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The articles [19], [21], [10], [22], [23], [8], [9], [17], [11], [7], [6], [20], [15], [18], [4],
[2], [16], [5], [13], [1], [14], [3], and [24] provide the terminology and notation for
this paper.

1. Preliminaries

Let A, B be non empty sets. One can check that every function from A into
B is non empty.

Let L1, L2 be non empty 1-sorted structures and let f be a map from L1

into L2. Let us observe that f is one-to-one if and only if:

(Def. 1) For all elements x, y of L1 such that f(x) = f(y) holds x = y.

One can prove the following proposition

(1) Let L be a non empty 1-sorted structure and let f be a map from L

into L. If for every element x of L holds f(x) = x, then f = idL.

Let L1, L2 be non empty relational structures and let f be a map from L1

into L2. Let us observe that f is monotone if and only if:

(Def. 2) For all elements x, y of L1 such that x ≤ y holds f(x) ≤ f(y).

We now state four propositions:

(2) Let L be a non empty antisymmetric transitive relational structure with
g.l.b.’s and let x, y, z be elements of L. If x ≤ y, then x ⊓ z ≤ y ⊓ z.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

131
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630



132 czes law byliński

(3) Let L be a non empty antisymmetric transitive relational structure with
l.u.b.’s and let x, y, z be elements of L. If x ≤ y, then x ⊔ z ≤ y ⊔ z.

(4) Let L be a non empty lower-bounded antisymmetric relational structure
and let x be an element of L. Then if L has g.l.b.’s, then ⊥L ⊓ x = ⊥L

and if L is reflexive and transitive and has l.u.b.’s, then ⊥L ⊔ x = x.

(5) Let L be a non empty upper-bounded antisymmetric relational struc-
ture and let x be an element of L. Then if L is transitive and reflexive
and has g.l.b.’s, then ⊤L ⊓ x = x and if L has l.u.b.’s, then ⊤L ⊔ x = ⊤L.

Let L be a non empty relational structure. We say that L is distributive if
and only if:

(Def. 3) For all elements x, y, z of L holds x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z.

We now state the proposition

(6) For every lattice L holds L is distributive iff for all elements x, y, z of
L holds x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z).

Let X be a set. One can verify that 2X
⊆ is distributive.

Let S be a non empty relational structure and let X be a set. We say that
min X exists in S if and only if:

(Def. 4) Inf X exists in S and ⌈−⌉SX ∈ X.

We introduce X has the minimum in S as a synonym of min X exists in S. We
say that max X exists in S if and only if:

(Def. 5) Sup X exists in S and
⊔

S X ∈ X.

We introduce X has the maximum in S as a synonym of max X exists in S.

Let S be a non empty relational structure, let s be an element of S, and let
X be a set. We say that s is a minimum of X if and only if:

(Def. 6) Inf X exists in S and s = ⌈−⌉SX and ⌈−⌉SX ∈ X.

We say that s is a maximum of X if and only if:

(Def. 7) Sup X exists in S and s =
⊔

S X and
⊔

S X ∈ X.

Let L be a relational structure. Note that idL is isomorphic.

Let L1, L2 be relational structures. We say that L1 and L2 are isomorphic
if and only if:

(Def. 8) There exists map from L1 into L2 which is isomorphic.

Let us notice that the predicate defined above is reflexive.

We now state two propositions:

(7) For all non empty relational structures L1, L2 such that L1 and L2 are
isomorphic holds L2 and L1 are isomorphic.

(8) Let L1, L2, L3 be relational structures. Suppose L1 and L2 are isomor-
phic and L2 and L3 are isomorphic. Then L1 and L3 are isomorphic.
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2. Galois Connections

Let S, T be relational structures. A set is said to be a connection between
S and T if:

(Def. 9) There exists a map g from S into T and there exists a map d from T

into S such that it = 〈〈g, d〉〉.

Let S, T be relational structures, let g be a map from S into T , and let d be
a map from T into S. Then 〈〈g, d〉〉 is a connection between S and T .

