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Summary. This article contains definitions of two category struc-
tures: the category of many sorted signatures and the category of many
sorted algebras. Some facts about these structures are proved.

MML Identifier: MSINST_1.

The papers [22], [10], (23], [24], [7], [8], [17], [25], [9], [6], [2], [5], [18], [1], [21],
[15], [20], [14], [12], [19], [16], [13], [3], [4], and [11] provide the terminology and
notation for this paper.

1. CATEGORY OF MANY SORTED SIGNATURES

In this paper A denotes a non empty set, S denotes a non void non empty
many sorted signature, and x denotes a set.

Let us consider A. The functor MSSCat(A) yields a strict non empty category
structure and is defined by the conditions (Def. 1).

(Def. 1) (i)  The carrier of MSSCat(A) = MSS-set(A),

(ii) for all elements ¢, j of MSS-set(A) holds (the arrows of MSSCat(A))(i,
j) = MSS-morph(i, j), and

(i)  for all objects i, j, k of MSSCat(A) such that i € MSS-set(A) and
j € MSS-set(A) and k € MSS-set(A) and for all functions fi, fa, g1, g2
such that (f1, f2) € (the arrows of MSSCat(A))(4, j) and (g1, g2) € (the
arrows of MSSCat(A))(j, k) holds (the composition of MSSCat(A))(i, 7,
k)({g1, 92), (f1, f2)) = {91+ f1, 92 fa)-

Let us consider A. Note that MSSCat(A) is transitive and associative and

has units.
The following proposition is true
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(1)  For every category C such that C' = MSSCat(A) holds every object of
C' is a non empty non void many sorted signature.
Let us consider S. Note that there exists an algebra over S which is strict
and feasible.
Let us consider S, A. The functor MSAlg_set(S, A) is defined by the condition
(Def. 2).
(Def. 2) € MSAlg_set(S, A) if and only if there exists a strict feasible algebra
M over S such that x = M and for every component C' of the sorts of M
holds C' C A.
Let us consider S, A. Observe that MSAlg_set (S, A) is non empty.

2. CATEGORY OF MANY SORTED ALGEBRAS

In the sequel o is an operation symbol of S.

One can prove the following four propositions:

(2) Let x be an algebra over S. Suppose x € MSAlgset(S, A). Then
the sorts of z € (24)the cartierof S anq the characteristics of z €
((N_>A)_>A)thc operation symbols of S'

(3) Let Uy, Uy be algebras over S. Suppose the sorts of Uj is transformable
to the sorts of Uy and Args(o,Uy) # (). Then Args(o, Us) # 0.

(4)  Let Uy, Us, Us be feasible algebras over S, and let F' be a many sorted
function from U; into Us, and let G be a many sorted function from Us
into Us, and let = be an element of Args(o,U;). Suppose that

(i)  Args(o,Uy) # 0,
(ii)  the sorts of U; is transformable to the sorts of Us, and

(iii)  the sorts of Us is transformable to the sorts of Us.

Then there exists a many sorted function Gy from U;j into Us such that
G1 = Go F and Gi1#z = G#(F#x).

(5) Let Uy, Us, Us be feasible algebras over S, and let F' be a many sorted
function from U7 into Us, and let G be a many sorted function from Us
into Us. Suppose that
) the sorts of U; is transformable to the sorts of Us,

) the sorts of Us is transformable to the sorts of Us,

ii) F is a homomorphism of Uy into Us, and
) G is a homomorphism of Us into Us.

Then there exists a many sorted function Gy from U;j into Us such that

G1 = G o F and (G7 is a homomorphism of Uy into Us.

Let us consider S, A and let i, j be sets. Let us assume that ¢ € MSAlg set(S, A)
and j € MSAlg_set(S, A). The functor MSAlg_morph(S, A, i, j) is defined by the
condition (Def. 3).

(Def. 3) € MSAlg_morph(S, A,i,j) if and only if there exist strict feasible

algebras M, N over S and there exists a many sorted function f from M
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into NV such that M = ¢ and N = j and f = z and the sorts of M is
transformable to the sorts of IV and f is a homomorphism of M into N.

Let us consider S, A. The functor MSAlgCat (S, A) yields a strict non empty

category structure and is defined by the conditions (Def. 4).
(Def. 4) (i)  The carrier of MSAlgCat(S, A) = MSAlg set(S, A),

(i)  for all elements i, j of MSAlgset(S,A) holds (the arrows of

MSAlgCat(S, A))(i, 7) = MSAlg_morph(S, 4,1, 7), and

(i)  for all objects 7, j, k of MSAlgCat(S, A) and for all function yield-

ing functions f, g such that f € (the arrows of MSAlgCat(S, A))(4, j)
and g € (the arrows of MSAlgCat(S, A))(j, k) holds (the composition of
MSAlgCat (S, A))(i, j, k)(g, f) = go f.

Let us consider S, A. One can verify that MSAlgCat (S, A) is transitive and

associative and has units.
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One can prove the following proposition

(6)

For every category C' such that C' = MSAlgCat(S, A) holds every object
of C' is a strict feasible algebra over S.
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