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Summary. This article contains definitions of two category struc-
tures: the category of many sorted signatures and the category of many
sorted algebras. Some facts about these structures are proved.

MML Identifier: MSINST 1.

The papers [22], [10], [23], [24], [7], [8], [17], [25], [9], [6], [2], [5], [18], [1], [21],
[15], [20], [14], [12], [19], [16], [13], [3], [4], and [11] provide the terminology and
notation for this paper.

1. Category of Many Sorted Signatures

In this paper A denotes a non empty set, S denotes a non void non empty
many sorted signature, and x denotes a set.

Let us consider A. The functor MSSCat(A) yields a strict non empty category
structure and is defined by the conditions (Def. 1).

(Def. 1) (i) The carrier of MSSCat(A) = MSS-set(A),
(ii) for all elements i, j of MSS-set(A) holds (the arrows of MSSCat(A))(i,

j) = MSS-morph(i, j), and
(iii) for all objects i, j, k of MSSCat(A) such that i ∈ MSS-set(A) and

j ∈ MSS-set(A) and k ∈ MSS-set(A) and for all functions f1, f2, g1, g2

such that 〈〈f1, f2〉〉 ∈ (the arrows of MSSCat(A))(i, j) and 〈〈g1, g2〉〉 ∈ (the
arrows of MSSCat(A))(j, k) holds (the composition of MSSCat(A))(i, j,

k)(〈〈g1, g2〉〉, 〈〈f1, f2〉〉) = 〈〈g1 · f1, g2 · f2〉〉.

Let us consider A. Note that MSSCat(A) is transitive and associative and
has units.

The following proposition is true
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(1) For every category C such that C = MSSCat(A) holds every object of
C is a non empty non void many sorted signature.

Let us consider S. Note that there exists an algebra over S which is strict
and feasible.

Let us consider S, A. The functor MSAlg set(S,A) is defined by the condition
(Def. 2).

(Def. 2) x ∈ MSAlg set(S,A) if and only if there exists a strict feasible algebra
M over S such that x = M and for every component C of the sorts of M

holds C ⊆ A.

Let us consider S, A. Observe that MSAlg set(S,A) is non empty.

2. Category of Many Sorted Algebras

In the sequel o is an operation symbol of S.
One can prove the following four propositions:

(2) Let x be an algebra over S. Suppose x ∈ MSAlg set(S,A). Then
the sorts of x ∈ (2A)the carrier of S and the characteristics of x ∈
((

�
→̇A)→̇A)the operation symbols of S .

(3) Let U1, U2 be algebras over S. Suppose the sorts of U1 is transformable
to the sorts of U2 and Args(o, U1) 6= ∅. Then Args(o, U2) 6= ∅.

(4) Let U1, U2, U3 be feasible algebras over S, and let F be a many sorted
function from U1 into U2, and let G be a many sorted function from U2

into U3, and let x be an element of Args(o, U1). Suppose that
(i) Args(o, U1) 6= ∅,
(ii) the sorts of U1 is transformable to the sorts of U2, and
(iii) the sorts of U2 is transformable to the sorts of U3.

Then there exists a many sorted function G1 from U1 into U3 such that
G1 = G ◦ F and G1#x = G#(F#x).

(5) Let U1, U2, U3 be feasible algebras over S, and let F be a many sorted
function from U1 into U2, and let G be a many sorted function from U2

into U3. Suppose that
(i) the sorts of U1 is transformable to the sorts of U2,
(ii) the sorts of U2 is transformable to the sorts of U3,
(iii) F is a homomorphism of U1 into U2, and
(iv) G is a homomorphism of U2 into U3.

Then there exists a many sorted function G1 from U1 into U3 such that
G1 = G ◦ F and G1 is a homomorphism of U1 into U3.

Let us consider S, A and let i, j be sets. Let us assume that i ∈ MSAlg set(S,A)
and j ∈ MSAlg set(S,A). The functor MSAlg morph(S,A, i, j) is defined by the
condition (Def. 3).

(Def. 3) x ∈ MSAlg morph(S,A, i, j) if and only if there exist strict feasible
algebras M , N over S and there exists a many sorted function f from M
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into N such that M = i and N = j and f = x and the sorts of M is
transformable to the sorts of N and f is a homomorphism of M into N .

Let us consider S, A. The functor MSAlgCat(S,A) yields a strict non empty
category structure and is defined by the conditions (Def. 4).

(Def. 4) (i) The carrier of MSAlgCat(S,A) = MSAlg set(S,A),
(ii) for all elements i, j of MSAlg set(S,A) holds (the arrows of

MSAlgCat(S,A))(i, j) = MSAlg morph(S,A, i, j), and
(iii) for all objects i, j, k of MSAlgCat(S,A) and for all function yield-

ing functions f , g such that f ∈ (the arrows of MSAlgCat(S,A))(i, j)
and g ∈ (the arrows of MSAlgCat(S,A))(j, k) holds (the composition of
MSAlgCat(S,A))(i, j, k)(g, f) = g ◦ f.

Let us consider S, A. One can verify that MSAlgCat(S,A) is transitive and
associative and has units.

One can prove the following proposition

(6) For every category C such that C = MSAlgCat(S,A) holds every object
of C is a strict feasible algebra over S.
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