Memory Handling for SCM $_{\text {FSA }}{ }^{1}$

Piotr Rudnicki
University of Alberta
Edmonton

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We introduce some terminology for reasoning about memory used in programs in general and in macro instructions (introduced in [26]) in particular. The usage of integer locations and of finite sequence locations by a program is treated separately. We define some functors for selecting memory locations needed for local (temporary) variables in macro instructions. Some semantic properties of the introduced notions are given in terms of executions of macro instructions.

MML Identifier: SF_MASTR.

The articles [21], [31], [19], [12], [30], [22], [14], [2], [28], [15], [20], [6], [13], [1], [3], [17], [11], [4], [7], [29], [32], [8], [9], [10], [5], [16], [25], [18], [27], [23], [24], and [26] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following three propositions:
(1) For all sets x, y, a and for every function f such that $f(x)=f(y)$ holds $f(a)=\left(f \cdot\left(\mathrm{id}_{\operatorname{dom} f}+\cdot(x, y)\right)\right)(a)$.
(2) For all sets x, y and for every function f such that if $x \in \operatorname{dom} f$, then $y \in \operatorname{dom} f$ and $f(x)=f(y)$ holds $f=f \cdot\left(\operatorname{id}_{\operatorname{dom} f}+\cdot(x, y)\right)$.
(3) For all sets A, B and for every function f from A into B holds $\operatorname{dom} f \subseteq$ A.
Let A be a finite set and let B be a set. Note that every function from A into B is finite.

Let A be a finite set, let B be a set, and let f be a function from A into Fin B. Observe that Union f is finite.

[^0]In the sequel N will be a non empty set with non empty elements.
The following proposition is true
(4) Let S be a definite AMI over N and let p be a programmed finite partial state of S. Then $\operatorname{rng} p \subseteq$ the instructions of S.
Let us mention that Int-Locations is non empty.
Let us mention that FinSeq-Locations is non empty.

2. Uniqueness of instruction components

For simplicity we adopt the following rules: $a, b, c, a_{1}, a_{2}, b_{1}, b_{2}$ will be integer locations, l, l_{1}, l_{2} will be instructions-locations of $\mathbf{S C M}_{\mathrm{FSA}}, f, f_{1}, f_{2}$ will be finite sequence locations, and i, j will be instructions of $\mathbf{S C M}_{\mathrm{FSA}}$.

The following propositions are true:
(5) If $a_{1}:=b_{1}=a_{2}:=b_{2}$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
(6) If $\operatorname{AddTo}\left(a_{1}, b_{1}\right)=\operatorname{AddTo}\left(a_{2}, b_{2}\right)$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
(7) If $\operatorname{SubFrom}\left(a_{1}, b_{1}\right)=\operatorname{SubFrom}\left(a_{2}, b_{2}\right)$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
(8) If $\operatorname{MultBy}\left(a_{1}, b_{1}\right)=\operatorname{MultBy}\left(a_{2}, b_{2}\right)$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
(9) If $\operatorname{Divide}\left(a_{1}, b_{1}\right)=\operatorname{Divide}\left(a_{2}, b_{2}\right)$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.

If goto $l_{1}=$ goto l_{2}, then $l_{1}=l_{2}$.
(11) If if $a_{1}=0$ goto $l_{1}=$ if $a_{2}=0$ goto l_{2}, then $a_{1}=a_{2}$ and $l_{1}=l_{2}$.
(12) If if $a_{1}>0$ goto $l_{1}=$ if $a_{2}>0$ goto l_{2}, then $a_{1}=a_{2}$ and $l_{1}=l_{2}$.

If $b_{1}:=f_{1 a_{1}}=b_{2}:=f_{2 a_{2}}$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$ and $f_{1}=f_{2}$.
If $f_{1 a_{1}}:=b_{1}=f_{2 a_{2}}:=b_{2}$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$ and $f_{1}=f_{2}$.
If $a_{1}:=\operatorname{len} f_{1}=a_{2}:=\operatorname{len} f_{2}$, then $a_{1}=a_{2}$ and $f_{1}=f_{2}$.
If $f_{1}:=\langle\underbrace{0, \ldots, 0}_{a_{1}}\rangle=f_{2}:=\langle\underbrace{0, \ldots, 0}_{a_{2}}\rangle$, then $a_{1}=a_{2}$ and $f_{1}=f_{2}$.