Let S, T be non empty relational structures and let g1 be a connection
between S and T . We say that g1 is Galois if and only if the condition (Def. 10)
is satisfied.

(Def. 10) There exists a map g from S into T and there exists a map d from T

into S such that
(i) g1 = 〈〈g, d〉〉,
(ii) g is monotone,
(iii) d is monotone, and
(iv) for every element t of T and for every element s of S holds t ≤ g(s) iff

d(t) ≤ s.

Next we state the proposition

(9) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) g is monotone,
(ii) d is monotone, and
(iii) for every element t of T and for every element s of S holds t ≤ g(s) iff

d(t) ≤ s.

Let S, T be non empty relational structures and let g be a map from S into
T . We say that g is upper adjoint if and only if:

(Def. 11) There exists a map d from T into S such that 〈〈g, d〉〉 is Galois.

We introduce g has a lower adjoint as a synonym of g is upper adjoint.
Let S, T be non empty relational structures and let d be a map from T into

S. We say that d is lower adjoint if and only if:

(Def. 12) There exists a map g from S into T such that 〈〈g, d〉〉 is Galois.

We introduce d has an upper adjoint as a synonym of d is lower adjoint.
One can prove the following four propositions:

(10) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is upper adjoint
and d is lower adjoint.

(11) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) g is monotone, and
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(ii) for every element t of T holds d(t) is a minimum of g −1 ↑t.

(12) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) d is monotone, and

(ii) for every element s of S holds g(s) is a maximum of d −1 ↓s.

(13) Let S, T be non empty posets and let g be a map from S into T . If g

is upper adjoint, then g is infs-preserving.

Let S, T be non empty posets. Observe that every map from S into T which
is upper adjoint is also infs-preserving.

We now state the proposition

(14) Let S, T be non empty posets and let d be a map from T into S. If d

is lower adjoint, then d is sups-preserving.

Let S, T be non empty posets. Note that every map from S into T which is
lower adjoint is also sups-preserving.

Next we state a number of propositions:

(15) Let S, T be non empty posets and let g be a map from S into T .
Suppose S is complete and g is infs-preserving. Then there exists a map
d from T into S such that 〈〈g, d〉〉 is Galois and for every element t of T

holds d(t) is a minimum of g −1 ↑t.

(16) Let S, T be non empty posets and let d be a map from T into S.
Suppose T is complete and d is sups-preserving. Then there exists a map
g from S into T such that 〈〈g, d〉〉 is Galois and for every element s of S

holds g(s) is a maximum of d −1 ↓s.

(17) Let S, T be non empty posets and let g be a map from S into T . Suppose
S is complete. Then g is infs-preserving if and only if g is monotone and
g has a lower adjoint.

(18) Let S, T be non empty posets and let d be a map from T into S. Suppose
T is complete. Then d is sups-preserving if and only if d is monotone and
d has an upper adjoint.

(19) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then d · g ≤ idS and
idT ≤ g · d.

(20) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose g is monotone and d is monotone
and d · g ≤ idS and idT ≤ g · d. Then 〈〈g, d〉〉 is Galois.

(21) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose g is monotone and d is monotone
and d · g ≤ idS and idT ≤ g · d. Then d = d · g · d and g = g · d · g.

(22) Let S, T be non empty relational structures, and let g be a map from
S into T , and let d be a map from T into S. If d = d ·g ·d and g = g ·d ·g,

then g · d is idempotent and d · g is idempotent.
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(23) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose 〈〈g, d〉〉 is Galois and g is onto. Let
t be an element of T . Then d(t) is a minimum of g −1 {t}.

(24) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If for every element t of T holds d(t) is a
minimum of g −1 {t}, then g · d = idT .

(25) Let L1, L2 be non empty 1-sorted structures, and let g3 be a map from
L1 into L2, and let g2 be a map from L2 into L1. If g2 · g3 = id(L1), then
g3 is one-to-one and g2 is onto.

(26) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is onto iff d is
one-to-one.

