Some Topological Properties of Cells in R^{2}

Yatsuka Nakamura
Shinshu University
Nagano
Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We examine the topological property of cells (rectangles) in a plane. First, some Fraenkel expressions of cells are shown. Second, it is proved that cells are closed. The last theorem asserts that the closure of the interior of a cell is the same as itself.

MML Identifier: GOBRD11.

The articles [7], [11], [19], [20], [24], [23], [8], [1], [21], [15], [25], [17], [18], [5], [4], [2], [22], [9], [10], [26], [16], [3], [6], [12], [14], and [13] provide the notation and terminology for this paper.

We adopt the following convention: i, j, j_{1}, j_{2} will be natural numbers, r, s, r_{2}, s_{1}, s_{2} will be real numbers, and G_{1} will be a non empty topological space.

Next we state two propositions:
(1) For every subset A of the carrier of G_{1} and for every point p of G_{1} such that $p \in A$ and A is connected holds $A \subseteq \operatorname{Component}(p)$.
(2) Let A, B, C be subsets of the carrier of G_{1}. Suppose C is a component of G_{1} and $A \subseteq C$ and B is connected and $\bar{A} \cap \bar{B} \neq \emptyset$. Then $B \subseteq C$.
In the sequel G_{2} denotes a non empty topological space.
Next we state three propositions:
(3) Let A, B be subsets of the carrier of G_{2}. Suppose A is a component of G_{2} and B is a component of G_{2}. Then $A \cup B$ is a union of components of G_{2}.
(4) For all subsets B_{1}, B_{2}, V of the carrier of G_{1} such that $V \neq \emptyset$ holds $\operatorname{Down}\left(B_{1} \cup B_{2}, V\right)=\operatorname{Down}\left(B_{1}, V\right) \cup \operatorname{Down}\left(B_{2}, V\right)$.
(5) For all subsets B_{1}, B_{2}, V of the carrier of G_{1} such that $V \neq \emptyset$ holds $\operatorname{Down}\left(B_{1} \cap B_{2}, V\right)=\operatorname{Down}\left(B_{1}, V\right) \cap \operatorname{Down}\left(B_{2}, V\right)$.
In the sequel f will denote a non constant standard special circular sequence and G will denote a Go-board.

We now state a number of propositions:
$(\widetilde{\mathcal{L}}(f))^{\mathrm{c}} \neq \emptyset$.
Given j_{1}, j_{2}. Suppose $j_{1}=$ len the Go-board of f and $j_{2}=$ width the Go-board of f. Then the carrier of $\mathcal{E}_{\mathrm{T}}^{2}=\bigcup\{$ cell(the Go-board of f, $\left.i, j): i \leq j_{1} \wedge j \leq j_{2}\right\}$.
(8) For all subsets P_{1}, P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P_{1}=\left\{[r, s]: s \leq s_{1}\right\}$ and $P_{2}=\left\{\left[r_{2}, s_{2}\right]: s_{2}>s_{1}\right\}$ holds $P_{1}=-P_{2}$.
(9) For all subsets P_{1}, P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P_{1}=\left\{[r, s]: s \geq s_{1}\right\}$ and $P_{2}=\left\{\left[r_{2}, s_{2}\right]: s_{2}<s_{1}\right\}$ holds $P_{1}=-P_{2}$.
(10) For all subsets P_{1}, P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P_{1}=\left\{[s, r]: s \geq s_{1}\right\}$ and $P_{2}=\left\{\left[s_{2}, r_{2}\right]: s_{2}<s_{1}\right\}$ holds $P_{1}=-P_{2}$.
(11) For all subsets P_{1}, P_{2} of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P_{1}=\left\{[s, r]: s \leq s_{1}\right\}$ and $P_{2}=\left\{\left[s_{2}, r_{2}\right]: s_{2}>s_{1}\right\}$ holds $P_{1}=-P_{2}$.
(12) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every s_{1} such that $P=\left\{[r, s]: s \leq s_{1}\right\}$ holds P is closed.
(13) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every s_{1} such that $P=\left\{[r, s]: s_{1} \leq s\right\}$ holds P is closed.
(14) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every s_{1} such that $P=\left\{[s, r]: s \leq s_{1}\right\}$ holds P is closed.
(15) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every s_{1} such that $P=\left\{[s, r]: s_{1} \leq s\right\}$ holds P is closed.
(16) For every j holds $\operatorname{hstrip}(G, j)$ is closed.
(17) For every i holds $\operatorname{vstrip}(G, i)$ is closed.
(18) $\operatorname{vstrip}(G, 0)=\left\{[r, s]: r \leq\left(G_{1,1}\right)_{1}\right\}$.
(19) $\operatorname{vstrip}(G$, len $G)=\left\{[r, s]:\left(G_{\text {len } G, 1}\right)_{1} \leq r\right\}$.
(20) If $1 \leq i$ and $i<\operatorname{len} G$, then $\operatorname{vstrip}(G, i)=\left\{[r, s]:\left(G_{i, 1}\right)_{1} \leq r \wedge r \leq\right.$ $\left.\left(G_{i+1,1}\right)_{1}\right\}$
(21) $\operatorname{hstrip}(G, 0)=\left\{[r, s]: s \leq\left(G_{1,1}\right)_{2}\right\}$.
(22) $\quad \operatorname{hstrip}(G$, width $G)=\left\{[r, s]:\left(G_{1, \text { width } G}\right)_{\mathbf{2}} \leq s\right\}$.
(23) If $1 \leq j$ and $j<$ width G, then $\operatorname{hstrip}(G, j)=\left\{[r, s]:\left(G_{1, j}\right)_{\mathbf{2}} \leq s \wedge s \leq\right.$ $\left.\left(G_{1, j+1}\right)_{\mathbf{2}}\right\}$.
(24) $\operatorname{cell}(G, 0,0)=\left\{[r, s]: r \leq\left(G_{1,1}\right)_{\mathbf{1}} \wedge s \leq\left(G_{1,1}\right)_{\mathbf{2}}\right\}$.

