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Summary. The paper introduces some preliminary notions concerning the
homotopy theory according to [15]: paths and arcwise connected to topological
spaces. The basic operations on paths (addition and reversing) are defined. In the
last section the predicate: P, Q are homotopic is defined. We also showed some
properties of the product of two topological spaces needed to prove reflexivity
and symmetry of the above predicate.

MML Identifier: BORSUK 2.

The articles [27], [30], [26], [16], [10], [32], [7], [23], [13], [12], [25], [28], [24], [4],
[1], [33], [11], [21], [31], [9], [19], [29], [17], [8], [34], [14], [6], [5], [22], [20], [2],
[18], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper T , T1, T2, S denote non empty topological spaces.
The scheme FrCard deals with a non empty set A, a set B, a unary functor

F yielding a set, and a unary predicate P, and states that:
{F(w);w ranges over elements of A :w ∈ B ∧ P[w]} ¬ B

for all values of the parameters.
The following proposition is true

(1) Let f be a map from T1 into S and g be a map from T2 into S. Suppose
that

(i) T1 is a subspace of T ,
(ii) T2 is a subspace of T ,
(iii) Ω(T1) ∪ Ω(T2) = ΩT ,

(iv) T1 is compact,
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(v) T2 is compact,
(vi) T is a T2 space,
(vii) f is continuous,
(viii) g is continuous, and
(ix) for every set p such that p ∈ Ω(T1) ∩ Ω(T2) holds f(p) = g(p).

Then there exists a map h from T into S such that h = f+·g and h is
continuous.

Let S, T be non empty topological spaces. One can verify that there exists
a map from S into T which is continuous.

One can prove the following proposition

(2) For all non empty topological spaces S, T holds every continuous map-
ping from S into T is a continuous map from S into T .

Let T be a non empty topological structure. Note that idT is open and
continuous.

Let T be a non empty topological structure. Observe that there exists a map
from T into T which is continuous and one-to-one.

We now state the proposition

(3) Let S, T be non empty topological spaces and f be a map from S into
T . If f is a homeomorphism, then f−1 is open.

2. Paths and arcwise connected spaces

Let T be a topological structure and let a, b be points of T . Let us assume
that there exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = b. A map from I into T is said to be a path from a to b if:

(Def. 1) It is continuous and it(0) = a and it(1) = b.

Next we state the proposition

(4) Let T be a non empty topological space and a be a point of T . Then
there exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = a.

Let T be a non empty topological space and let a be a point of T . Note that
there exists a path from a to a which is continuous.

Let T be a topological structure. We say that T is arcwise connected if and
only if:

(Def. 2) For all points a, b of T there exists a map f from I into T such that f

is continuous and f(0) = a and f(1) = b.

Let us observe that there exists a topological space which is arcwise connec-
ted and non empty.
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Let T be an arcwise connected topological structure and let a, b be points of
T . Let us note that the path from a to b can be characterized by the following
(equivalent) condition:

(Def. 3) It is continuous and it(0) = a and it(1) = b.

Let T be an arcwise connected topological structure and let a, b be points
of T . Note that every path from a to b is continuous.

Next we state the proposition

(5) For every non empty topological space G1 such that G1 is arcwise con-
nected holds G1 is connected.

Let us mention that every non empty topological space which is arcwise
connected is also connected.

3. Basic operations on paths

Let T be a non empty topological space, let a, b, c be points of T , let P be a
path from a to b, and let Q be a path from b to c. Let us assume that there exist
maps f , g from I into T such that f is continuous and f(0) = a and f(1) = b

and g is continuous and g(0) = b and g(1) = c. The functor P + Q yielding a
path from a to c is defined by the condition (Def. 4).

(Def. 4) Let t be a point of I and t′ be a real number such that t = t′. Then
(i) if 0 ¬ t′ and t′ ¬ 1

2 , then (P + Q)(t) = P (2 · t′), and
(ii) if 1

2 ¬ t′ and t′ ¬ 1, then (P + Q)(t) = Q(2 · t′ − 1).
Let T be a non empty topological space and let a be a point of T . Note that

there exists a path from a to a which is constant.
One can prove the following two propositions:

(6) Let T be a non empty topological space, a be a point of T , and P be a
constant path from a to a. Then P = I 7−→ a.

(7) Let T be a non empty topological space, a be a point of T , and P be a
constant path from a to a. Then P + P = P.

Let T be a non empty topological space, let a be a point of T , and let P be
a constant path from a to a. Observe that P + P is constant.

Let T be a non empty topological space, let a, b be points of T , and let P

be a path from a to b. Let us assume that there exists a map f from I into T

such that f is continuous and f(0) = a and f(1) = b. The functor −P yields a
path from b to a and is defined as follows:

(Def. 5) For every point t of I and for every real number t′ such that t = t′ holds
(−P )(t) = P (1− t′).

The following proposition is true
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(8) Let T be a non empty topological space, a be a point of T , and P be a
constant path from a to a. Then −P = P.

Let T be a non empty topological space, let a be a point of T , and let P be
a constant path from a to a. One can verify that −P is constant.

4. The product of two topological spaces

One can prove the following proposition

(9) Let X, Y be non empty topological spaces, A be a family of subsets of
Y , and f be a map from X into Y . Then f−1(

⋃
A) =

⋃
(f−1(A)).

Let S1, S2, T1, T2 be non empty topological spaces, let f be a map from S1

into S2, and let g be a map from T1 into T2. Then [: f, g :] is a map from [:S1,

T1 :] into [:S2, T2 :].
Next we state three propositions:

(10) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous
map from S1 into T1, g be a continuous map from S2 into T2, and P1,
P2 be subsets of the carrier of [:T1, T2 :]. If P2 ∈ BaseAppr(P1), then [: f,

g :]−1(P2) is open.

(11) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous
map from S1 into T1, g be a continuous map from S2 into T2, and P2 be a
subset of the carrier of [:T1, T2 :]. If P2 is open, then [: f, g :]−1(P2) is open.

(12) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous
map from S1 into T1, and g be a continuous map from S2 into T2. Then
[: f, g :] is continuous.

Let us note that every topological structure which is empty is also T0.
Let T1, T2 be discernible non empty topological spaces. One can check that

[:T1, T2 :] is discernible.
We now state two propositions:

(13) For all T0-spaces T1, T2 holds [:T1, T2 :] is a T0-space.

(14) Let T1, T2 be non empty topological spaces. Suppose T1 is a T1 space
and T2 is a T1 space. Then [:T1, T2 :] is a T1 space.

Let T1, T2 be a T1 space non empty topological spaces. Observe that [:T1,

T2 :] is a T1 space.
Let T1, T2 be T2 non empty topological spaces. Observe that [:T1, T2 :] is T2.
Let us note that I is compact and T2.
Let us mention that E2

T is T2.
Let T be a non empty arcwise connected topological space, let a, b be points

of T , and let P , Q be paths from a to b. We say that P , Q are homotopic if and
only if the condition (Def. 6) is satisfied.
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(Def. 6) There exists a map f from [: I, I :] into T such that
(i) f is continuous, and
(ii) for every point s of I holds f(s, 0) = P (s) and f(s, 1) = Q(s) and for

every point t of I holds f(0, t) = a and f(1, t) = b.

Let us notice that the predicate P , Q are homotopic is reflexive and symmetric.
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Summary. The main goal of the paper is to show logical equivalence of the
two definitions of the open subset: one from [2] and the other from [23]. This has
been used to show that the other two definitions are equivalent: the continuity
of the map as in [20] and in [22]. We used this to show that continuous and
one-to-one maps are monotone (see theorems 16 and 17 for details).

MML Identifier: JORDAN5A.

The terminology and notation used here are introduced in the following articles:
[26], [13], [27], [28], [4], [5], [24], [22], [17], [18], [10], [3], [23], [6], [25], [29], [16],
[14], [19], [11], [20], [8], [7], [9], [15], [21], [2], [1], and [12].

1. Preliminaries

One can prove the following four propositions:

(1) For all points p, q of E2
T and for every subset P of E2

T such that P is an
arc from p to q holds P is compact.

(2) For every real number r holds 0 ¬ r and r ¬ 1 iff r ∈ the carrier of I.
(3) For all points p1, p2 of E2

T and for all real numbers r1, r2 such that
(1− r1) · p1 + r1 · p2 = (1− r2) · p1 + r2 · p2 holds r1 = r2 or p1 = p2.

(4) Let p1, p2 be points of E2
T. Suppose p1 6= p2. Then there exists a map

f from I into (E2
T)¹L(p1, p2) such that for every real number x such that

x ∈ [0, 1] holds f(x) = (1− x) · p1 + x · p2 and f is a homeomorphism and
f(0) = p1 and f(1) = p2.

1This paper was written while the author visited the Shinshu University in the winter of
1997.
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One can verify that E2
T is arcwise connected.

One can check that there exists a subspace of E2
T which is compact and non

empty.
The following proposition is true

(5) Let a, b be points of E2
T, f be a path from a to b, P be a non empty

compact subspace of E2
T, and g be a map from I into P . If f is one-to-one

and g = f and ΩP = rng f, then g is a homeomorphism.

2. Equivalence of analytical and topological definitions of
continuity

We now state a number of propositions:

(6) Let X be a subset of R. Then X ∈ the open set family of the metric
space of real numbers if and only if X is open.

(7) Let f be a map from R1 into R1, x be a point of R1, g be a partial
function from R to R, and x1 be a real number. If f is continuous at x

and f = g and x = x1, then g is continuous in x1.

(8) Let f be a continuous map from R1 into R1 and g be a partial function
from R to R. If f = g, then g is continuous on R.

(9) Let f be a continuous one-to-one map from R1 into R1. Then
(i) for all points x, y of I and for all real numbers p, q, f1, f2 such that

x = p and y = q and p < q and f1 = f(x) and f2 = f(y) holds f1 < f2, or
(ii) for all points x, y of I and for all real numbers p, q, f1, f2 such that

x = p and y = q and p < q and f1 = f(x) and f2 = f(y) holds f1 > f2.

(10) Let r, g1, a, b be real numbers and x be an element of the carrier of
[a, b]M. If a ¬ b and x = r and g1 > 0 and ]r − g1, r + g1[ ⊆ [a, b], then
]r − g1, r + g1[ = Ball(x, g1).

(11) Let a, b be real numbers and X be a subset of R. Suppose a < b and
a /∈ X and b /∈ X. If X ∈ the open set family of [a, b]M, then X is open.

(12) For every open subset X of R and for all real numbers a, b such that
X ⊆ [a, b] holds a /∈ X and b /∈ X.

(13) Let a, b be real numbers, X be a subset of R, and V be a subset of the
carrier of [a, b]M. Suppose a ¬ b and V = X. If X is open, then V ∈ the
open set family of [a, b]M.

(14) Let a, b, c, d, x1 be real numbers, f be a map from [a, b]T into [c, d]T,
x be a point of [a, b]T, and g be a partial function from R to R. Suppose
a < b and c < d and f is continuous at x and f(a) = c and f(b) = d and
f is one-to-one and f = g and x = x1. Then g¹[a, b] is continuous in x1.
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(15) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, and g

be a partial function from R to R. Suppose f is continuous and one-to-one
and a < b and c < d and f = g and f(a) = c and f(b) = d. Then g is
continuous on [a, b].

3. On the monotonicity of continuous maps

One can prove the following propositions:

(16) Let a, b, c, d be real numbers and f be a map from [a, b]T into [c, d]T.
Suppose a < b and c < d and f is continuous and one-to-one and f(a) = c

and f(b) = d. Let x, y be points of [a, b]T and p, q, f1, f2 be real numbers.
If x = p and y = q and p < q and f1 = f(x) and f2 = f(y), then f1 < f2.

(17) Let f be a continuous one-to-one map from I into I. Suppose f(0) = 0
and f(1) = 1. Let x, y be points of I and p, q, f1, f2 be real numbers. If
x = p and y = q and p < q and f1 = f(x) and f2 = f(y), then f1 < f2.

(18) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, P

be a non empty subset of [a, b]T, and P1, Q1 be subsets of R1. Suppose
a < b and c < d and P1 = P and f is continuous and one-to-one and P1 is
compact and f(a) = c and f(b) = d and f◦P = Q1. Then f(inf(Ω(P1))) =
inf(Ω(Q1)).

(19) Let a, b, c, d be real numbers, f be a map from [a, b]T into [c, d]T, P ,
Q be non empty subsets of [a, b]T, and P1, Q1 be subsets of R1. Suppose
a < b and c < d and P1 = P and Q1 = Q and f is continuous and one-
to-one and P1 is compact and f(a) = c and f(b) = d and f◦P = Q. Then
f(sup(Ω(P1))) = sup(Ω(Q1)).

(20) For all real numbers a, b such that a ¬ b holds inf[a, b] = a and sup[a, b] =
b.

(21) Let a, b, c, d, e, f , g, h be real numbers and F be a map from [a, b]T
into [c, d]T. Suppose a < b and c < d and e < f and a ¬ e and f ¬ b

and F is a homeomorphism and F (a) = c and F (b) = d and g = F (e) and
h = F (f). Then F ◦[e, f ] = [g, h].

(22) Let P , Q be subsets of the carrier of E2
T and p1, p2 be points of E2

T.
Suppose P meets Q and P ∩ Q is closed and P is an arc from p1 to p2.
Then there exists a point E1 of E2

T such that
(i) E1 ∈ P ∩Q, and
(ii) there exists a map g from I into (E2

T)¹P and there exists a real number
s2 such that g is a homeomorphism and g(0) = p1 and g(1) = p2 and
g(s2) = E1 and 0 ¬ s2 and s2 ¬ 1 and for every real number t such that
0 ¬ t and t < s2 holds g(t) /∈ Q.
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(23) Let P , Q be subsets of the carrier of E2
T and p1, p2 be points of E2

T.
Suppose P meets Q and P ∩ Q is closed and P is an arc from p1 to p2.
Then there exists a point E1 of E2

T such that
(i) E1 ∈ P ∩Q, and
(ii) there exists a map g from I into (E2

T)¹P and there exists a real number
s2 such that g is a homeomorphism and g(0) = p1 and g(1) = p2 and
g(s2) = E1 and 0 ¬ s2 and s2 ¬ 1 and for every real number t such that
1  t and t > s2 holds g(t) /∈ Q.
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Summary. Some auxiliary theorems needed to formalize the proof of the
Jordan Curve Theorem according to [25] are proved.

MML Identifier: JORDAN5B.

The articles [26], [29], [13], [1], [22], [24], [31], [2], [4], [5], [11], [28], [20], [12],
[16], [23], [9], [8], [27], [10], [30], [15], [17], [18], [14], [19], [21], [6], [7], and [3]
provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every natural number i1 such that 1 ¬ i1 holds i1 −′ 1 < i1.

(2) For all natural numbers i, k such that i + 1 ¬ k holds 1 ¬ k −′ i.
(3) For all natural numbers i, k such that 1 ¬ i and 1 ¬ k holds k−′i+1 ¬ k.

(4) For every real number r such that r ∈ the carrier of I holds 1− r ∈ the
carrier of I.

(5) For all points p, q, p1 of E2
T such that p2 6= q2 and p1 ∈ L(p, q) holds if

(p1)2 = p2, then (p1)1 = p1.