(27) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose 〈〈g, d〉〉 is Galois and d is onto. Let
s be an element of S. Then g(s) is a maximum of d −1 {s}.

(28) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If for every element s of S holds g(s) is a
maximum of d −1 {s}, then d · g = idS .

(29) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is one-to-one iff
d is onto.

Let L be a non empty relational structure and let p be a map from L into L.
We say that p is projection if and only if:

(Def. 13) p is idempotent and monotone.

We introduce p is a projection operator as a synonym of p is projection.
Let L be a non empty relational structure. Note that idL is projection.
Let L be a non empty relational structure. Observe that there exists a map

from L into L which is projection.
Let L be a non empty relational structure and let c be a map from L into L.

We say that c is closure if and only if:

(Def. 14) c is projection and idL ≤ c.

We introduce c is a closure operator as a synonym of c is closure.
Let L be a non empty relational structure. Note that every map from L into

L which is closure is also projection.
Let L be a non empty reflexive relational structure. Note that there exists a

map from L into L which is closure.
Let L be a non empty reflexive relational structure. Note that idL is closure.
Let L be a non empty relational structure and let k be a map from L into

L. We say that k is kernel if and only if:

(Def. 15) k is projection and k ≤ idL.

We introduce k is a kernel operator as a synonym of k is kernel.
Let L be a non empty relational structure. One can check that every map

from L into L which is kernel is also projection.
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Let L be a non empty reflexive relational structure. Note that there exists a
map from L into L which is kernel.

Let L be a non empty reflexive relational structure. One can check that idL

is kernel.
One can prove the following two propositions:

(30) Let L be a non empty poset, and let c be a map from L into L, and let
X be a subset of L. Suppose c is a closure operator and inf X exists in L

and X ⊆ rng c. Then inf X = c(inf X).

(31) Let L be a non empty poset, and let k be a map from L into L, and let
X be a subset of L. Suppose k is a kernel operator and sup X exists in
L and X ⊆ rng k. Then supX = k(sup X).

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. The functor g◦ yields a map from L1 into Im g and is defined as follows:

(Def. 16) g◦ = (the carrier of Im g) � (g).

One can prove the following proposition

(32) For all non empty relational structures L1, L2 and for every map g from
L1 into L2 holds g◦ = g.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. Observe that g◦ is onto.
The following proposition is true

(33) Let L1, L2 be non empty relational structures and let g be a map from
L1 into L2. If g is monotone, then g◦ is monotone.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. The functor g◦ yields a map from Im g into L2 and is defined by:

(Def. 17) g◦ = idIm g.

Next we state the proposition

(34) Let L1, L2 be non empty relational structures, and let g be a map from
L1 into L2, and let s be an element of Im g. Then g◦(s) = s.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. One can check that g◦ is one-to-one and monotone.
We now state a number of propositions:

(35) For every non empty relational structure L and for every map f from
L into L holds f◦ · f

◦ = f.

(36) For every non empty poset L and for every map f from L into L such
that f is idempotent holds f ◦ · f◦ = idIm f .

(37) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a projection operator. Then there exists a non empty poset T and
there exists a map q from L into T and there exists a map i from T into
L such that q is monotone and onto and i is monotone and one-to-one
and f = i · q and idT = q · i.

(38) Let L be a non empty poset and let f be a map from L into L. Given a
non empty poset T and a map q from L into T and a map i from T into
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L such that q is monotone and i is monotone and f = i · q and idT = q · i.
Then f is a projection operator.

(39) For every non empty poset L and for every map f from L into L such
that f is a closure operator holds 〈〈f◦, f◦〉〉 is Galois.

(40) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a closure operator. Then there exists a non empty poset S and there
exists a map g from S into L and there exists a map d from L into S such
that 〈〈g, d〉〉 is Galois and f = g · d.

(41) Let L be a non empty poset and let f be a map from L into L. Suppose
that

(i) f is monotone, and
(ii) there exists a non empty poset S and there exists a map g from S into

L and there exists a map d from L into S such that 〈〈g, d〉〉 is Galois and
f = g · d.