3. Integer locations used in macros

Let i be an instruction of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor UsedIntLoc (i) yields an element of Fin Int-Locations and is defined as follows:
(Def. 1) (i) There exist integer locations a, b such that $i=a:=b$ or $i=$ $\operatorname{AddTo}(a, b)$ or $i=\operatorname{SubFrom}(a, b)$ or $i=\operatorname{MultBy}(a, b)$ or $i=\operatorname{Divide}(a, b)$ but UsedIntLoc $(i)=\{a, b\}$ if $\operatorname{InsCode}(i) \in\{1,2,3,4,5\}$,
(ii) there exists an integer location a and there exists an instructionlocation l of $\mathbf{S C M}_{\mathrm{FSA}}$ such that $i=$ if $a=0$ goto l or $i=$ if $a>$

(iii) there exist integer locations a, b and there exists a finite sequence location f such that $i=b:=f_{a}$ or $i=f_{a}:=b$ but $\operatorname{UsedIntLoc}(i)=\{a, b\}$ if $\operatorname{InsCode}(i)=9$ or $\operatorname{InsCode}(i)=10$,
(iv) there exists an integer location a and there exists a finite sequence location f such that $i=a:=\operatorname{len} f$ or $i=f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle$ but UsedIntLoc $(i)=$ $\{a\}$ if $\operatorname{InsCode}(i)=11$ or $\operatorname{InsCode}(i)=12$,
(v) UsedIntLoc $(i)=\emptyset$, otherwise.

Next we state several propositions:
(17) $\quad \operatorname{Used} \operatorname{IntLoc}\left(\right.$ halt $\left._{\mathrm{SCM}_{\mathrm{FSA}}}\right)=\emptyset$.
(18) If $i=a:=b$ or $i=\operatorname{AddTo}(a, b)$ or $i=\operatorname{SubFrom}(a, b)$ or $i=\operatorname{MultBy}(a, b)$ or $i=\operatorname{Divide}(a, b)$, then $\operatorname{Used} \operatorname{IntLoc}(i)=\{a, b\}$.
(19) UsedIntLoc (goto l) $=\emptyset$.
(20) If $i=$ if $a=0$ goto l or $i=$ if $a>0$ goto l, then $\operatorname{Used\operatorname {IntLoc}(i)=}$ $\{a\}$.
(21) If $i=b:=f_{a}$ or $i=f_{a}:=b$, then $\operatorname{Used} \operatorname{IntLoc}(i)=\{a, b\}$.
(22) If $i=a:=\operatorname{len} f$ or $i=f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle$, then UsedIntLoc $(i)=\{a\}$.

Let p be a programmed finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor
UsedIntLoc (p) yields a subset of Int-Locations and is defined by the condition (Def. 2).
(Def. 2) There exists a function U_{1} from the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ into Fin Int-Locations such that for every instruction i of $\mathbf{S C M}_{\text {FSA }}$ holds $U_{1}(i)=\operatorname{Used} \operatorname{IntLoc}(i)$ and $\operatorname{UsedIntLoc}(p)=\operatorname{Union}\left(U_{1} \cdot p\right)$.
Let p be a programmed finite partial state of $\mathbf{S C M}_{\text {FSA }}$. Note that
UsedIntLoc (p) is finite.
We follow the rules: p, r denote programmed finite partial states of $\mathbf{S C M}_{\text {FSA }}$, I, J denote macro instructions, and k, m, n denote natural numbers.

Next we state a number of propositions:
(23) If $i \in \operatorname{rng} p$, then $\operatorname{Used} \operatorname{IntLoc}(i) \subseteq \operatorname{UsedIntLoc}(p)$.
(24) UsedIntLoc $(p+\cdot r) \subseteq \operatorname{Used} \operatorname{IntLoc}(p) \cup \operatorname{UsedIntLoc}(r)$.
(25) If dom p misses dom r, then $\operatorname{UsedIntLoc}(p+r)=\operatorname{Used} \operatorname{IntLoc}(p) \cup$ UsedIntLoc (r).