(6) For all points p, q, p1 of E2
T such that p1 6= q1 and p1 ∈ L(p, q) holds if

(p1)1 = p1, then (p1)2 = p2.

1This paper was written while the author visited the Shinshu University in the winter of
1997.
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(7) Let f be a finite sequence of elements of E2
T, P be a non empty subset

of the carrier of E2
T, F be a map from I into (E2

T)¹P, and i be a natural
number. Suppose 1 ¬ i and i + 1 ¬ len f and f is a special sequence and
P = L̃(f) and F is a homeomorphism and F (0) = π1f and F (1) = πlen ff.

Then there exist real numbers p1, p2 such that p1 < p2 and 0 ¬ p1 and
p1 ¬ 1 and 0 ¬ p2 and p2 ¬ 1 and L(f, i) = F ◦[p1, p2] and F (p1) = πif

and F (p2) = πi+1f.

(8) Let f be a finite sequence of elements of E2
T, Q, R be non empty subsets

of the carrier of E2
T, F be a map from I into (E2

T)¹Q, i be a natural number,
and P be a non empty subset of I. Suppose that

(i) f is a special sequence,
(ii) F is a homeomorphism,
(iii) F (0) = π1f,

(iv) F (1) = πlen ff,

(v) 1 ¬ i,

(vi) i + 1 ¬ len f,

(vii) F ◦P = L(f, i),
(viii) Q = L̃(f), and
(ix) R = L(f, i).

Then there exists a map G from I¹P into (E2
T)¹R such that G = F ¹P and

G is a homeomorphism.

2. Some properties of real intervals

One can prove the following propositions:

(9) For all points p1, p2, p of E2
T such that p1 6= p2 and p ∈ L(p1, p2) holds

LE(p, p, p1, p2).
(10) For all points p, p1, p2 of E2

T such that p1 6= p2 and p ∈ L(p1, p2) holds
LE(p1, p, p1, p2).

(11) For all points p, p1, p2 of E2
T such that p ∈ L(p1, p2) and p1 6= p2 holds

LE(p, p2, p1, p2).
(12) For all points p1, p2, q1, q2, q3 of E2

T such that p1 6= p2 and
LE(q1, q2, p1, p2) and LE(q2, q3, p1, p2) holds LE(q1, q3, p1, p2).

(13) For all points p, q of E2
T such that p 6= q holds L(p, q) = {p1; p1 ranges

over points of E2
T: LE(p, p1, p, q) ∧ LE(p1, q, p, q)}.

(14) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then P is an arc from p2 to p1.

(15) Let f be a finite sequence of elements of E2
T, P be a subset of the carrier

of E2
T, and i be a natural number. Suppose f is a special sequence and
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1 ¬ i and i + 1 ¬ len f and P = L(f, i). Then P is an arc from πif to
πi+1f.

3. Cutting off sequences

One can prove the following propositions:

(16) Let g1 be a finite sequence of elements of E2
T and i be a natural number.

Suppose 1 ¬ i and i ¬ len g1 and g1 is a special sequence. If π1g1 ∈
L̃(mid(g1, i, len g1)), then i = 1.

(17) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f

is a special sequence and p = f(len f), then ¼ p, f = 〈p, p〉.
(18) Let f be a finite sequence of elements of E2

T and k be a natural number.
If 1 ¬ k and k ¬ len f, then mid(f, k, k) = 〈πkf〉.

(19) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f

is a special sequence and p = f(1), then º f, p = 〈p〉.
(20) Let f be a finite sequence of elements of E2

T and p be a point of E2
T. If f

is a special sequence and p ∈ L̃(f), then L̃(º f, p) ⊆ L̃(f).
(21) Let f be a finite sequence of elements of E2

T and p be a point of E2
T. If p ∈

L̃(f) and p 6= f(len f) and f is a special sequence, then Index(p, ¼ p, f) = 1.

(22) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If
p ∈ L̃(f) and f is a special sequence, then p ∈ L̃(¼ p, f).

(23) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If
p ∈ L̃(f) and f is a special sequence and p 6= f(1), then p ∈ L̃(º f, p).

(24) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If
p ∈ L̃(f) and p 6= f(len f) and f is a special sequence, then ¼º p, f, p = 〈p〉.

(25) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T. If
p ∈ L̃(f) and q ∈ L̃(f) and p = f(len f) and f is a special sequence, then
p ∈ L̃(¼ q, f).

(26) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T. If
p ∈ L̃(f) and q ∈ L̃(f) and f is a special sequence, then p ∈ L̃(¼ q, f) or
q ∈ L̃(¼ p, f).

(27) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T.
Suppose p ∈ L̃(f) and q ∈ L̃(f) and p 6= f(len f) or q 6= f(len f) and f is
a special sequence. Then L̃(¼º p, f, q) ⊆ L̃(f).

(28) Let f be a non constant standard special circular sequence and i, j

be natural numbers. Suppose 1 ¬ i and j ¬ len the Go-board of f and
i < j. Then L((the Go-board of f)1,width the Go-board of f , (the Go-board of
f)i,width the Go-board of f )∩L((the Go-board of f)j,width the Go-board of f , (the
Go-board of f)len the Go-board of f , width the Go-board of f ) = ∅.
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(29) Let f be a non constant standard special circular sequence and i, j

be natural numbers. Suppose 1 ¬ i and j ¬ width the Go-board of f

and i < j. Then L((the Go-board of f)len the Go-board of f , 1, (the Go-board
of f)len the Go-board of f , i)∩L((the Go-board of f)len the Go-board of f , j , (the
Go-board of f)len the Go-board of f , width the Go-board of f ) = ∅.

(30) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f

is a special sequence, then ¼π1f, f = f.

(31) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f

is a special sequence, then º f, πlen ff = f.

(32) Let f be a finite sequence of elements of E2
T and p be a point of

E2
T. If p ∈ L̃(f) and f is a special sequence and p 6= f(len f), then

p ∈ L(πIndex(p,f)f, πIndex(p,f)+1f).
(33) Let f be a finite sequence of elements of E2

T, p be a point of E2
T, and i

be a natural number. If f is a special sequence, then if π1f ∈ L(f, i), then
i = 1.

(34) Let f be a non constant standard special circular sequence, j be a natural
number, and P be a subset of the carrier of E2

T. Suppose 1 ¬ j and
j ¬ width the Go-board of f and P = L((the Go-board of f)1,j , (the Go-
board of f)len the Go-board of f , j). Then P is a special polygonal arc joining
(the Go-board of f)1,j and (the Go-board of f)len the Go-board of f , j .

(35) Let f be a non constant standard special circular sequence, j be a natural
number, and P be a subset of the carrier of E2

T. Suppose 1 ¬ j and
j ¬ len the Go-board of f and P = L((the Go-board of f)j,1, (the Go-
board of f)j,width the Go-board of f ). Then P is a special polygonal arc joining
(the Go-board of f)j,1 and (the Go-board of f)j,width the Go-board of f .
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Summary. The proof of the Jordan Curve Theorem according to [14] is
continued. The notions of the first and last point of a oriented arc are introduced
as well as ordering of points on a curve in E2

T .
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The papers [15], [18], [10], [1], [13], [20], [2], [3], [4], [8], [17], [11], [9], [12], [6],
[5], [16], [7], and [19] provide the terminology and notation for this paper.

1. First and last point of a curve

One can prove the following proposition

(1) Let P , Q be subsets of the carrier of E2
T, p1, p2, q1 be points of E2

T, f be
a map from I into (E2

T)¹P, and s1 be a real number. Suppose that
(i) P is an arc from p1 to p2,
(ii) q1 ∈ P,

(iii) q1 ∈ Q,

(iv) f(s1) = q1,

(v) f is a homeomorphism,
(vi) f(0) = p1,

(vii) f(1) = p2,

(viii) 0 ¬ s1,

(ix) s1 ¬ 1, and

1This paper was written while the author visited the Shinshu University in the winter of
1997.
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(x) for every real number t such that 0 ¬ t and t < s1 holds f(t) /∈ Q.

Let g be a map from I into (E2
T)¹P and s2 be a real number. Suppose g is

a homeomorphism and g(0) = p1 and g(1) = p2 and g(s2) = q1 and 0 ¬ s2

and s2 ¬ 1. Let t be a real number. If 0 ¬ t and t < s2, then g(t) /∈ Q.

Let P , Q be subsets of the carrier of E2
T and let p1, p2 be points of E2

T. Let us
assume that P meets Q and P ∩Q is closed and P is an arc from p1 to p2. The
functor FPoint(P, p1, p2, Q) yielding a point of E2

T is defined by the conditions
(Def. 1).

(Def. 1)(i) FPoint(P, p1, p2, Q) ∈ P ∩Q, and
(ii) for every map g from I into (E2

T)¹P and for every real number s2 such
that g is a homeomorphism and g(0) = p1 and g(1) = p2 and g(s2) =
FPoint(P, p1, p2, Q) and 0 ¬ s2 and s2 ¬ 1 and for every real number t

such that 0 ¬ t and t < s2 holds g(t) /∈ Q.

One can prove the following three propositions:

(2) Let P , Q be subsets of the carrier of E2
T and p, p1, p2 be points of E2

T. If p ∈
P and P is an arc from p1 to p2 and Q = {p}, then FPoint(P, p1, p2, Q) = p.

(3) Let P be a non empty subset of the carrier of E2
T, Q be a subset of the

carrier of E2
T, and p1, p2 be points of E2

T. If p1 ∈ Q and P ∩ Q is closed
and P is an arc from p1 to p2, then FPoint(P, p1, p2, Q) = p1.

(4) Let P , Q be subsets of the carrier of E2
T, p1, p2, q1 be points of E2

T, f be
a map from I into (E2

T)¹P, and s1 be a real number. Suppose that
(i) P is an arc from p1 to p2,
(ii) q1 ∈ P,

(iii) q1 ∈ Q,

(iv) f(s1) = q1,

(v) f is a homeomorphism,
(vi) f(0) = p1,

(vii) f(1) = p2,

(viii) 0 ¬ s1,

(ix) s1 ¬ 1, and
(x) for every real number t such that 1  t and t > s1 holds f(t) /∈ Q.

Let g be a map from I into (E2
T)¹P and s2 be a real number. Suppose g is

a homeomorphism and g(0) = p1 and g(1) = p2 and g(s2) = q1 and 0 ¬ s2

and s2 ¬ 1. Let t be a real number. If 1  t and t > s2, then g(t) /∈ Q.

Let P , Q be subsets of the carrier of E2
T and let p1, p2 be points of E2

T. Let us
assume that P meets Q and P ∩Q is closed and P is an arc from p1 to p2. The
functor LPoint(P, p1, p2, Q) yielding a point of E2

T is defined by the conditions
(Def. 2).

(Def. 2)(i) LPoint(P, p1, p2, Q) ∈ P ∩Q, and
(ii) for every map g from I into (E2

T)¹P and for every real number s2 such
that g is a homeomorphism and g(0) = p1 and g(1) = p2 and g(s2) =
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LPoint(P, p1, p2, Q) and 0 ¬ s2 and s2 ¬ 1 and for every real number t

such that 1  t and t > s2 holds g(t) /∈ Q.

One can prove the following propositions:

(5) Let P , Q be subsets of the carrier of E2
T and p, p1, p2 be points of E2

T. If p ∈
P and P is an arc from p1 to p2 and Q = {p}, then LPoint(P, p1, p2, Q) = p.

(6) Let P be a non empty subset of the carrier of E2
T, Q be a subset of the

carrier of E2
T, and p1, p2 be points of E2

T. If p2 ∈ Q and P ∩ Q is closed
and P is an arc from p1 to p2, then LPoint(P, p1, p2, Q) = p2.

(7) Let P be a non empty subset of the carrier of E2
T, Q be a subset of

the carrier of E2
T, and p1, p2 be points of E2

T. Suppose P ⊆ Q and P

is closed and an arc from p1 to p2. Then FPoint(P, p1, p2, Q) = p1 and
LPoint(P, p1, p2, Q) = p2.

2. The ordering of points on a curve

Let P be a subset of the carrier of E2
T and let p1, p2, q1, q2 be points of

E2
T. We say that LE q1, q2, P , p1, p2 if and only if the conditions (Def. 3) are

satisfied.

(Def. 3)(i) q1 ∈ P,

(ii) q2 ∈ P, and
(iii) for every map g from I into (E2

T)¹P and for all real numbers s1, s2 such
that g is a homeomorphism and g(0) = p1 and g(1) = p2 and g(s1) = q1

and 0 ¬ s1 and s1 ¬ 1 and g(s2) = q2 and 0 ¬ s2 and s2 ¬ 1 holds s1 ¬ s2.

The following propositions are true:

(8) Let P be a non empty subset of the carrier of E2
T, p1, p2, q1, q2 be points

of E2
T, g be a map from I into (E2

T)¹P, and s1, s2 be real numbers. Suppose
that

(i) P is an arc from p1 to p2,
(ii) g is a homeomorphism,
(iii) g(0) = p1,

(iv) g(1) = p2,

(v) g(s1) = q1,

(vi) 0 ¬ s1,

(vii) s1 ¬ 1,

(viii) g(s2) = q2,

(ix) 0 ¬ s2,

(x) s2 ¬ 1, and
(xi) s1 ¬ s2.

Then LE q1, q2, P , p1, p2.
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(9) Let P be a subset of the carrier of E2
T and p1, p2, q1 be points of E2

T. If
P is an arc from p1 to p2 and q1 ∈ P, then LE q1, q1, P , p1, p2.

(10) Let P be a subset of the carrier of E2
T and p1, p2, q1 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P. Then LE p1, q1, P , p1, p2

and LE q1, p2, P , p1, p2.

(11) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then LE p1, p2, P , p1, p2.

(12) Let P be a non empty subset of the carrier of E2
T and p1, p2, q1, q2 be

points of E2
T. Suppose P is an arc from p1 to p2 and LE q1, q2, P , p1, p2

and LE q2, q1, P , p1, p2. Then q1 = q2.

(13) Let P be a non empty subset of the carrier of E2
T and p1, p2, q1, q2, q3

be points of E2
T. Suppose P is an arc from p1 to p2 and LE q1, q2, P , p1,

p2 and LE q2, q3, P , p1, p2. Then LE q1, q3, P , p1, p2.

(14) Let P be a subset of the carrier of E2
T and p1, p2, q1, q2 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P and q2 ∈ P and q1 6= q2.

Then LE q1, q2, P , p1, p2 and not LE q2, q1, P , p1, p2 or LE q2, q1, P , p1,
p2 and not LE q1, q2, P , p1, p2.

3. Some properties of the ordering of points on a curve

We now state a number of propositions:

(15) Let f be a finite sequence of elements of E2
T, Q be a subset of the carrier

of E2
T, and q be a point of E2

T. Suppose f is a special sequence and L̃(f)∩Q

is closed and q ∈ L̃(f) and q ∈ Q. Then LE FPoint(L̃(f), π1f, πlen ff,Q),
q, L̃(f), π1f, πlen ff.