Then f is a closure operator.

(42) For every non empty poset L and for every map f from L into L such
that f is a kernel operator holds 〈〈f ◦, f◦〉〉 is Galois.

(43) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a kernel operator. Then there exists a non empty poset T and there
exists a map g from L into T and there exists a map d from T into L such
that 〈〈g, d〉〉 is Galois and f = d · g.

(44) Let L be a non empty poset and let f be a map from L into L. Suppose
that

(i) f is monotone, and
(ii) there exists a non empty poset T and there exists a map g from L into

T and there exists a map d from T into L such that 〈〈g, d〉〉 is Galois and
f = d · g.

Then f is a kernel operator.

(45) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then rng p = {c : c ranges over elements of L,
c ≤ p(c)} ∩ {k : k ranges over elements of L, p(k) ≤ k}.

(46) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then

(i) {c : c ranges over elements of L, c ≤ p(c)} is a non empty subset of L,
and

(ii) {k : k ranges over elements of L, p(k) ≤ k} is a non empty subset of
L.

(47) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then rng(p � {c : c ranges over elements of
L, c ≤ p(c)}) = rng p and rng(p � {k : k ranges over elements of L,
p(k) ≤ k}) = rng p.

(48) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L and let L5
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be a non empty subset of L. Suppose L4 = {c : c ranges over elements of
L, c ≤ p(c)}. Then p � L4 is a map from sub(L4) into sub(L4).

(49) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Then p � L5 is a map
from sub(L5) into sub(L5).

(50) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L. Suppose
L4 = {c : c ranges over elements of L, c ≤ p(c)}. Let p1 be a map from
sub(L4) into sub(L4). If p1 = p � L4, then p1 is a closure operator.

(51) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Let p2 be a map from
sub(L5) into sub(L5). If p2 = p � L5, then p2 is a kernel operator.

(52) Let L be a non empty poset and let p be a map from L into L. Suppose
p is monotone. Let L4 be a subset of L. If L4 = {c : c ranges over elements
of L, c ≤ p(c)}, then sub(L4) is sups-inheriting.

(53) Let L be a non empty poset and let p be a map from L into L. Suppose
p is monotone. Let L5 be a subset of L. If L5 = {k : k ranges over
elements of L, p(k) ≤ k}, then sub(L5) is infs-inheriting.

(54) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L. Suppose
L4 = {c : c ranges over elements of L, c ≤ p(c)}. Then

(i) if p is infs-preserving, then sub(L4) is infs-inheriting and Im p is infs-
inheriting, and

(ii) if p is filtered-infs-preserving, then sub(L4) is filtered-infs-inheriting
and Im p is filtered-infs-inheriting.

(55) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Then

(i) if p is sups-preserving, then sub(L5) is sups-inheriting and Im p is sups-
inheriting, and

(ii) if p is directed-sups-preserving, then sub(L5) is directed-sups-inheriting
and Im p is directed-sups-inheriting.

(56) Let L be a non empty poset and let p be a map from L into L. Then
if p is a closure operator, then Im p is infs-inheriting and if p is a kernel
operator, then Im p is sups-inheriting.

(57) Let L be a complete non empty poset and let p be a map from L into
L. If p is a projection operator, then Im p is complete.

(58) Let L be a non empty poset and let c be a map from L into L. Suppose
c is a closure operator. Then

(i) c◦ is sups-preserving, and
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(ii) for every subset X of L such that X ⊆ the carrier of Im c and sup X

exists in L holds sup X exists in Im c and
⊔

Im c X = c(
⊔

L X).

(59) Let L be a non empty poset and let k be a map from L into L. Suppose
k is a kernel operator. Then

(i) k◦ is infs-preserving, and
(ii) for every subset X of L such that X ⊆ the carrier of Im k and inf X

exists in L holds inf X exists in Imk and ⌈−⌉Im kX = k(⌈−⌉LX).