(27) UsedIntLoc $(i)=\operatorname{Used} \operatorname{IntLoc}(\operatorname{IncAddr}(i, k))$.
(28) $\operatorname{Used} \operatorname{IntLoc}(p)=\operatorname{Used} \operatorname{IntLoc}(\operatorname{IncAddr}(p, k))$.
(29) UsedIntLoc $(I)=\operatorname{UsedIntLoc}(\operatorname{ProgramPart}(\operatorname{Relocated}(I, k)))$.
(30) $\operatorname{Used} \operatorname{IntLoc}(I)=\operatorname{Used} \operatorname{IntLoc}(\operatorname{Directed}(I))$.
(31) UsedIntLoc $(I ; J)=\operatorname{Used} \operatorname{IntLoc}(I) \cup \operatorname{UsedIntLoc}(J)$.
(32) UsedIntLoc $(\operatorname{Macro}(i))=\operatorname{Used} \operatorname{IntLoc}(i)$.
(33) UsedIntLoc $(i ; J)=\operatorname{Used} \operatorname{IntLoc}(i) \cup \operatorname{Used} \operatorname{IntLoc}(J)$.
(34) UsedIntLoc $(I ; j)=\operatorname{Used} \operatorname{IntLoc}(I) \cup \operatorname{Used} \operatorname{IntLoc}(j)$.
(35) UsedIntLoc $(i ; j)=\operatorname{Used} \operatorname{IntLoc}(i) \cup \operatorname{Used} \operatorname{IntLoc}(j)$.

4. Finite sequence locations used in macros

Let i be an instruction of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor UsedInt* $\operatorname{Loc}(i)$ yielding an element of Fin FinSeq-Locations is defined by:
(Def. 3) (i) There exist integer locations a, b and there exists a finite sequence location f such that $i=b:=f_{a}$ or $i=f_{a}:=b$ but UsedInt* $\operatorname{Loc}(i)=\{f\}$ if $\operatorname{InsCode}(i)=9$ or $\operatorname{InsCode}(i)=10$,
(ii) there exists an integer location a and there exists a finite sequence location f such that $i=a:=\operatorname{len} f$ or $i=f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle$ but UsedInt ${ }^{*} \operatorname{Loc}(i)=$ $\{f\}$ if $\operatorname{InsCode}(i)=11$ or $\operatorname{InsCode}(i)=12$,
(iii) UsedInt* $\operatorname{Loc}(i)=\emptyset$, otherwise.

One can prove the following propositions:
$i=\operatorname{halt}_{\mathbf{S C M}_{\mathrm{FSA}}}$ or $i=a:=b$ or $i=\operatorname{AddTo}(a, b)$ or $i=\operatorname{SubFrom}(a, b)$ or $i=\operatorname{MultBy}(a, b)$ or $i=\operatorname{Divide}(a, b)$ or $i=$ goto l or $i=$ if $a=0$ goto l or $i=$ if $a>0$ goto l, then UsedInt* $\operatorname{Loc}(i)=\emptyset$.

$$
\begin{equation*}
\text { If } i=b:=f_{a} \text { or } i=f_{a}:=b, \text { then UsedInt }{ }^{*} \operatorname{Loc}(i)=\{f\} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } i=a:=\operatorname{len} f \text { or } i=f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle \text {, then UsedInt* } \operatorname{Loc}(i)=\{f\} \text {. } \tag{38}
\end{equation*}
$$