(16) Let f be a finite sequence of elements of E2
T, Q be a subset of the carrier

of E2
T, and q be a point of E2

T. Suppose f is a special sequence and L̃(f)∩Q

is closed and q ∈ L̃(f) and q ∈ Q. Then LE q, LPoint(L̃(f), π1f, πlen ff,Q),
L̃(f), π1f, πlen ff.

(17) For all points q1, q2, p1, p2 of E2
T such that p1 6= p2 holds if LE q1, q2,

L(p1, p2), p1, p2, then LE(q1, q2, p1, p2).
(18) Let P , Q be subsets of the carrier of E2

T and p1, p2 be points of E2
T. Sup-

pose P is an arc from p1 to p2 and P ∩Q 6= ∅ and P ∩Q is closed. Then
FPoint(P, p1, p2, Q) = LPoint(P, p2, p1, Q) and LPoint(P, p1, p2, Q) =
FPoint(P, p2, p1, Q).

(19) Let f be a finite sequence of elements of E2
T, Q be a subset of

the carrier of E2
T, and i be a natural number. Suppose L̃(f) me-

ets Q and Q is closed and f is a special sequence and 1 ¬ i
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and i + 1 ¬ len f and FPoint(L̃(f), π1f, πlen ff, Q) ∈ L(f, i). Then
FPoint(L̃(f), π1f, πlen ff, Q) = FPoint(L(f, i), πif, πi+1f,Q).

(20) Let f be a finite sequence of elements of E2
T, Q be a subset of

the carrier of E2
T, and i be a natural number. Suppose L̃(f) me-

ets Q and Q is closed and f is a special sequence and 1 ¬ i

and i + 1 ¬ len f and LPoint(L̃(f), π1f, πlen ff,Q) ∈ L(f, i). Then
LPoint(L̃(f), π1f, πlen ff,Q) = LPoint(L(f, i), πif, πi+1f, Q).

(21) Let f be a finite sequence of elements of E2
T and i be a natu-

ral number. Suppose 1 ¬ i and i + 1 ¬ len f and f is a spe-
cial sequence and FPoint(L̃(f), π1f, πlen ff,L(f, i)) ∈ L(f, i). Then
FPoint(L̃(f), π1f, πlen ff,L(f, i)) = πif.

(22) Let f be a finite sequence of elements of E2
T and i be a natu-

ral number. Suppose 1 ¬ i and i + 1 ¬ len f and f is a spe-
cial sequence and LPoint(L̃(f), π1f, πlen ff,L(f, i)) ∈ L(f, i). Then
LPoint(L̃(f), π1f, πlen ff,L(f, i)) = πi+1f.

(23) Let f be a finite sequence of elements of E2
T and i be a natural number.

Suppose f is a special sequence and 1 ¬ i and i + 1 ¬ len f. Then LE πif,

πi+1f, L̃(f), π1f, πlen ff.

(24) Let f be a finite sequence of elements of E2
T and i, k be natural numbers.

Suppose f is a special sequence and 1 ¬ i and i + k + 1 ¬ len f. Then LE
πif, πi+kf, L̃(f), π1f, πlen ff.

(25) Let f be a finite sequence of elements of E2
T, q be a point of E2

T, and
i be a natural number. Suppose f is a special sequence and 1 ¬ i and
i + 1 ¬ len f and q ∈ L(f, i). Then LE πif, q, L̃(f), π1f, πlen ff.

(26) Let f be a finite sequence of elements of E2
T, q be a point of E2

T, and
i be a natural number. Suppose f is a special sequence and 1 ¬ i and
i + 1 ¬ len f and q ∈ L(f, i). Then LE q, πi+1f, L̃(f), π1f, πlen ff.

(27) Let f be a finite sequence of elements of E2
T, Q be a subset of the carrier

of E2
T, q be a point of E2

T, and i, j be natural numbers. Suppose that
(i) L̃(f) meets Q,
(ii) f is a special sequence,
(iii) Q is closed,
(iv) FPoint(L̃(f), π1f, πlen ff, Q) ∈ L(f, i),
(v) 1 ¬ i,

(vi) i + 1 ¬ len f,

(vii) q ∈ L(f, j),
(viii) 1 ¬ j,

(ix) j + 1 ¬ len f,

(x) q ∈ Q, and
(xi) FPoint(L̃(f), π1f, πlen ff, Q) 6= q.
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Then i ¬ j and if i = j, then LE(FPoint(L̃(f), π1f, πlen ff, Q), q, πif, πi+1f).
(28) Let f be a finite sequence of elements of E2

T, Q be a subset of the carrier
of E2

T, q be a point of E2
T, and i, j be natural numbers. Suppose that

(i) L̃(f) meets Q,
(ii) f is a special sequence,
(iii) Q is closed,
(iv) LPoint(L̃(f), π1f, πlen ff,Q) ∈ L(f, i),
(v) 1 ¬ i,

(vi) i + 1 ¬ len f,

(vii) q ∈ L(f, j),
(viii) 1 ¬ j,

(ix) j + 1 ¬ len f,

(x) q ∈ Q, and
(xi) LPoint(L̃(f), π1f, πlen ff,Q) 6= q.

Then i  j and if i = j, then LE(q, LPoint(L̃(f), π1f, πlen ff,Q), πif, πi+1f).
(29) Let f be a finite sequence of elements of E2

T, q1, q2 be points of E2
T, and

i be a natural number. Suppose q1 ∈ L(f, i) and q2 ∈ L(f, i) and f is
a special sequence and 1 ¬ i and i + 1 ¬ len f. If LE q1, q2, L̃(f), π1f,

πlen ff, then LE q1, q2, L(f, i), πif, πi+1f.

(30) Let f be a finite sequence of elements of E2
T and q1, q2 be points of E2

T.
Suppose q1 ∈ L̃(f) and q2 ∈ L̃(f) and f is a special sequence and q1 6= q2.

Then LE q1, q2, L̃(f), π1f, πlen ff if and only if for all natural numbers i,
j such that q1 ∈ L(f, i) and q2 ∈ L(f, j) and 1 ¬ i and i + 1 ¬ len f and
1 ¬ j and j+1 ¬ len f holds i ¬ j and if i = j, then LE(q1, q2, πif, πi+1f).
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1. Preliminaries

In this paper C denotes a category and o1, o2, o3 denote objects of C.
Let C be a non empty category structure with units and let o be an object

of C. Observe that 〈o, o〉 is non empty.
The following propositions are true:

(1) Let v be a morphism from o1 to o2, u be a morphism from o1 to o3,
and f be a morphism from o2 to o3. If u = f · v and f−1 · f = id(o2) and
〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o3, o2〉 6= ∅, then v = f−1 · u.

(2) Let v be a morphism from o2 to o3, u be a morphism from o1 to o3,
and f be a morphism from o1 to o2. If u = v · f and f · f−1 = id(o2) and
〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and 〈o2, o3〉 6= ∅, then v = u · f−1.

(3) For every morphism m from o1 to o2 such that 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6=
∅ and m is iso holds m−1 is iso.

(4) For every non empty category structure C with units and for every object
o of C holds ido is epi and mono.
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Let C be a non empty category structure with units and let o be an object
of C. One can verify that ido is epi mono retraction and coretraction.

Let C be a category and let o be an object of C. Note that ido is iso.
We now state two propositions:

(5) Let f be a morphism from o1 to o2 and g, h be morphisms from o2 to
o1. If h · f = id(o1) and f · g = id(o2) and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅, then
g = h.

(6) Suppose that for all objects o1, o2 of C holds every morphism from o1

to o2 is coretraction. Let a, b be objects of C and g be a morphism from
a to b. If 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅, then g is iso.

2. Some properties of the initial and terminal objects

The following propositions are true:

(7) For all morphisms m, m′ from o1 to o2 such that m is zero and m′ is
zero and there exists an object of C which is zero holds m = m′.

(8) Let C be a non empty category structure, O, A be objects of C, and M

be a morphism from O to A. If O is terminal, then M is mono.

(9) Let C be a non empty category structure, O, A be objects of C, and M

be a morphism from A to O. If O is initial, then M is epi.

(10) If o2 is terminal and o1, o2 are iso , then o1 is terminal.

(11) If o1 is initial and o1, o2 are iso , then o2 is initial.

(12) If o1 is initial and o2 is terminal and 〈o2, o1〉 6= ∅, then o2 is initial and
o1 is terminal.

3. The properties of the functors

One can prove the following propositions:

(13) Let A, B be transitive non empty category structures with units, F

be a contravariant functor from A to B, and a be an object of A. Then
F (ida) = idF (a) .

(14) Let C1, C2 be non empty category structures and F be a precontravariant
functor structure from C1 to C2. Then F is full if and only if for all objects
o1, o2 of C1 holds Morph-MapF (o2, o1) is onto.

(15) Let C1, C2 be non empty category structures and F be a precontravariant
functor structure from C1 to C2. Then F is faithful if and only if for all
objects o1, o2 of C1 holds Morph-MapF (o2, o1) is one-to-one.
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(16) Let C1, C2 be non empty category structures, F be a precovariant functor
structure from C1 to C2, o1, o2 be objects of C1, and F1 be a morphism
from F (o1) to F (o2). Suppose 〈o1, o2〉 6= ∅ and F is full and feasible. Then
there exists a morphism m from o1 to o2 such that F1 = F (m).

(17) Let C1, C2 be non empty category structures, F be a precontravariant
functor structure from C1 to C2, o1, o2 be objects of C1, and F1 be a
morphism from F (o2) to F (o1). Suppose 〈o1, o2〉 6= ∅ and F is full and
feasible. Then there exists a morphism m from o1 to o2 such that F1 =
F (m).

(18) Let A, B be transitive non empty category structures with units, F be a
covariant functor from A to B, o1, o2 be objects of A, and a be a morphism
from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is retraction, then F (a)
is retraction.

(19) Let A, B be transitive non empty category structures with units, F be a
covariant functor from A to B, o1, o2 be objects of A, and a be a morphism
from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is coretraction, then
F (a) is coretraction.

(20) Let A, B be categories, F be a covariant functor from A to B, o1, o2

be objects of A, and a be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅ and a is iso, then F (a) is iso.

(21) Let A, B be categories, F be a covariant functor from A to B, and o1,
o2 be objects of A. If o1, o2 are iso , then F (o1), F (o2) are iso .

(22) Let A, B be transitive non empty category structures with units, F be
a contravariant functor from A to B, o1, o2 be objects of A, and a be a
morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is retraction,
then F (a) is coretraction.

(23) Let A, B be transitive non empty category structures with units, F

be a contravariant functor from A to B, o1, o2 be objects of A, and a

be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is
coretraction, then F (a) is retraction.

(24) Let A, B be categories, F be a contravariant functor from A to B, o1,
o2 be objects of A, and a be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅ and a is iso, then F (a) is iso.

(25) Let A, B be categories, F be a contravariant functor from A to B, and
o1, o2 be objects of A. If o1, o2 are iso , then F (o2), F (o1) are iso .

(26) Let A, B be transitive non empty category structures with units, F

be a covariant functor from A to B, o1, o2 be objects of A, and a be a
morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅
and 〈o2, o1〉 6= ∅ and F (a) is retraction. Then a is retraction.

(27) Let A, B be transitive non empty category structures with units, F
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be a covariant functor from A to B, o1, o2 be objects of A, and a be a
morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅
and 〈o2, o1〉 6= ∅ and F (a) is coretraction. Then a is coretraction.

(28) Let A, B be categories, F be a covariant functor from A to B, o1, o2 be
objects of A, and a be a morphism from o1 to o2. Suppose F is full and
faithful and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and F (a) is iso. Then a is iso.

(29) Let A, B be categories, F be a covariant functor from A to B, and o1,
o2 be objects of A. Suppose F is full and faithful and 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅ and F (o1), F (o2) are iso . Then o1, o2 are iso .

(30) Let A, B be transitive non empty category structures with units, F be
a contravariant functor from A to B, o1, o2 be objects of A, and a be a
morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅
and 〈o2, o1〉 6= ∅ and F (a) is retraction. Then a is coretraction.

(31) Let A, B be transitive non empty category structures with units, F be
a contravariant functor from A to B, o1, o2 be objects of A, and a be a
morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅
and 〈o2, o1〉 6= ∅ and F (a) is coretraction. Then a is retraction.

(32) Let A, B be categories, F be a contravariant functor from A to B, o1,
o2 be objects of A, and a be a morphism from o1 to o2. Suppose F is full
and faithful and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and F (a) is iso. Then a is
iso.

(33) Let A, B be categories, F be a contravariant functor from A to B, and
o1, o2 be objects of A. Suppose F is full and faithful and 〈o1, o2〉 6= ∅ and
〈o2, o1〉 6= ∅ and F (o2), F (o1) are iso . Then o1, o2 are iso .

4. The subcategories of the morphisms

We now state two propositions:

(34) Let C be a category structure and D be a substructure of C. Suppose
the carrier of C = the carrier of D and the arrows of C = the arrows of
D. Then D is full.

(35) Let C be a non empty category structure with units and D be a sub-
structure of C. Suppose the carrier of C = the carrier of D and the arrows
of C = the arrows of D. Then D is full and id-inheriting.

Let C be a category. Observe that there exists a subcategory of C which is
full, non empty, and strict.

Next we state several propositions:

(36) For every non empty subcategory B of C holds every non empty subca-
tegory of B is a non empty subcategory of C.
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(37) Let C be a non empty transitive category structure, D be a non empty
transitive substructure of C, o1, o2 be objects of C, p1, p2 be objects of
D, m be a morphism from o1 to o2, and n be a morphism from p1 to p2

such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅. Then
(i) if m is mono, then n is mono, and
(ii) if m is epi, then n is epi.

(38) Let D be a non empty subcategory of C, o1, o2 be objects of C, p1, p2

be objects of D, m be a morphism from o1 to o2, m1 be a morphism from
o2 to o1, n be a morphism from p1 to p2, and n1 be a morphism from p2 to
p1 such that p1 = o1 and p2 = o2 and m = n and m1 = n1 and 〈p1, p2〉 6= ∅
and 〈p2, p1〉 6= ∅. Then

(i) m is left inverse of m1 iff n is left inverse of n1, and
(ii) m is right inverse of m1 iff n is right inverse of n1.

(39) Let D be a full non empty subcategory of C, o1, o2 be objects of C, p1,
p2 be objects of D, m be a morphism from o1 to o2, and n be a morphism
from p1 to p2 such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅
and 〈p2, p1〉 6= ∅. Then

(i) if m is retraction, then n is retraction,
(ii) if m is coretraction, then n is coretraction, and
(iii) if m is iso, then n is iso.

(40) Let D be a non empty subcategory of C, o1, o2 be objects of C, p1, p2

be objects of D, m be a morphism from o1 to o2, and n be a morphism
from p1 to p2 such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅
and 〈p2, p1〉 6= ∅. Then

(i) if n is retraction, then m is retraction,
(ii) if n is coretraction, then m is coretraction, and
(iii) if n is iso, then m is iso.

Let C be a category. The functor AllMono C yields a strict non empty trans-
itive substructure of C and is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of AllMono C = the carrier of C,
(ii) the arrows of AllMono C ⊆̇ the arrows of C, and
(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllMono C)(o1, o2) iff 〈o1, o2〉 6= ∅ and m is mono.