3. Heyting Algebra

Next we state two propositions:

(60) For every complete non empty poset L holds 〈〈 IdsMap(L), SupMap(L)〉〉
is Galois and SupMap(L) is sups-preserving.

(61) For every complete non empty poset L holds IdsMap(L) ·SupMap(L) is
a closure operator and Im(IdsMap(L)·SupMap(L)) and L are isomorphic.

Let S be a non empty relational structure and let x be an element of S. The
functor x ⊓ � yields a map from S into S and is defined as follows:

(Def. 18) For every element s of S holds (x ⊓ � )(s) = x ⊓ s.

Next we state two propositions:

(62) For every non empty relational structure S and for all elements x, t of
S holds {s : s ranges over elements of S, x ⊓ s ≤ t} = (x ⊓ � ) −1 ↓t.

(63) For every non empty semilattice S and for every element x of S holds
x ⊓ � is monotone.

Let S be a non empty semilattice and let x be an element of S. Note that
x ⊓ � is monotone.

The following propositions are true:

(64) Let S be a non empty relational structure, and let x be an element of
S, and let X be a subset of S. Then (x ⊓ � )◦X = {x ⊓ y : y ranges over
elements of S, y ∈ X}.

(65) Let S be a non empty semilattice. Then for every element x of S holds
x ⊓ � has an upper adjoint if and only if for all elements x, t of S holds
max {s : s ranges over elements of S, x ⊓ s ≤ t} exists in S.

(66) Let S be a non empty semilattice. Suppose that for every element x of
S holds x⊓ � has an upper adjoint. Let X be a subset of S. Suppose sup
X exists in S. Let x be an element of S. Then x ⊓

⊔
S X =

⊔
S{x ⊓ y : y

ranges over elements of S, y ∈ X}.

(67) Let S be a complete non empty poset. Then for every element x of S

holds x ⊓ � has an upper adjoint if and only if for every subset X of S

and for every element x of S holds x ⊓
⊔

S X =
⊔

S{x ⊓ y : y ranges over
elements of S, y ∈ X}.



140 czes law byliński

(68) Let S be a non empty lattice. Suppose that for every subset X of S

such that sup X exists in S and for every element x of S holds x⊓
⊔

S X =
⊔

S{x ⊓ y : y ranges over elements of S, y ∈ X}. Then S is distributive.

Let H be a non empty relational structure. We say that H is Heyting if and
only if:

(Def. 19) H is a lattice and for every element x of H holds x ⊓ � has an upper
adjoint.

We introduce H is a Heyting algebra as a synonym of H is Heyting.

Let us observe that every non empty relational structure which is Heyting is
also reflexive, transitive, and antisymmetric and has g.l.b.’s and l.u.b.’s.

Let H be a non empty relational structure and let a be an element of H. Let
us assume that H is Heyting. The functor a ⇒ � yielding a map from H into
H is defined as follows:

(Def. 20) 〈〈a ⇒ � , a ⊓ � 〉〉 is Galois.

We now state the proposition

(69) For every non empty relational structure H such that H is a Heyting
algebra holds H is distributive.

Let us observe that every non empty relational structure which is Heyting is
also distributive.

Let H be a non empty relational structure and let a, y be elements of H.
The functor a ⇒ y yields an element of H and is defined by:

(Def. 21) a ⇒ y = (a ⇒ � )(y).

One can prove the following two propositions:

(70) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let x, a, y be elements of H. Then x ≥ a ⊓ y if and only if
a ⇒ x ≥ y.

(71) For every non empty relational structure H such that H is a Heyting
algebra holds H is upper-bounded.

Let us mention that every non empty relational structure which is Heyting
is also upper-bounded.

Next we state a number of propositions:

(72) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. Then ⊤H = a ⇒ b if and only if
a ≤ b.

(73) For every non empty relational structure H such that H is a Heyting
algebra and for every element a of H holds ⊤H = a ⇒ a.

(74) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. If ⊤H = a ⇒ b and ⊤H = b ⇒ a,

then a = b.