Let p be a programmed finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor
UsedInt* $\operatorname{Loc}(p)$ yields a subset of FinSeq-Locations and is defined by the condition (Def. 4).
(Def. 4) There exists a function U_{1} from the instructions of $\mathbf{S C M}_{\text {FSA }}$ into Fin FinSeq-Locations such that for every instruction i of $\mathbf{S C M}_{\mathrm{FSA}}$ holds $U_{1}(i)=$ UsedInt* $\operatorname{Loc}(i)$ and UsedInt* $\operatorname{Loc}(p)=\operatorname{Union}\left(U_{1} \cdot p\right)$.
Let p be a programmed finite partial state of $\mathbf{S C M}_{\text {FSA }}$. Note that
UsedInt* $\operatorname{Loc}(p)$ is finite.
The following propositions are true:
(39) If $i \in \operatorname{rng} p$, then UsedInt* $\operatorname{Loc}(i) \subseteq \operatorname{UsedInt}^{*} \operatorname{Loc}(p)$.

$$
\begin{equation*}
\text { UsedInt* } \operatorname{Loc}(p+r) \subseteq \text { UsedInt }^{*} \operatorname{Loc}(p) \cup \text { UsedInt }^{*} \operatorname{Loc}(r) \tag{40}
\end{equation*}
$$

(41) If dom p misses dom r, then UsedInt* $\operatorname{Loc}(p+r r)=\operatorname{UsedInt}^{*} \operatorname{Loc}(p) \cup$ UsedInt* Loc (r).
(42) UsedInt* $\operatorname{Loc}(p)=\operatorname{Used} \operatorname{Int} * \operatorname{Loc}(\operatorname{Shift}(p, k))$.
(43) UsedInt* $\operatorname{Loc}(i)=$ UsedInt* Loc $(\operatorname{IncAddr}(i, k))$.
(44) UsedInt* $\operatorname{Loc}(p)=$ UsedInt* $\operatorname{Loc}(\operatorname{IncAddr}(p, k))$.
(45) UsedInt* Loc $(I)=$ UsedInt* Loc(ProgramPart(Relocated $(I, k)))$.
(46) UsedInt* $\operatorname{Loc}(I)=$ UsedInt* Loc(Directed $(I))$.
(47) UsedInt* $\operatorname{Loc}(I ; J)=$ UsedInt* Loc $(I) \cup$ UsedInt* $\operatorname{Loc}(J)$.
(48) UsedInt* ${ }^{*} \operatorname{Loc}(\operatorname{Macro}(i))=$ UsedInt* $\operatorname{Loc}(i)$.
(49) UsedInt* $\operatorname{Loc}(i ; J)=$ UsedInt* $\operatorname{Loc}(i) \cup U s e d I n t * \operatorname{Loc}(J)$.
(50) UsedInt* $\operatorname{Loc}(I ; j)=$ UsedInt* $\operatorname{Loc}(I) \cup U \operatorname{sedInt} * \operatorname{Loc}(j)$.
(51)

```
UsedInt*}\operatorname{Loc}(i;j)=|\operatorname{SedInt*}\operatorname{Loc}(i)\cupUsedInt* Loc(j)
```


5. Choosing an integer location not used in a program

Let I_{1} be an integer location. We say that I_{1} is read-only if and only if:
(Def. 5) $\quad I_{1}=\operatorname{intloc}(0)$.
We introduce I_{1} is read-write as an antonym of I_{1} is read-only.
Let us observe that intloc(0) is read-only.
One can check that there exists an integer location which is read-write.
In the sequel L will be a finite subset of Int-Locations.
Let L be a finite subset of Int-Locations. The functor FirstNotIn (L) yields an integer location and is defined by:
(Def. 6) There exists a non empty subset s_{1} of \mathbb{N} such that $\operatorname{FirstNotIn}(L)=$ $\operatorname{intloc}\left(\min s_{1}\right)$ and $s_{1}=\{k: k$ ranges over natural numbers, $\operatorname{intloc}(k) \notin$ $L\}$.
Next we state two propositions:
(52) $\quad \operatorname{FirstNotIn}(L) \notin L$.
(53) If $\operatorname{FirstNotIn}(L)=\operatorname{intloc}(m)$ and $\operatorname{intloc}(n) \notin L$, then $m \leq n$.