Let C be a category. Note that AllMono C is id-inheriting.
Let C be a category. The functor AllEpi C yields a strict non empty transitive

substructure of C and is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of AllEpi C = the carrier of C,
(ii) the arrows of AllEpi C ⊆̇ the arrows of C, and
(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllEpi C)(o1, o2) iff 〈o1, o2〉 6= ∅ and m is epi.
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Let C be a category. Observe that AllEpi C is id-inheriting.
Let C be a category. The functor AllRetr C yielding a strict non empty

transitive substructure of C is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of AllRetr C = the carrier of C,
(ii) the arrows of AllRetr C ⊆̇ the arrows of C, and
(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllRetr C)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and
m is retraction.

Let C be a category. One can check that AllRetr C is id-inheriting.
Let C be a category. The functor AllCoretr C yielding a strict non empty

transitive substructure of C is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of AllCoretr C = the carrier of C,
(ii) the arrows of AllCoretr C ⊆̇ the arrows of C, and
(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllCoretr C)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅
and m is coretraction.

Let C be a category. One can verify that AllCoretr C is id-inheriting.
Let C be a category. The functor AllIso C yields a strict non empty transitive

substructure of C and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of AllIso C = the carrier of C,
(ii) the arrows of AllIso C ⊆̇ the arrows of C, and
(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllIso C)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and
m is iso.

Let C be a category. Note that AllIso C is id-inheriting.
Next we state a number of propositions:

(41) AllIso C is a non empty subcategory of AllRetr C.

(42) AllIso C is a non empty subcategory of AllCoretr C.

(43) AllCoretr C is a non empty subcategory of AllMono C.

(44) AllRetr C is a non empty subcategory of AllEpi C.

(45) If for all objects o1, o2 of C holds every morphism from o1 to o2 is mono,
then the category structure of C = AllMono C.

(46) If for all objects o1, o2 of C holds every morphism from o1 to o2 is epi,
then the category structure of C = AllEpi C.

(47) Suppose that for all objects o1, o2 of C and for every morphism m from
o1 to o2 holds m is retraction and 〈o2, o1〉 6= ∅. Then the category structure
of C = AllRetr C.

(48) Suppose that for all objects o1, o2 of C and for every morphism m from o1

to o2 holds m is coretraction and 〈o2, o1〉 6= ∅. Then the category structure
of C = AllCoretr C.



on the categories without uniqueness of . . . 481

(49) Suppose that for all objects o1, o2 of C and for every morphism m from
o1 to o2 holds m is iso and 〈o2, o1〉 6= ∅. Then the category structure of
C = AllIso C.

(50) For all objects o1, o2 of AllMono C and for every morphism m from o1

to o2 such that 〈o1, o2〉 6= ∅ holds m is mono.

(51) For all objects o1, o2 of AllEpi C and for every morphism m from o1 to
o2 such that 〈o1, o2〉 6= ∅ holds m is epi.

(52) For all objects o1, o2 of AllIso C and for every morphism m from o1 to
o2 such that 〈o1, o2〉 6= ∅ holds m is iso and m−1 ∈ 〈o2, o1〉.

(53) AllMono AllMono C = AllMono C.

(54) AllEpi AllEpi C = AllEpi C.

(55) AllIso AllIso C = AllIso C.

(56) AllIso AllMono C = AllIso C.

(57) AllIso AllEpi C = AllIso C.

(58) AllIso AllRetr C = AllIso C.

(59) AllIso AllCoretr C = AllIso C.
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Summary. We implement two macroinstructions loop and Times which
iterate macroinstructions of SCMFSA. In a loop macroinstruction it jumps to
the head when the original macroinstruction stops, in a Times macroinstruction
it behaves as if the original macroinstrucion repeats n times.

MML Identifier: SCMFSA8C.

The articles [22], [29], [16], [8], [12], [30], [13], [14], [11], [7], [9], [28], [15], [17],
[23], [20], [21], [27], [24], [25], [1], [10], [19], [26], [5], [6], [4], [2], [3], and [18]
provide the terminology and notation for this paper.

1. Preliminaries

Let s be a state of SCMFSA and let P be an initial finite partial state of
SCMFSA. We say that P is pseudo-closed on s if and only if the condition
(Def. 1) is satisfied.

(Def. 1) There exists a natural number k such that
IC(Computation(s+·(P+·Start-At(insloc(0)))))(k) = insloc(card ProgramPart(P ))
and for every natural number n such that n < k holds
IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ dom P.

Let P be an initial finite partial state of SCMFSA. We say that P is pseudo-
paraclosed if and only if:

(Def. 2) For every state s of SCMFSA holds P is pseudo-closed on s.
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Let us note that there exists a macro instruction which is pseudo-paraclosed.
Let s be a state of SCMFSA and let P be an initial finite partial state of

SCMFSA. Let us assume that P is pseudo-closed on s.
The functor pseudo− LifeSpan(s, P ) yielding a natural number is defined as

follows:

(Def. 3) IC(Computation(s+·(P+·Start-At(insloc(0)))))(pseudo−LifeSpan(s,P )) =
insloc(card ProgramPart(P )) and for every natural number n such that
IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) /∈ dom P holds
pseudo− LifeSpan(s, P ) ¬ n.

We now state a number of propositions:

(1) Let s be a state of SCMFSA and P be an initial finite par-
tial state of SCMFSA. Suppose P is pseudo-closed on s. Let
n be a natural number. If n < pseudo− LifeSpan(s, P ), then
IC(Computation(s+·(P+· Start-At(insloc(0)))))(n) ∈ dom P and
CurInstr((Computation(s+·(P+· Start-At(insloc(0)))))(n)) 6= haltSCMFSA .

(2) Let s be a state of SCMFSA and P be an initial finite partial
state of SCMFSA. Suppose P is pseudo-closed on s. Let k be a natu-
ral number. Suppose that for every natural number n such that n ¬
k holds IC(Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ dom P. Then k <

pseudo− LifeSpan(s, P ).
(3) Let s be a state of SCMFSA and I, J be macro instructions. Sup-

pose I is pseudo-closed on s. Let k be a natural number. Suppose
k ¬ pseudo− LifeSpan(s, I). Then (Computation(s+·(I+·Start-At(insloc
(0)))))(k) and (Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) are
equal outside the instruction locations of SCMFSA.

(4) Let s be a state of SCMFSA and I be a macro instruction. If I is closed
on s and halting on s, then Directed(I) is pseudo-closed on s.

(5) Let s be a state of SCMFSA and I be a macro instruction. If I is
closed on s and halting on s, then pseudo− LifeSpan(s, Directed(I)) =
LifeSpan(s+·(I+· Start-At(insloc(0)))) + 1.

(6) For every function f and for every set x such that x ∈ dom f holds
f+·(x7−→. f(x)) = f.

(7) For every instruction-location l of SCMFSA holds l + 0 = l.

(8) For every instruction i of SCMFSA holds IncAddr(i, 0) = i.

(9) For every programmed finite partial state P of SCMFSA holds
ProgramPart(Relocated(P, 0)) = P.

(10) For all finite partial states P , Q of SCMFSA such that P ⊆ Q holds
ProgramPart(P ) ⊆ ProgramPart(Q).

(11) For all programmed finite partial states P , Q of SCMFSA and for every
natural number k such that P ⊆ Q holds Shift(P, k) ⊆ Shift(Q, k).
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(12) For all finite partial states P , Q of SCMFSA and for every natu-
ral number k such that P ⊆ Q holds ProgramPart(Relocated(P, k)) ⊆
ProgramPart(Relocated(Q, k)).

(13) Let I, J be macro instructions and k be a natural number. Suppose
card I ¬ k and k < card I + card J. Let i be an instruction of SCMFSA.
If i = J(insloc(k −′ card I)), then (I;J)(insloc(k)) = IncAddr(i, card I).

(14) For every state s of SCMFSA such that s(intloc(0)) = 1 and ICs =
insloc(0) holds Initialize(s) = s.

(15) For every state s of SCMFSA holds Initialize(Initialize(s)) =
Initialize(s).

(16) For every state s of SCMFSA and for every macro instruction I holds
s+·(Initialized(I)+· Start-At(insloc(0))) =
Initialize(s)+·(I+· Start-At(insloc(0))).

(17) For every state s of SCMFSA and for every macro instruction I holds
IExec(I, s) = IExec(I, Initialize(s)).

(18) For every state s of SCMFSA and for every macro instruction I such that
s(intloc(0)) = 1 holds s+·(I+· Start-At(insloc(0))) = s+· Initialized(I).

(19) For every macro instruction I holds I+· Start-At(insloc(0)) ⊆
Initialized(I).

(20) For every instruction-location l of SCMFSA and for every macro instruc-
tion I holds l ∈ dom I iff l ∈ dom Initialized(I).

(21) For every state s of SCMFSA and for every macro instruction I holds
Initialized(I) is closed on s iff I is closed on Initialize(s).

(22) For every state s of SCMFSA and for every macro instruction I holds
Initialized(I) is halting on s iff I is halting on Initialize(s).

(23) For every macro instruction I such that for every state s of SCMFSA

holds I is halting on Initialize(s) holds Initialized(I) is halting.

(24) For every macro instruction I such that for every state s of SCMFSA

holds Initialized(I) is halting on s holds Initialized(I) is halting.

(25) For every macro instruction I holds ProgramPart(Initialized(I)) = I.

(26) Let s be a state of SCMFSA, I be a macro instruction, l be an
instruction-location of SCMFSA, and x be a set. If x ∈ dom I, then
I(x) = (s+·(I+· Start-At(l)))(x).

(27) For every state s of SCMFSA such that s(intloc(0)) = 1
holds Initialize(s)¹(Int-Locations∪FinSeq-Locations) =
s¹(Int-Locations∪FinSeq-Locations).

(28) Let s be a state of SCMFSA, I be a macro instruction, a be an
integer location, and l be an instruction-location of SCMFSA. Then
(s+·(I+·Start-At(l)))(a) = s(a).
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(29) For every programmed finite partial state I of SCMFSA and
for every instruction-location l of SCMFSA holds ICSCMFSA ∈
dom(I+· Start-At(l)).

(30) For every programmed finite partial state I of SCMFSA and for every
instruction-location l of SCMFSA holds (I+·Start-At(l))(ICSCMFSA) = l.

(31) Let s be a state of SCMFSA, P be a finite partial state of SCMFSA, and
l be an instruction-location of SCMFSA. Then ICs+·(P+·Start-At(l)) = l.

(32) For every state s of SCMFSA and for every instruction i of SCMFSA

such that InsCode(i) ∈ {0, 6, 7, 8} holds Exec(i, s)¹(Int-Locations∪
FinSeq-Locations) = s¹(Int-Locations∪FinSeq-Locations).

(33) Let s1, s2 be states of SCMFSA. Suppose that
(i) s1(intloc(0)) = s2(intloc(0)),
(ii) for every read-write integer location a holds s1(a) = s2(a), and
(iii) for every finite sequence location f holds s1(f) = s2(f).

Then s1¹(Int-Locations∪FinSeq-Locations) = s2¹(Int-Locations
∪FinSeq-Locations).

(34) For every state s of SCMFSA and for every programmed finite partial
state P of SCMFSA holds (s+·P )¹(Int-Locations∪FinSeq-Locations) =
s¹(Int-Locations∪FinSeq-Locations).

(35) For all states s, s3 of SCMFSA holds (s+·s3¹the instruction locations of
SCMFSA)¹(Int-Locations∪FinSeq-Locations) =
s¹(Int-Locations∪FinSeq-Locations).

(36) For every state s of SCMFSA holds Initialize(s)¹the instruction locations
of SCMFSA = s¹the instruction locations of SCMFSA.

(37) Let s, s3 be states of SCMFSA and I be a macro instruction. Then
(s3+·s¹the instruction locations of SCMFSA)¹(Int-Locations
∪FinSeq-Locations) = s3¹(Int-Locations∪FinSeq-Locations).

(38) For every state s of SCMFSA holds IExec(StopSCMFSA
, s) =

Initialize(s)+· Start-At(insloc(0)).
(39) For every state s of SCMFSA and for every macro instruction I such

that I is closed on s holds insloc(0) ∈ dom I.

(40) For every state s of SCMFSA and for every paraclosed macro instruction
I holds insloc(0) ∈ dom I.

(41) For every instruction i of SCMFSA holds rng Macro(i) = {i, haltSCMFSA}.
(42) Let s1, s2 be states of SCMFSA and I be a macro instruction.

Suppose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1. Let n

be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then
IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
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IncAddr(CurInstr((Computation(s1))(i)), n) =
CurInstr((Computation(s2))(i)) and
(Computation(s1))(i)¹(Int-Locations∪FinSeq-Locations) =
(Computation(s2))(i)¹(Int-Locations∪FinSeq-Locations).

(43) Let s1, s2 be states of SCMFSA and I be a macro instruction.
Suppose I is closed on s1 and I+· Start-At(insloc(0)) ⊆ s1 and
I+· Start-At(insloc(0)) ⊆ s2 and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then
IC(Computation(s1))(i) = IC(Computation(s2))(i) and
CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and
(Computation(s1))(i)¹(Int-Locations∪FinSeq-Locations) =
(Computation(s2))(i)¹(Int-Locations∪FinSeq-Locations).

(44) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
I is closed on s1 and halting on s1 and I+· Start-At(insloc(0)) ⊆ s1 and
I+· Start-At(insloc(0)) ⊆ s2 and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). Then LifeSpan(s1) = LifeSpan(s2).

(45) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
that

(i) s1(intloc(0)) = 1,
(ii) I is closed on s1 and halting on s1,
(iii) for every read-write integer location a holds s1(a) = s2(a), and
(iv) for every finite sequence location f holds s1(f) = s2(f).

Then IExec(I, s1)¹(Int-Locations∪FinSeq-Locations) =
IExec(I, s2)¹(Int-Locations∪FinSeq-Locations).

(46) Let s1, s2 be states of SCMFSA and I be a macro in-
struction. Suppose s1(intloc(0)) = 1 and I is closed on s1

and halting on s1 and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations).
Then IExec(I, s1)¹(Int-Locations∪FinSeq-Locations) =
IExec(I, s2)¹(Int-Locations∪FinSeq-Locations).

Let I be a macro instruction. Observe that Initialized(I) is initial.
One can prove the following propositions:

(47) Let s be a state of SCMFSA and I be a macro instruction. Then
Initialized(I) is pseudo-closed on s if and only if I is pseudo-closed on
Initialize(s).

(48) For every state s of SCMFSA and for every macro instruction I such
that I is pseudo-closed on Initialize(s) holds
pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).

(49) For every state s of SCMFSA and for every macro instruction I such
that Initialized(I) is pseudo-closed on s holds
pseudo− LifeSpan(s, Initialized(I)) = pseudo− LifeSpan(Initialize(s), I).
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(50) Let s be a state of SCMFSA and I be an initial finite partial state
of SCMFSA. Suppose I is pseudo-closed on s. Then I is pseudo-
closed on s+·(I+·Start-At(insloc(0))) and pseudo− LifeSpan(s, I) =
pseudo− LifeSpan(s+·(I+· Start-At(insloc(0))), I).