(75) Let H be a non empty relational structure. If H is a Heyting algebra,
then for all elements a, b of H holds b ≤ a ⇒ b.
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(76) Let H be a non empty relational structure. If H is a Heyting algebra,
then for every element a of H holds ⊤H = a ⇒ ⊤H .

(77) For every non empty relational structure H such that H is a Heyting
algebra and for every element b of H holds b = ⊤H ⇒ b.

(78) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. If a ≤ b, then b ⇒ c ≤ a ⇒ c.

(79) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. If b ≤ c, then a ⇒ b ≤ a ⇒ c.

(80) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. Then a ⊓ (a ⇒ b) = a ⊓ b.

(81) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. Then a⊔b ⇒ c = (a ⇒ c)⊓(b ⇒ c).

Let H be a non empty relational structure and let a be an element of H.
The functor ¬a yields an element of H and is defined as follows:

(Def. 22) ¬a = a ⇒ ⊥H .

The following propositions are true:

(82) Let H be a non empty relational structure. Suppose H is a Heyting
algebra and lower-bounded. Let a be an element of H. Then ¬a is a
maximum of {x : x ranges over elements of H, a ⊓ x = ⊥H}.

(83) Let H be a non empty relational structure. If H is a Heyting algebra
and lower-bounded, then ¬(⊥H) = ⊤H and ¬(⊤H) = ⊥H .

(84) Let H be a non empty lower-bounded relational structure. Suppose H

is a Heyting algebra. Let a, b be elements of H. Then ¬a ≥ b if and only
if ¬b ≥ a.

(85) Let H be a non empty lower-bounded relational structure. Suppose H

is a Heyting algebra. Let a, b be elements of H. Then ¬a ≥ b if and only
if a ⊓ b = ⊥H .

(86) Let H be a non empty lower-bounded relational structure. Suppose H

is a Heyting algebra. Let a, b be elements of H. If a ≤ b, then ¬b ≤ ¬a.

(87) Let H be a non empty lower-bounded relational structure. Suppose H

is a Heyting algebra. Let a, b be elements of H. Then ¬(a⊔ b) = ¬a⊓¬b.

(88) Let H be a non empty lower-bounded relational structure. Suppose H

is a Heyting algebra. Let a, b be elements of H. Then ¬(a⊓ b) ≥ ¬a⊔¬b.

Let L be a non empty relational structure and let x, y be elements of L. We
say that y is a complement of x if and only if:

(Def. 23) x ⊔ y = ⊤L and x ⊓ y = ⊥L.

Let L be a non empty relational structure. We say that L is complemented
if and only if:

(Def. 24) For every element x of L holds there exists element of L which is a
complement of x.

Let X be a set. Observe that 2X
⊆ is complemented.

Next we state two propositions:
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(89) Let L be a non empty bounded lattice. Suppose L is a Heyting algebra
and for every element x of L holds ¬¬x = x. Let x be an element of L.
Then ¬x is a complement of x.

(90) Let L be a non empty bounded lattice. Then L is distributive and
complemented if and only if L is a Heyting algebra and for every element
x of L holds ¬¬x = x.

Let B be a non empty relational structure. We say that B is Boolean if and
only if:

(Def. 25) B is a lattice bounded distributive and complemented.

We introduce B is a Boolean algebra and B is a Boolean lattice as synonyms of
B is Boolean.

Let us note that every non empty relational structure which is Boolean is also
reflexive, transitive, antisymmetric, bounded, distributive, and complemented
and has g.l.b.’s and l.u.b.’s.

Let us observe that every non empty relational structure which is reflexive,
transitive, antisymmetric, bounded, distributive, and complemented and has
g.l.b.’s and l.u.b.’s is also Boolean.

Let us note that every non empty relational structure which is Boolean is
also Heyting.

One can verify that there exists a lattice which is strict, Boolean, and non
empty.

Let us observe that there exists a lattice which is strict, Heyting, and non
empty.
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