(\text{compsym}(a,b,c), \text{MSAlg}(C)))(\langle g, f \rangle) = g \cdot f$.
- (43) Let C be a category, a, b, c, d be objects of C, and f, g, h be morphisms of C. Suppose $f \in \text{hom}(a,b)$ and $g \in \text{hom}(b,c)$ and $h \in \text{hom}(c,d)$. Then $(\text{Den}(\text{compsym}(a,c,d), \text{MSAlg}(C)))(\langle h, (\text{Den}(\text{compsym}(a,b,c), \text{MSAlg}(C)))(\langle g,f\rangle)\rangle) = (\text{Den}(\text{compsym}(a,b,d), \text{MSAlg}(C)))(\langle (\text{Den}(\text{compsym}(b,c,d), \text{MSAlg}(C)))(\langle h,g\rangle), f\rangle).$
- (44) Let C be a category, a, b be objects of C, and f be a morphism of C. If $f \in \text{hom}(a, b)$, then $(\text{Den}(\text{compsym}(a, b, b), \text{MSAlg}(C)))(\langle \text{id}_b, f \rangle) = f$ and $(\text{Den}(\text{compsym}(a, a, b), \text{MSAlg}(C)))(\langle f, \text{id}_a \rangle) = f$.
- (45) Let C_1 , C_2 be categories and F be a functor from C_1 to C_2 . Then there exists a many sorted function H from $MSAlg(C_1)$ into $MSAlg(C_2) \upharpoonright_{(\Upsilon_F, \Psi_F)} CatSign(the objects of <math>C_1$) such that
 - (i) $H = F \upharpoonright_{\text{the carrier of CatSign(the objects of } C_1)}$ the sorts of $MSAlg(C_1)$, and

(ii) H is a homomorphism of $MSAlg(C_1)$ into $MSAlg(C_2) \upharpoonright_{(\Upsilon_F, \Psi_F)} CatSign(the objects of <math>C_1$).

References

- [1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–541, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–552, 1991.
- [5] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
- [6] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191–198, 1996.
- [7] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. Formalized Mathematics, 5(4):553–564, 1996.
- [8] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279–287, 1997.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [13] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.
- [14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [15] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- [16] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269–272, 1996.
- [17] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [18] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- [19] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [20] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67–74, 1996.
- [21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [23] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
- [26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 28, 1997