(51) Let s1, s2 be states of SCMFSA and I be a macro instruction. Sup-
pose I+·Start-At(insloc(0)) ⊆ s1 and I is pseudo-closed on s1. Let
n be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). Then

(i) for every natural number i such that i < pseudo− LifeSpan(s1, I) holds
IncAddr(CurInstr((Computation(s1))(i)), n) =
CurInstr((Computation(s2))(i)), and

(ii) for every natural number i such that i ¬ pseudo− LifeSpan(s1, I) holds
IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
(Computation(s1))(i)¹(Int-Locations∪FinSeq-Locations) =
(Computation(s2))(i)¹(Int-Locations∪FinSeq-Locations).

(52) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations). If I is pseudo-closed on s1, then I

is pseudo-closed on s2.

(53) Let s be a state of SCMFSA and I be a macro instruction. Suppose
s(intloc(0)) = 1. Then I is pseudo-closed on s if and only if I is pseudo-
closed on Initialize(s).

(54) Let a be an integer location and I, J be macro instructions. Then
insloc(0) ∈ dom if = 0(a, I, J) and insloc(1) ∈ dom if = 0(a, I, J) and
insloc(0) ∈ dom if > 0(a, I, J) and insloc(1) ∈ dom if > 0(a, I, J).

(55) Let a be an integer location and I, J be macro instructions. Then
(if = 0(a, I, J))(insloc(0)) = if a = 0 goto insloc(card J + 3) and (if =
0(a, I, J))(insloc(1)) = goto insloc(2) and (if > 0(a, I, J))(insloc(0)) =
if a > 0 goto insloc(card J + 3) and (if > 0(a, I, J))(insloc(1)) =
goto insloc(2).

(56) Let a be an integer location, I, J be macro instructions, and n be a
natural number. If n < card I + card J + 3, then insloc(n) ∈ dom if =
0(a, I, J) and (if = 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(57) Let a be an integer location, I, J be macro instructions, and n be a
natural number. If n < card I + card J + 3, then insloc(n) ∈ dom if >

0(a, I, J) and (if > 0(a, I, J))(insloc(n)) 6= haltSCMFSA .

(58) Let s be a state of SCMFSA and I be a macro instruction. Suppose
Directed(I) is pseudo-closed on s. Then

(i) I;StopSCMFSA
is closed on s,

(ii) I;StopSCMFSA
is halting on s,
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(iii) LifeSpan(s+·((I;StopSCMFSA
)+·Start-At(insloc(0)))) =

pseudo− LifeSpan(s, Directed(I)),
(iv) for every natural number n such that

n < pseudo− LifeSpan(s, Directed(I)) holds
IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) =
IC(Computation(s+·((I;StopSCMFSA

)+·Start-At(insloc(0)))))(n), and

(v) for every natural number n such that
n ¬ pseudo− LifeSpan(s, Directed(I)) holds
(Computation(s+·(I+· Start-At(insloc(0)))))(n)¹D =
(Computation(s+·((I;StopSCMFSA

)+· Start-At(insloc(0)))))(n)¹D.

(59) Let s be a state of SCMFSA and I be a macro instruction. If Directed(I)
is pseudo-closed on s, then
Result(s+·((I;StopSCMFSA

)+·Start-At(insloc(0))))¹D =
(Computation(s+·(I+· Start-At(insloc(0)))))
(pseudo− LifeSpan(s, Directed(I)))¹D.

(60) Let s be a state of SCMFSA and I be a macro instruction.
If s(intloc(0)) = 1 and Directed(I) is pseudo-closed on s, then
IExec(I;StopSCMFSA

, s)¹D = (Computation(s+·(I+· Start-At(insloc(0)))))
(pseudo− LifeSpan(s, Directed(I)))¹D.

(61) For all macro instructions I, J and for every integer location a holds
(if = 0(a, I, J))(insloc(card I + card J + 3)) = haltSCMFSA .

(62) For all macro instructions I, J and for every integer location a holds
(if > 0(a, I, J))(insloc(card I + card J + 3)) = haltSCMFSA .

(63) For all macro instructions I, J and for every integer location a holds
(if = 0(a, I, J))(insloc(card J + 2)) = goto insloc(card I + card J + 3).

(64) For all macro instructions I, J and for every integer location a holds
(if > 0(a, I, J))(insloc(card J + 2)) = goto insloc(card I + card J + 3).

(65) For every macro instruction J and for every integer location a holds (if =
0(a, Goto(insloc(2)), J))(insloc(card J + 3)) = goto insloc(card J + 5).

(66) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) = 0 and Directed(I) is pseudo-
closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is
closed on s and LifeSpan(s+·(if = 0(a, I, J)+· Start-At(insloc(0)))) =
LifeSpan(s+·((I;StopSCMFSA

)+· Start-At(insloc(0)))) + 1.

(67) Let s be a state of SCMFSA, I, J be macro instructions, and
a be a read-write integer location. Suppose s(intloc(0)) = 1 and
s(a) = 0 and Directed(I) is pseudo-closed on s. Then IExec(if =
0(a, I, J), s)¹(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA

, s)
¹(Int-Locations∪FinSeq-Locations).
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(68) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) > 0 and Directed(I) is pseudo-
closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is
closed on s and LifeSpan(s+·(if > 0(a, I, J)+· Start-At(insloc(0)))) =
LifeSpan(s+·((I;StopSCMFSA

)+·Start-At(insloc(0)))) + 1.

(69) Let s be a state of SCMFSA, I, J be macro instructions, and
a be a read-write integer location. Suppose s(intloc(0)) = 1 and
s(a) > 0 and Directed(I) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)¹(Int-Locations∪FinSeq-Locations) = IExec(I;StopSCMFSA
, s)

¹(Int-Locations∪FinSeq-Locations).

(70) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) 6= 0 and Directed(J) is pseudo-
closed on s. Then if = 0(a, I, J) is halting on s and if = 0(a, I, J) is
closed on s and LifeSpan(s+·(if = 0(a, I, J)+· Start-At(insloc(0)))) =
LifeSpan(s+·((J ;StopSCMFSA

)+· Start-At(insloc(0)))) + 3.

(71) Let s be a state of SCMFSA, I, J be macro instructions, and
a be a read-write integer location. Suppose s(intloc(0)) = 1 and
s(a) 6= 0 and Directed(J) is pseudo-closed on s. Then IExec(if =
0(a, I, J), s)¹(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA

, s)
¹(Int-Locations∪FinSeq-Locations).

(72) Let s be a state of SCMFSA, I, J be macro instructions, and a be a
read-write integer location. Suppose s(a) ¬ 0 and Directed(J) is pseudo-
closed on s. Then if > 0(a, I, J) is halting on s and if > 0(a, I, J) is
closed on s and LifeSpan(s+·(if > 0(a, I, J)+· Start-At(insloc(0)))) =
LifeSpan(s+·((J ;StopSCMFSA

)+· Start-At(insloc(0)))) + 3.

(73) Let s be a state of SCMFSA, I, J be macro instructions, and
a be a read-write integer location. Suppose s(intloc(0)) = 1 and
s(a) ¬ 0 and Directed(J) is pseudo-closed on s. Then IExec(if >

0(a, I, J), s)¹(Int-Locations∪FinSeq-Locations) = IExec(J ;StopSCMFSA
, s)

¹(Int-Locations∪FinSeq-Locations).

(74) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if = 0(a, I, J) is closed on s

and if = 0(a, I, J) is halting on s.

(75) Let s be a state of SCMFSA, I, J be macro instructions, and a be
a read-write integer location. Suppose Directed(I) is pseudo-closed on s

and Directed(J) is pseudo-closed on s. Then if > 0(a, I, J) is closed on s

and if > 0(a, I, J) is halting on s.

(76) Let I be a macro instruction and a be an integer location. If I does not
destroy a, then Directed(I) does not destroy a.
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(77) Let i be an instruction of SCMFSA and a be an integer location. If i

does not destroy a, then Macro(i) does not destroy a.

(78) For every integer location a holds haltSCMFSA does not refer a.

(79) For all integer locations a, b, c such that a 6= b holds AddTo(c, b) does
not refer a.

(80) Let i be an instruction of SCMFSA and a be an integer location. If i

does not refer a, then Macro(i) does not refer a.

(81) Let I, J be macro instructions and a be an integer location. Suppose I

does not destroy a and J does not destroy a. Then I;J does not destroy
a.

(82) Let J be a macro instruction, i be an instruction of SCMFSA, and a be
an integer location. Suppose i does not destroy a and J does not destroy
a. Then i;J does not destroy a.

(83) Let I be a macro instruction, j be an instruction of SCMFSA, and a be
an integer location. Suppose I does not destroy a and j does not destroy
a. Then I;j does not destroy a.

(84) Let i, j be instructions of SCMFSA and a be an integer location. Suppose
i does not destroy a and j does not destroy a. Then i;j does not destroy
a.

(85) For every integer location a holds StopSCMFSA
does not destroy a.

(86) For every integer location a and for every instruction-location l of
SCMFSA holds Goto(l) does not destroy a.

(87) Let s be a state of SCMFSA and I be a macro instruction. Suppose I is
halting on Initialize(s). Then

(i) for every read-write integer location a holds (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+·(I+· Start-At(insloc(0)))))(a), and

(ii) for every finite sequence location f holds (IExec(I, s))(f) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+·(I+· Start-At(insloc(0)))))(f).

(88) Let s be a state of SCMFSA, I be a parahalting macro instruc-
tion, and a be a read-write integer location. Then (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+·(I+· Start-At(insloc(0)))))(a).

(89) Let s be a state of SCMFSA, I be a macro instruction, a be an integer lo-
cation, and k be a natural number. Suppose I is closed on Initialize(s) and
halting on Initialize(s) and I does not destroy a. Then (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(90) Let s be a state of SCMFSA, I be a parahalting macro instruction, a be
an integer location, and k be a natural number. If I does not destroy a,
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then (IExec(I, s))(a) =
(Computation(Initialize(s)+·(I+· Start-At(insloc(0)))))(k)(a).

(91) Let s be a state of SCMFSA, I be a parahalting macro instruction, and
a be an integer location. If I does not destroy a, then (IExec(I, s))(a) =
(Initialize(s))(a).

(92) Let s be a state of SCMFSA and I be a keeping 0 macro instruction. Sup-
pose I is halting on Initialize(s). Then (IExec(I, s))(intloc(0)) = 1 and for
every natural number k holds (Computation(Initialize(s)+·(I+· Start-At
(insloc(0)))))(k)(intloc(0)) = 1.

(93) Let s be a state of SCMFSA, I be a macro instruction, and
a be an integer location. Suppose I does not destroy a. Let k

be a natural number. If IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈
dom I, then (Computation(s+·(I+·Start-At(insloc(0)))))(k + 1)(a) =
(Computation(s+·(I+· Start-At(insloc(0)))))(k)(a).

(94) Let s be a state of SCMFSA, I be a macro instruction, and a be an
integer location. Suppose I does not destroy a. Let m be a natural num-
ber. Suppose that for every natural number n such that n < m holds
IC(Computation(s+·(I+· Start-At(insloc(0)))))(n) ∈ dom I. Let n be a natural
number. If n ¬ m, then
(Computation(s+·(I+· Start-At(insloc(0)))))(n)(a) = s(a).

(95) Let s be a state of SCMFSA, I be a good macro instruction, and m

be a natural number. Suppose that for every natural number n such that
n < m holds IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ dom I. Let n be
a natural number. If n ¬ m, then (Computation(s+·(I+· Start-At
(insloc(0)))))(n)(intloc(0)) = s(intloc(0)).

(96) Let s be a state of SCMFSA and I be a good macro instruction.
Suppose I is halting on Initialize(s) and closed on Initialize(s). Then
(IExec(I, s))(intloc(0)) = 1 and for every natural number k holds
(Computation(Initialize(s)+·(I+· Start-At(insloc(0)))))(k)(intloc(0)) =
1.

(97) Let s be a state of SCMFSA and I be a good macro instruc-
tion. Suppose I is closed on s. Let k be a natural number. Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k)(intloc(0)) = s(intloc(0)).

(98) Let s be a state of SCMFSA, I be a keeping 0 parahalting macro instruc-
tion, and a be a read-write integer location. Suppose I does not destroy a.
Then (Computation(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At
(insloc(0)))))(LifeSpan(Initialize(s)+·((I;SubFrom(a, intloc(0)))+·Start-At
(insloc(0)))))(a) = s(a)− 1.

(99) For every instruction i of SCMFSA such that i does not destroy intloc(0)
holds Macro(i) is good.
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(100) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
I is closed on s1 and halting on s1 and s1¹D = s2¹D. Let k be a natural
number. Then

(i) (Computation(s1+·(I+· Start-At(insloc(0)))))(k) and
(Computation(s2+·(I+· Start-At(insloc(0)))))(k) are equal outside the in-
struction locations of SCMFSA, and

(ii) CurInstr((Computation(s1+·(I+· Start-At(insloc(0)))))(k)) =
CurInstr((Computation(s2+·(I+· Start-At(insloc(0)))))(k)).

(101) Let s1, s2 be states of SCMFSA and I be a macro in-
struction. Suppose I is closed on s1 and halting on s1 and
s1¹D = s2¹D. Then LifeSpan(s1+·(I+· Start-At(insloc(0)))) =
LifeSpan(s2+·(I+· Start-At(insloc(0)))) and
Result(s1+·(I+· Start-At(insloc(0)))) and Result(s2+·(I+· Start-At
(insloc(0)))) are equal outside the instruction locations of SCMFSA.

(102) Let N be a non empty set with non empty elements, S be a steady-
programmed von Neumann definite AMI over N , and s be a state of S.
Suppose s is halting. Then there exists a natural number k such that s

halts at IC(Computation(s))(k).

(103) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
that

(i) I is closed on s1 and halting on s1,
(ii) I+· Start-At(insloc(0)) ⊆ s1,

(iii) I+· Start-At(insloc(0)) ⊆ s2, and
(iv) there exists a natural number k such that (Computation(s1))(k) and

s2 are equal outside the instruction locations of SCMFSA.
Then Result(s1) and Result(s2) are equal outside the instruction locations
of SCMFSA.

2. The loop Macroinstruction

Let I be a macro instruction and let k be a natural number. One can verify
that IncAddr(I, k) is initial and programmed.

Let I be a macro instruction. The functor loop I yields a halt-free macro
instruction and is defined by:

(Def. 4) loop I = (idthe instructions of SCMFSA+·(haltSCMFSA 7−→. goto insloc(0))) · I.

Next we state two propositions:

(104) For every macro instruction I holds loop I = Directed(I, insloc(0)).
(105) Let I be a macro instruction and a be an integer location. If I does not

destroy a, then loop I does not destroy a.
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Let I be a good macro instruction. One can verify that loop I is good.
The following propositions are true:

(106) For every macro instruction I holds dom loop I = dom I.

(107) For every macro instruction I holds haltSCMFSA /∈ rng loop I.

(108) For every macro instruction I and for every set x such that x ∈ dom I

holds if I(x) 6= haltSCMFSA , then (loop I)(x) = I(x).

(109) Let s be a state of SCMFSA and I be a macro instruction.
Suppose I is closed on s and halting on s. Let m be a natural
number. Suppose m ¬ LifeSpan(s+·(I+· Start-At(insloc(0)))). Then
(Computation(s+·(I+· Start-At(insloc(0)))))(m) and
(Computation(s+·(loop I+·Start-At(insloc(0)))))(m) are equal outside
the instruction locations of SCMFSA.