$$
\begin{equation*}
\operatorname{cell}(G, 0, \text { width } G)=\left\{[r, s]: r \leq\left(G_{1,1}\right)_{\mathbf{1}} \wedge\left(G_{1, \text { width } G}\right)_{\mathbf{2}} \leq s\right\} \tag{25}
\end{equation*}
$$

(26) If $1 \leq j$ and $j<$ width G, then $\operatorname{cell}(G, 0, j)=\left\{[r, s]: r \leq\left(G_{1,1}\right)_{1} \wedge\right.$ $\left.\left(G_{1, j}\right)_{\mathbf{2}} \leq s \wedge s \leq\left(G_{1, j+1}\right)_{\mathbf{2}}\right\}$.
(27) $\operatorname{cell}(G, \operatorname{len} G, 0)=\left\{[r, s]:\left(G_{\text {len } G, 1}\right)_{1} \leq r \wedge s \leq\left(G_{1,1}\right)_{\mathbf{2}}\right\}$.

$$
\begin{equation*}
\operatorname{cell}(G, \text { len } G, \text { width } G)=\left\{[r, s]:\left(G_{\operatorname{len} G, 1}\right)_{\mathbf{1}} \leq r \wedge\left(G_{1, \text { width } G}\right)_{\mathbf{2}} \leq s\right\} \tag{28}
\end{equation*}
$$

(29) If $1 \leq j$ and $j<$ width G, then $\operatorname{cell}(G$, len $G, j)=\left\{[r, s]:\left(G_{\text {len } G, 1}\right)_{1} \leq\right.$ $\left.r \wedge\left(G_{1, j}\right)_{\mathbf{2}} \leq s \wedge s \leq\left(G_{1, j+1}\right)_{\mathbf{2}}\right\}$.
(30) If $1 \leq i$ and $i<\operatorname{len} G$, then $\operatorname{cell}(G, i, 0)=\left\{[r, s]:\left(G_{i, 1}\right)_{1} \leq r \wedge r \leq\right.$ $\left.\left(G_{i+1,1}\right)_{\mathbf{1}} \wedge s \leq\left(G_{1,1}\right)_{\mathbf{2}}\right\}$.
(31) If $1 \leq i$ and $i<\operatorname{len} G$, then $\operatorname{cell}(G, i$, width $G)=\left\{[r, s]:\left(G_{i, 1}\right)_{\mathbf{1}} \leq\right.$ $\left.r \wedge r \leq\left(G_{i+1,1}\right)_{\mathbf{1}} \wedge\left(G_{1, \text { width } G}\right)_{\mathbf{2}} \leq s\right\}$.
(32) If $1 \leq i$ and $i<\operatorname{len} G$ and $1 \leq j$ and $j<$ width G, then $\operatorname{cell}(G, i, j)=\{[r$, $\left.s]:\left(G_{i, 1}\right)_{\mathbf{1}} \leq r \wedge r \leq\left(G_{i+1,1}\right)_{\mathbf{1}} \wedge\left(G_{1, j}\right)_{\mathbf{2}} \leq s \wedge s \leq\left(G_{1, j+1}\right)_{\mathbf{2}}\right\}$.
(33) For all i, j holds cell (G, i, j) is closed.
$1 \leq \operatorname{len} G$ and $1 \leq$ width G.
(35) For all i, j such that $i \leq \operatorname{len} G$ and $j \leq$ width G holds cell $(G, i, j)=$ $\overline{\operatorname{Int} \operatorname{cell}(G, i, j)}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part I. Formalized Mathematics, 3(1):107-115, 1992.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part II. Formalized Mathematics, 3(1):117-121, 1992.
[13] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Formalized Mathematics, 5(4):513-517, 1996.
[14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[16] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[18] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received July 22, 1996