Let p be a programmed finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor FirstNotUsed (p) yields an integer location and is defined by:
(Def. 7) There exists a finite subset s_{2} of Int-Locations such that $s_{2}=$ $\operatorname{Used} \operatorname{IntLoc}(p) \cup\{\operatorname{intloc}(0)\}$ and $\operatorname{FirstNotUsed}(p)=\operatorname{FirstNotIn}\left(s_{2}\right)$.
Let p be a programmed finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$. Observe that FirstNotUsed (p) is read-write.

We now state several propositions:
(54) $\quad \operatorname{FirstNotUsed}(p) \notin \operatorname{UsedIntLoc}(p)$.
(55) If $a:=b \in \operatorname{rng} p$ or $\operatorname{AddTo}(a, b) \in \operatorname{rng} p$ or $\operatorname{SubFrom}(a, b) \in \operatorname{rng} p$ or $\operatorname{MultBy}(a, b) \in \operatorname{rng} p$ or $\operatorname{Divide}(a, b) \in \operatorname{rng} p$, then $\operatorname{FirstNotUsed}(p) \neq a$ and FirstNotUsed $(p) \neq b$.
(56) If if $a=0$ goto $l \in \operatorname{rng} p$ or if $a>0$ goto $l \in \operatorname{rng} p$, then FirstNotUsed $(p) \neq a$.
(57) If $b:=f_{a} \in \operatorname{rng} p$ or $f_{a}:=b \in \operatorname{rng} p$, then $\operatorname{FirstNotUsed}(p) \neq a$ and FirstNotUsed $(p) \neq b$.
(58) If $a:=\operatorname{len} f \in \operatorname{rng} p$ or $f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle \in \operatorname{rng} p$, then $\operatorname{FirstNotUsed}(p) \neq a$.
6. Choosing a finite sequence location not used in a program

In the sequel L is a finite subset of FinSeq-Locations.
Let L be a finite subset of FinSeq-Locations. The functor First* $\operatorname{NotIn}(L)$ yielding a finite sequence location is defined by:
(Def. 8) There exists a non empty subset s_{1} of \mathbb{N} such that First* $\operatorname{NotIn}(L)=$ fsloc $\left(\min s_{1}\right)$ and $s_{1}=\{k: k$ ranges over natural numbers, $\operatorname{fsloc}(k) \notin L\}$. We now state two propositions:
(59) \quad First ${ }^{*} \operatorname{NotIn}(L) \notin L$.
(60) If $\operatorname{First}{ }^{*} \operatorname{NotIn}(L)=\operatorname{fsloc}(m)$ and $\operatorname{fsloc}(n) \notin L$, then $m \leq n$.

Let p be a programmed finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor
First* $\operatorname{NotUsed}(p)$ yields a finite sequence location and is defined by:
(Def. 9) There exists a finite subset s_{2} of FinSeq-Locations such that $s_{2}=$ UsedInt* $\operatorname{Loc}(p)$ and First* $\operatorname{NotUsed}(p)=$ First* $\operatorname{NotIn}\left(s_{2}\right)$.
One can prove the following propositions:
(61) First* $\operatorname{NotUsed}(p) \notin \operatorname{UsedInt}{ }^{*} \operatorname{Loc}(p)$.
(62) If $b:=f_{a} \in \operatorname{rng} p$ or $f_{a}:=b \in \operatorname{rng} p$, then $\operatorname{First} * \operatorname{NotUsed}(p) \neq f$.
(63) If $a:=\operatorname{len} f \in \operatorname{rng} p$ or $f:=\langle\underbrace{0, \ldots, 0}_{a}\rangle \in \operatorname{rng} p$, then $\operatorname{First}{ }^{*} \operatorname{NotUsed}(p) \neq f$.