(110) Let s be a state of SCMFSA and I be a macro instruction.
Suppose I is closed on s and halting on s. Let m be a na-
tural number. If m < LifeSpan(s+·(I+·Start-At(insloc(0)))), then
CurInstr((Computation(s+·(I+· Start-At(insloc(0)))))(m)) =
CurInstr((Computation(s+·(loop I+·Start-At(insloc(0)))))(m)).

(111) Let s be a state of SCMFSA and I be a macro instruc-
tion. Suppose I is closed on s and halting on s. Let m be
a natural number. If m ¬ LifeSpan(s+·(I+·Start-At(insloc(0)))),
then CurInstr((Computation(s+·(loop I+· Start-At(insloc(0)))))(m)) 6=
haltSCMFSA .

(112) Let s be a state of SCMFSA and I be a macro instruction. If I is closed
on s and halting on s, then CurInstr((Computation(s+·(loop I+· Start-At
(insloc(0)))))(LifeSpan(s+·(I+· Start-At(insloc(0)))))) = goto insloc(0).

(113) Let s be a state of SCMFSA and I be a paraclosed macro instruction.
Suppose I+· Start-At(insloc(0)) ⊆ s and s is halting. Let m be a natu-
ral number. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+· loop I))(m) are equal outside the instruction locations
of SCMFSA.

(114) Let s be a state of SCMFSA and I be a parahalting macro instruction.
Suppose Initialized(I) ⊆ s. Let k be a natural number. If k ¬ LifeSpan(s),
then CurInstr((Computation(s+· loop I))(k)) 6= haltSCMFSA .

3. The Times Macroinstruction

Let a be an integer location and let I be a macro instruction. The functor
Times(a, I) yields a macro instruction and is defined by:
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(Def. 5) Times(a, I) = if > 0(a, loop if = 0(a, Goto(insloc(2)), I;SubFrom
(a, intloc(0))), StopSCMFSA

).

The following propositions are true:

(115) For every good macro instruction I and for every read-write integer lo-
cation a holds if = 0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0))) is good.

(116) For all macro instructions I, J and for every integer location a holds
(if = 0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0))))
(insloc(card(I;SubFrom(a, intloc(0))) + 3)) = goto
insloc(card(I;SubFrom(a, intloc(0))) + 5).

(117) Let s be a state of SCMFSA, I be a good parahalting macro in-
struction, and a be a read-write integer location. Suppose I does
not destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if =
0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0))) is pseudo-closed on s.

(118) Let s be a state of SCMFSA, I be a good parahalting ma-
cro instruction, and a be a read-write integer location. Suppose
I does not destroy a and s(a) > 0. Then Initialized(loop if =
0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0)))) is pseudo-closed on s.

(119) Let s be a state of SCMFSA, I be a good parahalting macro instruction,
and a be a read-write integer location. Suppose I does not destroy a and
s(intloc(0)) = 1. Then Times(a, I) is closed on s and Times(a, I) is halting
on s.

(120) Let I be a good parahalting macro instruction and a be a read-write
integer location. If I does not destroy a, then Initialized(Times(a, I)) is
halting.

(121) Let I, J be macro instructions and a, c be integer locations. Suppose I

does not destroy c and J does not destroy c. Then if = 0(a, I, J) does not
destroy c and if > 0(a, I, J) does not destroy c.

(122) Let s be a state of SCMFSA, I be a good parahalting macro instruction,
and a be a read-write integer location. Suppose I does not destroy a and
s(intloc(0)) = 1 and s(a) > 0. Then there exists a state s2 of SCMFSA

and there exists a natural number k such that
(i) s2 = s+·(loop if = 0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+· Start-At(insloc(0))),
(ii) k = LifeSpan(s+·(if = 0(a, Goto(insloc(2)), I;SubFrom(a, intloc(0)))

+· Start-At(insloc(0)))) + 1,
(iii) (Computation(s2))(k)(a) = s(a)− 1,

(iv) (Computation(s2))(k)(intloc(0)) = 1,
(v) for every read-write integer location b such that b 6= a holds

(Computation(s2))(k)(b) = (IExec(I, s))(b),
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(vi) for every finite sequence location f holds (Computation(s2))(k)(f) =
(IExec(I, s))(f),

(vii) IC(Computation(s2))(k) = insloc(0), and
(viii) for every natural number n such that n ¬ k holds

IC(Computation(s2))(n) ∈ dom loop if = 0(a, Goto(insloc(2)), I;SubFrom
(a, intloc(0))).

(123) Let s be a state of SCMFSA, I be a good parahalting macro instruc-
tion, and a be a read-write integer location. If s(intloc(0)) = 1 and
s(a) ¬ 0, then IExec(Times(a, I), s)¹(Int-Locations∪FinSeq-Locations) =
s¹(Int-Locations∪FinSeq-Locations).

(124) Let s be a state of SCMFSA, I be a good parahalting macro in-
struction, and a be a read-write integer location. Suppose I does not
destroy a and s(a) > 0. Then (IExec(I;SubFrom(a, intloc(0)), s))(a) =
s(a) − 1 and IExec(Times(a, I), s)¹(Int-Locations∪FinSeq-Locations) =
IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s))¹(Int-Locations
∪FinSeq-Locations).

4. An example

One can prove the following proposition

(125) Let s be a state of SCMFSA and a, b, c be read-write integer lo-
cations. If a 6= b and a 6= c and b 6= c and s(a)  0, then
(IExec(Times(a, Macro(AddTo(b, c))), s))(b) = s(b) + s(c) · s(a).
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for this paper.

1. Preliminaries

The following propositions are true:

(1) Let R be a relational structure and S be a full relational substructure
of R. Then every full relational substructure of S is a full relational sub-
structure of R.

(2) Let X, Y , Z be non empty 1-sorted structures, f be a map from X into
Y , and g be a map from Y into Z. If f is onto and g is onto, then g · f is
onto.

(3) For every non empty 1-sorted structure X and for every subset Y of the
carrier of X holds (idX)◦Y = Y.

(4) For every set X and for every element a of 2X
⊆ holds ↑a = {Y ;Y ranges

over subsets of X: a ⊆ Y }.
(5) Let L be an upper-bounded non empty antisymmetric relational struc-

ture and a be an element of L. If >L ¬ a, then a = >L.
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(6) Let S, T be non empty posets, g be a map from S into T , and d be a
map from T into S. If g is onto and 〈〈g, d〉〉 is Galois, then T and Im d are
isomorphic.

(7) Let L1, L2, L3 be non empty posets, g1 be a map from L1 into L2, g2

be a map from L2 into L3, d1 be a map from L2 into L1, and d2 be a map
from L3 into L2. If 〈〈g1, d1〉〉 is Galois and 〈〈g2, d2〉〉 is Galois, then 〈〈g2 · g1,

d1 · d2〉〉 is Galois.

(8) Let L1, L2 be non empty posets, f be a map from L1 into L2, and f1

be a map from L2 into L1. Suppose f1 = (f qua function) −1 and f is
isomorphic. Then 〈〈f, f1〉〉 is Galois and 〈〈f1, f〉〉 is Galois.

(9) For every set X holds 2X
⊆ is arithmetic.

Next we state four propositions:

(10) Let L1, L2 be up-complete non empty posets and f be a map from L1 into
L2. If f is isomorphic, then for every element x of L1 holds f◦↓↓x = ↓↓f(x).

(11) For all non empty posets L1, L2 such that L1 and L2 are isomorphic and
L1 is continuous holds L2 is continuous.

(12) Let L1, L2 be lattices. Suppose L1 and L2 are isomorphic and L1 is
lower-bounded and arithmetic. Then L2 is arithmetic.

(13) Let L1, L2, L3 be non empty posets, f be a map from L1 into L2, and
g be a map from L2 into L3. Suppose f is directed-sups-preserving and g

is directed-sups-preserving. Then g · f is directed-sups-preserving.

2. Maps Preserving Sup’s and Inf’s

One can prove the following propositions:

(14) Let L1, L2 be non empty relational structures, f be a map from L1 into
L2, and X be a subset of Im f. Then (f◦)◦X = X.

(15) Let X be a set and c be a map from 2X
⊆ into 2X

⊆ . Suppose c is idempotent
and directed-sups-preserving. Then c◦ is directed-sups-preserving.

(16) Let L be a continuous complete lattice and p be a kernel map from L

into L. If p is directed-sups-preserving, then Im p is a continuous lattice.

(17) Let L be a continuous complete lattice and p be a projection map from
L into L. If p is directed-sups-preserving, then Im p is a continuous lattice.

(18) Let L be a lower-bounded lattice. Then L is continuous if and only if
there exists an arithmetic lower-bounded lattice A such that there exists
a map from A into L which is onto, infs-preserving, and directed-sups-
preserving.

(19) Let L be a lower-bounded lattice. Then L is continuous if and only if
there exists an algebraic lower-bounded lattice A such that there exists
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a map from A into L which is onto, infs-preserving, and directed-sups-
preserving.

(20) Let L be a lower-bounded lattice. Then L is continuous if and only if
there exists a set X and there exists a projection map p from 2X

⊆ into 2X
⊆

such that p is directed-sups-preserving and L and Im p are isomorphic.

3. Atoms Elements

Next we state two propositions:

(21) For every non empty relational structure L and for every element x of
L holds x ∈ PRIME(Lop) iff x is co-prime.

(22) Let L be a sup-semilattice and a be an element of L. Then a is co-prime
if and only if for all elements x, y of L such that a ¬ xt y holds a ¬ x or
a ¬ y.

Let L be a non empty relational structure and let a be an element of L. We
say that a is an atom if and only if:

(Def. 1) ⊥L < a and for every element b of L such that ⊥L < b and b ¬ a holds
b = a.

Let L be a non empty relational structure. The functor ATOM(L) yielding
a subset of L is defined by:

(Def. 2) For every element x of L holds x ∈ ATOM(L) iff x is atom.

The following proposition is true

(23) For every Boolean lattice L and for every element a of L holds a is atom
iff a is co-prime and a 6= ⊥L.

Let L be a Boolean lattice. Observe that every element of L which is atom
is also co-prime.

Next we state several propositions:

(24) For every Boolean lattice L holds ATOM(L) = PRIME(Lop) \ {⊥L}.
(25) For every Boolean lattice L and for all elements x, a of L such that a is

atom holds a ¬ x iff a 6¬ ¬x.

(26) Let L be a complete Boolean lattice, X be a subset of L, and x be an
element of L. Then x u sup X =

⊔
L{x u y; y ranges over elements of L:

y ∈ X}.
(27) Let L be a lower-bounded antisymmetric non empty relational structure

with g.l.b.’s and x, y be elements of L. If x is atom and y is atom and
x 6= y, then x u y = ⊥L.

(28) Let L be a complete Boolean lattice, x be an element of L, and A be a
subset of L. If A ⊆ ATOM(L), then x ∈ A iff x is atom and x ¬ sup A.
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(29) Let L be a complete Boolean lattice and X, Y be subsets of L. If X ⊆
ATOM(L) and Y ⊆ ATOM(L), then X ⊆ Y iff sup X ¬ sup Y.

4. More on the Boolean Lattice

One can prove the following propositions:

(30) For every Boolean lattice L holds L is arithmetic iff there exists a set X

such that L and 2X
⊆ are isomorphic.

(31) For every Boolean lattice L holds L is arithmetic iff L is algebraic.

(32) For every Boolean lattice L holds L is arithmetic iff L is continuous.

(33) For every Boolean lattice L holds L is arithmetic iff L is continuous and
Lop is continuous.

(34) For every Boolean lattice L holds L is arithmetic iff L is completely-
distributive.

(35) Let L be a Boolean lattice. Then L is arithmetic if and only if the
following conditions are satisfied:

(i) L is complete, and
(ii) for every element x of L there exists a subset X of L such that X ⊆

ATOM(L) and x = sup X.
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Summary. In the n-dimensional Euclidean space En
T, a projection opera-

tor to each coordinate is defined. It is proven that such an operator is linear.
Moreover, it is continuous as a mapping from En

T to R1, the carrier of which is a
set of all reals. If n is 1, the projection becomes a homeomorphism, which means
that E1

T is homeomorphic to R1.

MML Identifier: JORDAN2B.

The notation and terminology used in this paper are introduced in the following
articles: [30], [35], [34], [20], [1], [37], [33], [27], [12], [29], [11], [26], [23], [36], [2],
[8], [9], [5], [32], [3], [18], [17], [25], [15], [10], [14], [31], [16], [19], [22], [7], [24],
[13], [21], [4], [6], and [28].

1. Projections

For simplicity, we use the following convention: a, b, s, s1, r, r1, r2 denote
real numbers, n, i denote natural numbers, X denotes a non empty topological
space, p, p1, p2, q denote points of En

T, P denotes a subset of the carrier of En
T,

and f denotes a map from En
T into R1.

Let n, i be natural numbers and let p be an element of the carrier of En
T.

The functor Proj(p, i) yielding a real number is defined as follows:

(Def. 1) For every finite sequence g of elements of R such that g = p holds
Proj(p, i) = πig.

1The work was done, while the author stayed at Nagano in the fall of 1996.
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The following propositions are true:

(1) For every i there exists a map f from En
T into R1 such that for every

element p of the carrier of En
T holds f(p) = Proj(p, i).

(2) For every i such that i ∈ Seg n holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉(i) = 0.

(3) For every i such that i ∈ Seg n holds Proj(0En
T
, i) = 0.

(4) For all r, p, i such that i ∈ Seg n holds Proj(r · p, i) = r · Proj(p, i).
(5) For all p, i such that i ∈ Seg n holds Proj(−p, i) = −Proj(p, i).
(6) For all p1, p2, i such that i ∈ Seg n holds Proj(p1 + p2, i) = Proj(p1, i) +

Proj(p2, i).
(7) For all p1, p2, i such that i ∈ Seg n holds Proj(p1− p2, i) = Proj(p1, i)−

Proj(p2, i).
(8) len〈0, . . . , 0︸ ︷︷ ︸

n

〉 = n.

(9) For every i such that i ¬ n holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉¹i = 〈0, . . . , 0︸ ︷︷ ︸
i

〉.

(10) For every i holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉ºi = 〈0, . . . , 0︸ ︷︷ ︸
n−′i

〉.

(11) For every i holds
∑〈0, . . . , 0︸ ︷︷ ︸

i

〉 = 0.

(12) For every finite sequence w and for all r, i holds len(w +· (i, r)) = len w.

(13) For every finite sequence w of elements of R and for all r, i such that
i ∈ Seg len w holds w +· (i, r) = (w¹i−′ 1) a 〈r〉 a (wºi).

(14) For all i, r such that i ∈ Seg n holds
∑

(〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (i, r)) = r.

(15) For every element q of Rn and for all p, i such that i ∈ Seg n and q = p

holds Proj(p, i) ¬ |q| and (Proj(p, i))2 ¬ |q|2.

2. Continuity of Projections

Next we state several propositions:

(16) For all s1, P , i such that P = {p : s1 > Proj(p, i)} and i ∈ Seg n holds
P is open.

(17) For all s1, P , i such that P = {p : s1 < Proj(p, i)} and i ∈ Seg n holds
P is open.

(18) Let P be a subset of the carrier of En
T, a, b be real numbers, and gi-

ven i. Suppose P = {p; p ranges over elements of the carrier of En
T:

a < Proj(p, i) ∧ Proj(p, i) < b} and i ∈ Seg n. Then P is open.
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(19) Let a, b be real numbers, f be a map from En
T into R1, and given i. Sup-

pose that for every element p of the carrier of En
T holds f(p) = Proj(p, i).

Then f−1({s : a < s ∧ s < b}) = {p; p ranges over elements of the carrier
of En

T: a < Proj(p, i) ∧ Proj(p, i) < b}.
(20) Let M be a metric space and f be a map from X into Mtop. Suppose that

for every real number r and for every element u of the carrier of M and for
every subset P of the carrier of Mtop such that r > 0 and P = Ball(u, r)
holds f−1(P ) is open. Then f is continuous.

(21) Let u be a point of the metric space of real numbers and r, u1 be real
numbers. If u1 = u and r > 0, then Ball(u, r) = {s : u1 − r < s ∧ s <

u1 + r}.
(22) Let f be a map from En

T into R1 and given i. Suppose i ∈ Seg n and
for every element p of the carrier of En

T holds f(p) = Proj(p, i). Then f is
continuous.

3. 1-dimensional and 2-dimensional Cases

The following three propositions are true:

(23) For every s holds |〈s〉| = 〈|s|〉.
(24) For every element p of the carrier of E1

T there exists r such that p = 〈r〉.
(25) For every element w of the carrier of E1 there exists r such that w = 〈r〉.

Let us consider r. The functor |[r]| yields a point of E1
T and is defined by:

(Def. 2) |[r]| = 〈r〉.
The following propositions are true:

(26) For all r, s holds s · |[r]| = |[s · r]|.
(27) For all r1, r2 holds |[r1 + r2]| = |[r1]|+ |[r2]|.
(28) |[0]| = 0E1T .

(29) For all r1, r2 such that |[r1]| = |[r2]| holds r1 = r2.

(30) For every subset P of the carrier of R1 and for every real number b such
that P = {s : s < b} holds P is open.

(31) For every subset P of the carrier of R1 and for every real number a such
that P = {s : a < s} holds P is open.

(32) For every subset P of the carrier of R1 and for all real numbers a, b such
that P = {s : a < s ∧ s < b} holds P is open.

(33) For every point u of E1 and for all real numbers r, u1 such that 〈u1〉 = u

and r > 0 holds Ball(u, r) = {〈s〉 : u1 − r < s ∧ s < u1 + r}.
(34) Let f be a map from E1

T into R1. Suppose that for every element p of
the carrier of E1

T holds f(p) = Proj(p, 1). Then f is a homeomorphism.



508 roman matuszewski and yatsuka nakamura

(35) For every element p of the carrier of E2
T holds Proj(p, 1) = p1 and

Proj(p, 2) = p2.

(36) For every element p of the carrier of E2
T holds Proj(p, 1) = (proj1)(p)

and Proj(p, 2) = (proj2)(p).
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Summary. Various types of the intermediate value theorem ([25]) are
proved. For their special cases, the Bolzano theorem is also proved. Using such
a theorem, it is shown that if a curve is a simple closed curve, then it is not
horizontally degenerated, neither is it vertically degenerated.
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The articles [29], [33], [28], [16], [1], [27], [34], [6], [7], [4], [8], [32], [22], [35], [11],
[10], [24], [2], [5], [31], [17], [3], [12], [13], [14], [15], [18], [19], [21], [26], [23], [30],
[9], and [20] provide the notation and terminology for this paper.

1. Intermediate Value Theorems and Bolzano Theorem

For simplicity, we adopt the following convention: a, b, c, d, r1, r2, r3, r, r4,
s1, s2 are real numbers, p, q are points of E2

T, P is a subset of the carrier of E2
T,

and X, Y , Z are non empty topological spaces.
Next we state a number of propositions:

(1) For all a, b, c holds c ∈ [a, b] iff a ¬ c and c ¬ b.

(2) Let f be a continuous mapping from X into Y and g be a continuous
mapping from Y into Z. Then g · f is a continuous mapping from X into
Z.

(3) Let A, B be subsets of the carrier of X. If A is open and B is open and
A ∩B = ∅X , then A and B are separated.
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(4) Let A, B1, B2 be subsets of the carrier of X. Suppose B1 is open and B2

is open and B1∩A 6= ∅ and B2∩A 6= ∅ and A ⊆ B1∪B2 and B1∩B2 = ∅.
Then A is not connected.

(5) Let f be a continuous mapping from X into Y and A be a subset of the
carrier of X. If A is connected and A 6= ∅, then f◦A is connected.

(6) For all r1, r2 such that r1 ¬ r2 holds Ω[(r1), r2]T is connected.

(7) For every subset A of the carrier of R1 and for every a such that A =
{r : a < r} holds A is open.

(8) For every subset A of the carrier of R1 and for every a such that A =
{r : a > r} holds A is open.

(9) Let A be a subset of the carrier of R1 and given a. Suppose a /∈ A and
there exist b, d such that b ∈ A and d ∈ A and b < a and a < d. Then A

is not connected.

(10) Let X be a non empty topological space, x1, x2 be points of X, a, b, d be
real numbers, and f be a continuous mapping from X into R1. Suppose
X is connected and f(x1) = a and f(x2) = b and a ¬ d and d ¬ b. Then
there exists a point x3 of X such that f(x3) = d.

(11) Let X be a non empty topological space, x1, x2 be points of X, B be a
subset of the carrier of X, a, b, d be real numbers, and f be a continuous
mapping from X into R1. Suppose B is connected and f(x1) = a and
f(x2) = b and a ¬ d and d ¬ b and x1 ∈ B and x2 ∈ B. Then there exists
a point x3 of X such that x3 ∈ B and f(x3) = d.

(12) Let given r1, r2, a, b. Suppose r1 < r2. Let f be a continuous mapping
from [(r1), r2]T into R1 and given d. Suppose f(r1) = a and f(r2) = b and
a < d and d < b. Then there exists r3 such that f(r3) = d and r1 < r3

and r3 < r2.

(13) Let given r1, r2, a, b. Suppose r1 < r2. Let f be a continuous mapping
from [(r1), r2]T into R1 and given d. Suppose f(r1) = a and f(r2) = b and
a > d and d > b. Then there exists r3 such that f(r3) = d and r1 < r3

and r3 < r2.

(14) Let r1, r2 be real numbers, g be a continuous mapping from [(r1), r2]T
into R1, and given s1, s2. Suppose r1 < r2 and s1 · s2 < 0 and s1 = g(r1)
and s2 = g(r2). Then there exists r4 such that g(r4) = 0 and r1 < r4 and
r4 < r2.

(15) Let g be a map from I into R1 and given s1, s2. Suppose g is continuous
and g(0) 6= g(1) and s1 = g(0) and s2 = g(1). Then there exists r4 such
that 0 < r4 and r4 < 1 and g(r4) = s1+s2

2 .
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2. Simple Closed Curves Are Not Flat

Next we state a number of propositions:

(16) For every map f from E2
T into R1 such that f = proj1 holds f is conti-

nuous.

(17) For every map f from E2
T into R1 such that f = proj2 holds f is conti-

nuous.

(18) Let P be a non empty subset of the carrier of E2
T and f be a map from

I into (E2
T)¹P. Suppose f is continuous. Then there exists a map g from I

into R1 such that g is continuous and for all r, q such that r ∈ the carrier
of I and q = f(r) holds q1 = g(r).

(19) Let P be a non empty subset of the carrier of E2
T and f be a map from

I into (E2
T)¹P. Suppose f is continuous. Then there exists a map g from I

into R1 such that g is continuous and for all r, q such that r ∈ the carrier
of I and q = f(r) holds q2 = g(r).

(20) Let P be a non empty subset of the carrier of E2
T. Suppose P is simple

closed curve. Then it is not true that there exists r such that for every p

such that p ∈ P holds p2 = r.

(21) Let P be a non empty subset of the carrier of E2
T. Suppose P is simple

closed curve. Then it is not true that there exists r such that for every p

such that p ∈ P holds p1 = r.

(22) For every compact non empty subset C of E2
T such that C is a simple

closed curve holds N-bound C > S-bound C.

(23) For every compact non empty subset C of E2
T such that C is a simple

closed curve holds E-bound C > W-bound C.

(24) For every compact non empty subset P of E2
T such that P is a simple

closed curve holds S-min P 6= N-max P.

(25) For every compact non empty subset P of E2
T such that P is a simple

closed curve holds W-min P 6= E-max P.
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1. Preliminaries

The scheme RecChoice deals with a set A and a ternary predicate P, and
states that:

There exists a function f such that dom f = N and f(0) = A and
for every element n of N holds P[n, f(n), f(n + 1)]

provided the following condition is satisfied:
• For every natural number n and for every set x there exists a set

y such that P[n, x, y].
One can prove the following propositions:

(1) For every function f and for every function yielding function F such that
f =

⋃
rng F holds dom f =

⋃
rng(domκ F (κ)).

(2) For all non empty sets A, B holds [:
⋃

A,
⋃

B :] =
⋃{[: a, b :]; a ranges

over elements of A, b ranges over elements of B: a ∈ A ∧ b ∈ B}.
(3) For every non empty set A such that A is ⊆-linear holds [:

⋃
A,

⋃
A :] =⋃{[: a, a :]; a ranges over elements of A: a ∈ A}.
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2. An equivalence lattice of a set

In the sequel X is a non empty set.
Let A be a non empty set. The functor EqRelPoset(A) yielding a poset is

defined as follows:

(Def. 1) EqRelPoset(A) = Poset(EqRelLatt(A)).
Let A be a non empty set. One can check that EqRelPoset(A) is non empty

and has g.l.b.’s and l.u.b.’s.
One can prove the following propositions:

(4) Let A be a non empty set and x be a set. Then x ∈ the carrier of
EqRelPoset(A) if and only if x is an equivalence relation of A.

(5) For every non empty set A and for all elements x, y of the carrier of
EqRelLatt(A) holds x v y iff x ⊆ y.

(6) For every non empty set A and for all elements a, b of EqRelPoset(A)
holds a ¬ b iff a ⊆ b.

(7) For every lattice L and for all elements a, b of Poset(L) holds aub = ·au·b.
(8) For every non empty set A and for all elements a, b of EqRelPoset(A)

holds a u b = a ∩ b.

(9) For every lattice L and for all elements a, b of Poset(L) holds atb = ·at·b.
(10) Let A be a non empty set, a, b be elements of EqRelPoset(A), and E1, E2

be equivalence relations of A. If a = E1 and b = E2, then at b = E1 tE2.

(11) Let L be a lattice, X be a set, and b be an element of L. Then b ¬ X if
and only if b ¬ X ∩ the carrier of L.

Let L be a non empty relational structure. Let us observe that L is complete
if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let X be a subset of L. Then there exists an element a of L such that
a ¬ X and for every element b of L such that b ¬ X holds b ¬ a.

Let A be a non empty set. Note that EqRelPoset(A) is complete.

3. A type of a sublattice of equivalence lattice of a set

Let L1, L2 be lattices. One can check that there exists a map from L1 into
L2 which is meet-preserving and join-preserving.

Let L1, L2 be lattices. A homomorphism from L1 to L2 is a meet-preserving
join-preserving map from L1 into L2.

Let L be a lattice. One can check that there exists a relational substructure
of L which is meet-inheriting, join-inheriting, and strict.
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Let L1, L2 be lattices and let f be a homomorphism from L1 to L2. Then
Im f is a strict full sublattice of L2.

We follow the rules: e, e1, e2 denote equivalence relations of X and x, y

denote sets.
Let us consider X, let f be a non empty finite sequence of elements of X,

let us consider x, y, and let R be a binary relation. We say that x and y are
joint by f and R if and only if:

(Def. 3) f(1) = x and f(len f) = y and for every natural number i such that
1 ¬ i and i < len f holds 〈〈f(i), f(i + 1)〉〉 ∈ R.

One can prove the following propositions:

(12) Let x be a set, o be a natural number, R be a binary relation, and f be
a non empty finite sequence of elements of X. If R is reflexive in X and
f = o 7→ x, then x and x are joint by f and R.

(13) Let x, y, z be sets, R be a binary relation, and f , g be non empty finite
sequences of elements of X. Suppose R is reflexive in X and x and y are
joint by f and R and y and z are joint by g and R. Then there exists a
non empty finite sequence h of elements of X such that h = f a g and x

and z are joint by h and R.

(14) Let x, y be sets, R be a binary relation, and n, m be natural numbers.
Suppose that

(i) n ¬ m,

(ii) R is reflexive in X, and
(iii) there exists a non empty finite sequence f of elements of X such that

len f = n and x and y are joint by f and R.
Then there exists a non empty finite sequence h of elements of X such
that len h = m and x and y are joint by h and R.

Let us consider X and let Y be a sublattice of EqRelPoset(X). Let us assume
that there exists e such that e ∈ the carrier of Y e 6= idX . And let us assume
that there exists a natural number o such that for all e1, e2, x, y such that
e1 ∈ the carrier of Y and e2 ∈ the carrier of Y and 〈〈x, y〉〉 ∈ e1 t e2 there exists
a non empty finite sequence F of elements of X such that len F = o and x and
y are joint by F and e1 ∪ e2. The type of Y is a natural number and is defined
by the conditions (Def. 4).

(Def. 4)(i) For all e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the carrier
of Y and 〈〈x, y〉〉 ∈ e1 t e2 there exists a non empty finite sequence F of
elements of X such that len F = (the type of Y )+ 2 and x and y are joint
by F and e1 ∪ e2, and

(ii) there exist e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the
carrier of Y and 〈〈x, y〉〉 ∈ e1 t e2 and it is not true that there exists a non
empty finite sequence F of elements of X such that len F = (the type of
Y ) + 1 and x and y are joint by F and e1 ∪ e2.
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One can prove the following proposition

(15) Let Y be a sublattice of EqRelPoset(X) and n be a natural number.
Suppose that

(i) there exists e such that e ∈ the carrier of Y and e 6= idX , and
(ii) for all e1, e2, x, y such that e1 ∈ the carrier of Y and e2 ∈ the carrier

of Y and 〈〈x, y〉〉 ∈ e1 t e2 there exists a non empty finite sequence F of
elements of X such that len F = n + 2 and x and y are joint by F and
e1 ∪ e2.

Then the type of Y ¬ n.

4. A meet-representation of a lattice

In the sequel A is a non empty set and L is a lower-bounded lattice.
Let us consider A, L.

(Def. 5) A function from [:A, A :] into the carrier of L is said to be a bifunction
from A into L.

Let us consider A, L, let f be a bifunction from A into L, and let x, y be
elements of A. Then f(x, y) is an element of L.

Let us consider A, L and let f be a bifunction from A into L. We say that
f is symmetric if and only if:

(Def. 6) For all elements x, y of A holds f(x, y) = f(y, x).
We say that f is zeroed if and only if:

(Def. 7) For every element x of A holds f(x, x) = ⊥L.