7. Semantics

In the sequel s, t will be states of $\mathbf{S C M}_{\mathrm{FSA}}$.
We now state a number of propositions:
(64) $\quad \operatorname{dom} I \cap \operatorname{dom} \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(n))=\emptyset$.
(65) $\quad \mathbf{I C}_{\mathbf{S C M}_{\mathrm{FSA}}} \in \operatorname{dom}(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(n)))$.
$(I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(n)))\left(\mathbf{I C}_{\mathbf{S C M}_{\mathrm{FSA}}}\right)=\operatorname{insloc}(n)$.
If $I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(n)) \subseteq s$, then $\mathbf{I C}_{s}=\operatorname{insloc}(n)$.
(69) If $I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)) \subseteq s$ and for every m such that $m<$ n holds $\left.\mathbf{I C}_{(C o m p u t a t i o n}(s)\right)(m) \in \operatorname{dom} I$ and $a \notin \operatorname{UsedIntLoc}(I)$, then (Computation $(s))(n)(a)=s(a)$.
(70) If $f \notin \operatorname{UsedInt}{ }^{*} \operatorname{Loc}(i)$, then $(\operatorname{Exec}(i, s))(f)=s(f)$.
(71) If $I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)) \subseteq s$ and for every m such that $m<n$ holds $\mathbf{I C}($ Computation $(s))(m) \in \operatorname{dom} I$ and $f \notin \operatorname{UsedInt}^{*} \operatorname{Loc}(I)$, then $(\operatorname{Computation}(s))(n)(f)=s(f)$.
(72) If $s \upharpoonright \operatorname{UsedIntLoc}(i)=t$ $\mid \operatorname{UsedIntLoc}(i)$ and $s \upharpoonright \operatorname{UsedInt}{ }^{*} \operatorname{Loc}(i)=$ $t \upharpoonright$ UsedInt ${ }^{*} \operatorname{Loc}(i)$ and $\mathbf{I C}_{s}=\mathbf{I C}_{t}$, then $\mathbf{I C}_{\operatorname{Exec}(i, s)}=\mathbf{I C}_{\operatorname{Exec}(i, t)}$ and $\operatorname{Exec}(i, s) \upharpoonright \operatorname{Used} \operatorname{IntLoc}(i)=\operatorname{Exec}(i, t) \upharpoonright \operatorname{Used} \operatorname{IntLoc}(i)$ and $\operatorname{Exec}(i, s) \upharpoonright$ UsedInt ${ }^{*} \operatorname{Loc}(i)=\operatorname{Exec}(i, t) \upharpoonright \operatorname{Used} \operatorname{Int}{ }^{*} \operatorname{Loc}(i)$.
(73)

Suppose $I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)) \subseteq s$ and $I+\cdot \operatorname{Start}-\operatorname{At}(\operatorname{insloc}(0)) \subseteq t$ and $s \upharpoonright \operatorname{UsedIntLoc}(I)=t \upharpoonright \operatorname{Used} \operatorname{IntLoc}(I)$ and $s \upharpoonright \operatorname{UsedInt} * \operatorname{Loc}(I)=$ t 「 UsedInt* $\operatorname{Loc}(I)$ and for every m such that $m<n$ holds $\mathbf{I C}_{(\text {Computation }(s))(m)} \in \operatorname{dom} I$. Then
(i) for every m such that $m<n$ holds $\mathbf{I C}_{(\operatorname{Computation}(t))(m)} \in \operatorname{dom} I$, and
(ii) for every m such that $m \leq n$ holds $\mathbf{I C}_{(\text {Computation }(s))(m)}=$ $\mathbf{I C}_{(\text {Computation }(t))(m)}$ and for every a such that $a \in \operatorname{UsedIntLoc}(I)$ holds $($ Computation $(s))(m)(a)=(\operatorname{Computation}(t))(m)(a)$ and for every f such that $f \in \operatorname{UsedInt}{ }^{*} \operatorname{Loc}(I)$ holds $(\operatorname{Computation}(s))(m)(f)=$ (Computation $(t))(m)(f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[6] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[11] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[12] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[17] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1-8, 1996.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec and Agata Darmochwat. Boolean domains. Formalized Mathematics, $1(\mathbf{1}): 187-190,1990$.
[23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. Formalized Mathematics, 5(4):571-576, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for $\mathbf{S C M}_{\text {FSA }}$. Formalized Mathematics, 5(4):583-586, 1996.
[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. Formalized Mathematics, 6(1):21-27, 1997.
[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The $\mathbf{S C M}_{\text {FSA }}$ computer. Formalized Mathematics, 5(4):519-528, 1996.
[28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[31] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 18, 1996

[^0]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