We say that f satisfies triangle inequality if and only if:

(Def. 8) For all elements x, y, z of A holds f(x, y) t f(y, z)  f(x, z).
Let us consider A, L. Observe that there exists a bifunction from A into L

which is symmetric and zeroed and satisfies triangle inequality.
Let us consider A, L. A distance function of A, L is a symmetric zeroed

bifunction from A into L satisfying triangle inequality.
Let us consider A, L and let d be a distance function of A, L. The functor

α(d) yielding a map from L into EqRelPoset(A) is defined by the condition
(Def. 9).

(Def. 9) Let e be an element of L. Then there exists an equivalence relation E of
A such that E = (α(d))(e) and for all elements x, y of A holds 〈〈x, y〉〉 ∈ E

iff d(x, y) ¬ e.

The following two propositions are true:

(16) For every distance function d of A, L holds α(d) is meet-preserving.

(17) For every distance function d of A, L such that d is onto holds α(d) is
one-to-one.
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5. Jónson’s theorem

Let A be a set. The functor A∗ is defined as follows:

(Def. 10) A∗ = A ∪ {{A}, {{A}}, {{{A}}}}.
Let A be a set. One can verify that A∗ is non empty.
Let us consider A, L, let d be a bifunction from A into L, and let q be an

element of [:A, A, the carrier of L, the carrier of L :]. The functor d∗q yields a
bifunction from A∗ into L and is defined by the conditions (Def. 11).

(Def. 11)(i) For all elements u, v of A holds d∗q(u, v) = d(u, v),
(ii) d∗q({A}, {A}) = ⊥L,

(iii) d∗q({{A}}, {{A}}) = ⊥L,

(iv) d∗q({{{A}}}, {{{A}}}) = ⊥L,

(v) d∗q({{A}}, {{{A}}}) = q3,

(vi) d∗q({{{A}}}, {{A}}) = q3,

(vii) d∗q({A}, {{A}}) = q4,

(viii) d∗q({{A}}, {A}) = q4,

(ix) d∗q({A}, {{{A}}}) = q3 t q4,

(x) d∗q({{{A}}}, {A}) = q3 t q4, and
(xi) for every element u of A holds d∗q(u, {A}) = d(u, q1) t q3 and d∗q({A},

u) = d(u, q1) t q3 and d∗q(u, {{A}}) = d(u, q1) t q3 t q4 and d∗q({{A}},
u) = d(u, q1)tq3tq4 and d∗q(u, {{{A}}}) = d(u, q2)tq4 and d∗q({{{A}}},
u) = d(u, q2) t q4.

Next we state several propositions:

(18) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be an
element of [:A, A, the carrier of L, the carrier of L :]. Then d∗q is zeroed.

(19) Let d be a bifunction from A into L. Suppose d is symmetric. Let q

be an element of [:A, A, the carrier of L, the carrier of L :]. Then d∗q is
symmetric.

(20) Let d be a bifunction from A into L. Suppose d is symmetric and satisfies
triangle inequality. Let q be an element of [:A, A, the carrier of L, the
carrier of L :]. If d(q1, q2) ¬ q3 t q4, then d∗q satisfies triangle inequality.

(21) For every set A holds A ⊆ A∗.
(22) Let d be a bifunction from A into L and q be an element of [:A, A, the

carrier of L, the carrier of L :]. Then d ⊆ d∗q .
Let us consider A, L and let d be a bifunction from A into L. The functor

DistEsti(d) yields a cardinal number and is defined as follows:

(Def. 12) DistEsti(d) ≈ {〈〈x, y, a, b〉〉; x ranges over elements of A, y ranges over
elements of A, a ranges over elements of L, b ranges over elements of L:
d(x, y) ¬ a t b}.
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We now state the proposition

(23) For every distance function d of A, L holds DistEsti(d) 6= ∅.
In the sequel T denotes a transfinite sequence and O, O1, O2 denote ordinal

numbers.
Let us consider A and let us consider O. The functor ConsecutiveSet(A,O)

is defined by the condition (Def. 13).

(Def. 13) There exists a transfinite sequence L0 such that
(i) ConsecutiveSet(A,O) = last L0,

(ii) dom L0 = succ O,

(iii) L0(∅) = A,

(iv) for every ordinal number C and for every set z such that succ C ∈ succ O

and z = L0(C) holds L0(succ C) = z∗, and
(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succ O and C 6= ∅ and C is a limit ordinal number and L1 = L0¹C
holds L0(C) =

⋃
rng L1.

We now state three propositions:

(24) ConsecutiveSet(A, ∅) = A.

(25) ConsecutiveSet(A, succ O) = (ConsecutiveSet(A,O))∗.
(26) Suppose O 6= ∅ and O is a limit ordinal number and dom T = O

and for every ordinal number O1 such that O1 ∈ O holds T (O1) =
ConsecutiveSet(A,O1). Then ConsecutiveSet(A, O) =

⋃
rng T.

Let us consider A and let us consider O. Note that ConsecutiveSet(A, O) is
non empty.

One can prove the following proposition

(27) A ⊆ ConsecutiveSet(A,O).

Let us consider A, L and let d be a bifunction from A into L. A transfinite
sequence of elements of [:A, A, the carrier of L, the carrier of L :] is said to be
a sequence of quadruples of d if it satisfies the conditions (Def. 14).

(Def. 14)(i) dom it is a cardinal number,
(ii) it is one-to-one, and
(iii) rng it = {〈〈x, y, a, b〉〉; x ranges over elements of A, y ranges over elements

of A, a ranges over elements of L, b ranges over elements of L: d(x, y) ¬
a t b}.

Let us consider A, L, let d be a bifunction from A into L, let q be a se-
quence of quadruples of d, and let us consider O. Let us assume that O ∈
dom q. The functor Quadr(q, O) yielding an element of [: ConsecutiveSet(A,O),
ConsecutiveSet(A,O), the carrier of L, the carrier of L :] is defined as follows:

(Def. 15) Quadr(q,O) = q(O).
One can prove the following proposition
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(28) Let d be a bifunction from A into L and q be a sequence of quadruples
of d. Then O ∈ DistEsti(d) if and only if O ∈ dom q.

Let us consider A, L and let z be a set. Let us assume that z is a bifunction
from A into L. The functor BiFun(z,A, L) yields a bifunction from A into L

and is defined as follows:

(Def. 16) BiFun(z, A, L) = z.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence
of quadruples of d, and let us consider O. The functor ConsecutiveDelta(q, O)
is defined by the condition (Def. 17).

(Def. 17) There exists a transfinite sequence L0 such that
(i) ConsecutiveDelta(q, O) = last L0,

(ii) dom L0 = succ O,

(iii) L0(∅) = d,

(iv) for every ordinal number C and for every set z such
that succ C ∈ succ O and z = L0(C) holds L0(succ C) =
(BiFun(z, ConsecutiveSet(A, C), L))∗Quadr(q,C), and

(v) for every ordinal number C and for every transfinite sequence L1 such
that C ∈ succ O and C 6= ∅ and C is a limit ordinal number and L1 = L0¹C
holds L0(C) =

⋃
rng L1.

Next we state four propositions:

(29) For every bifunction d from A into L and for every sequence q of qu-
adruples of d holds ConsecutiveDelta(q, ∅) = d.

(30) For every bifunction d from A into L and for every sequ-
ence q of quadruples of d holds ConsecutiveDelta(q, succ O) =
(BiFun(ConsecutiveDelta(q, O), ConsecutiveSet(A,O), L))∗Quadr(q,O).

(31) Let d be a bifunction from A into L and q be a sequence of quadruples
of d. Suppose O 6= ∅ and O is a limit ordinal number and dom T =
O and for every ordinal number O1 such that O1 ∈ O holds T (O1) =
ConsecutiveDelta(q,O1). Then ConsecutiveDelta(q,O) =

⋃
rng T.

(32) If O1 ⊆ O2, then ConsecutiveSet(A,O1) ⊆ ConsecutiveSet(A,O2).
Let O be a non empty ordinal number. Note that every element of O is

ordinal-like.
Next we state the proposition

(33) Let d be a bifunction from A into L and q be a sequence of quadruples of
d. Then ConsecutiveDelta(q, O) is a bifunction from ConsecutiveSet(A,O)
into L.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence
of quadruples of d, and let us consider O. Then ConsecutiveDelta(q,O) is a
bifunction from ConsecutiveSet(A,O) into L.

Next we state several propositions:
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(34) For every bifunction d from A into L and for every sequence q of qu-
adruples of d holds d ⊆ ConsecutiveDelta(q, O).

(35) For every bifunction d from A into L and for every sequence q of
quadruples of d such that O1 ⊆ O2 holds ConsecutiveDelta(q, O1) ⊆
ConsecutiveDelta(q, O2).

(36) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be a
sequence of quadruples of d. Then ConsecutiveDelta(q, O) is zeroed.

(37) Let d be a bifunction from A into L. Suppose d is symmetric. Let q be a
sequence of quadruples of d. Then ConsecutiveDelta(q, O) is symmetric.

(38) Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let q be a sequence of quadruples of d. If
O ⊆ DistEsti(d), then ConsecutiveDelta(q, O) satisfies triangle inequality.

(39) Let d be a distance function of A, L and q be a sequence of quadruples of
d. If O ⊆ DistEsti(d), then ConsecutiveDelta(q, O) is a distance function
of ConsecutiveSet(A,O), L.

Let us consider A, L and let d be a bifunction from A into L. The functor
NextSet(d) is defined as follows:

(Def. 18) NextSet(d) = ConsecutiveSet(A, DistEsti(d)).
Let us consider A, L and let d be a bifunction from A into L. One can check

that NextSet(d) is non empty.
Let us consider A, L, let d be a bifunction from A into L, and let q be a

sequence of quadruples of d. The functor NextDelta(q) is defined as follows:

(Def. 19) NextDelta(q) = ConsecutiveDelta(q, DistEsti(d)).
Let us consider A, L, let d be a distance function of A, L, and let q be

a sequence of quadruples of d. Then NextDelta(q) is a distance function of
NextSet(d), L.

Let us consider A, L, let d be a distance function of A, L, let A1 be a non
empty set, and let d1 be a distance function of A1, L. We say that (A1, d1) is
extension of (A, d) if and only if:

(Def. 20) There exists a sequence q of quadruples of d such that A1 = NextSet(d)
and d1 = NextDelta(q).

The following proposition is true

(40) Let d be a distance function of A, L, A1 be a non empty set, and d1 be
a distance function of A1, L. Suppose (A1, d1) is extension of (A, d). Let
x, y be elements of A and a, b be elements of L. Suppose d(x, y) ¬ a t b.

Then there exist elements z1, z2, z3 of A1 such that d1(x, z1) = a and
d1(z2, z3) = a and d1(z1, z2) = b and d1(z3, y) = b.

Let us consider A, L and let d be a distance function of A, L. A function is
called an extension sequence of (A, d) if it satisfies the conditions (Def. 21).

(Def. 21)(i) dom it = N,
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(ii) it(0) = 〈〈A, d〉〉, and
(iii) for every natural number n there exists a non empty set A′ and there

exists a distance function d′ of A′, L and there exists a non empty set
A1 and there exists a distance function d1 of A1, L such that (A1, d1) is
extension of (A′, d′) and it(n) = 〈〈A′, d′〉〉 and it(n + 1) = 〈〈A1, d1〉〉.

Next we state two propositions:

(41) Let d be a distance function of A, L, S be an extension sequence of
(A, d), and k, l be natural numbers. If k ¬ l, then S(k)1 ⊆ S(l)1.

(42) Let d be a distance function of A, L, S be an extension sequence of
(A, d), and k, l be natural numbers. If k ¬ l, then S(k)2 ⊆ S(l)2.

Let us consider L. The functor δ0(L) yields a distance function of the carrier
of L, L and is defined by:

(Def. 22) For all elements x, y of the carrier of L holds if x 6= y, then (δ0(L))(x,

y) = x t y and if x = y, then (δ0(L))(x, y) = ⊥L.

We now state two propositions:

(43) δ0(L) is onto.

(44) There exists a non empty set A and there exists a homomorphism f from
L to EqRelPoset(A) such that f is one-to-one and the type of Im f ¬ 3.
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Summary. For mappings from a metric space to a metric space, a notion
of uniform continuity is defined. If we introduce natural topologies to the metric
spaces, a uniformly continuous function becomes continuous. On the other hand,
if the domain is compact, a continuous function is uniformly continuous. For this
proof, Lebesgue’s covering lemma is also proved. An arc, which is homeomorphic
to [0,1], can be devided into small segments, as small as one wishes.
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1. Lebesgue’s Covering Lemma

We adopt the following rules: s, s1, s2, t, r, r1, r2 are real numbers, n, m

are natural numbers, and X, Y are non empty metric spaces.
The following two propositions are true:

(1) t− r − (t− s) = −r + s and t− r − (t− s) = s− r.

(2) For every r such that r > 0 there exists a natural number n such that
n > 0 and 1

n < r.
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Let X, Y be non empty metric structures and let f be a map from X into
Y . We say that f is uniformly continuous if and only if the condition (Def. 1)
is satisfied.

(Def. 1) Let given r. Suppose 0 < r. Then there exists s such that 0 < s and
for all elements u1, u2 of the carrier of X such that ρ(u1, u2) < s holds
ρ(fu1 , fu2) < r.

Next we state several propositions:

(3) Let X be a non empty topological space, M be a metric space, and f be
a map from X into Mtop. Suppose f is continuous. Let r be a real number,
u be an element of the carrier of M , and P be a subset of the carrier of
Mtop. If P = Ball(u, r), then f−1(P ) is open.

(4) Let N , M be metric spaces and f be a map from Ntop into Mtop. Suppose
that for every real number r and for every element u of the carrier of N

and for every element u1 of the carrier of M such that r > 0 and u1 = f(u)
there exists s such that s > 0 and for every element w of the carrier of
N and for every element w1 of the carrier of M such that w1 = f(w) and
ρ(u,w) < s holds ρ(u1, w1) < r. Then f is continuous.

(5) Let N be a metric space, M be a non empty metric space, and f be a
map from Ntop into Mtop. Suppose f is continuous. Let r be a real number,
u be an element of the carrier of N , and u1 be an element of the carrier
of M . Suppose r > 0 and u1 = f(u). Then there exists s such that

(i) s > 0, and
(ii) for every element w of the carrier of N and for every element w1 of the

carrier of M such that w1 = f(w) and ρ(u,w) < s holds ρ(u1, w1) < r.

(6) Let N , M be non empty metric spaces, f be a map from N into M , and
g be a map from Ntop into Mtop. If f = g and f is uniformly continuous,
then g is continuous.

(7) Let N be a non empty metric space and G be a family of subsets of Ntop.
Suppose G is a cover of Ntop and open and Ntop is compact. Then there
exists r such that

(i) r > 0, and
(ii) for all elements w1, w2 of the carrier of N such that ρ(w1, w2) < r there

exists a subset G1 of the carrier of Ntop such that w1 ∈ G1 and w2 ∈ G1

and G1 ∈ G.
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2. Uniformity of Continuous Functions on Compact Spaces

Next we state three propositions:

(8) Let N , M be non empty metric spaces, f be a map from N into M , and
g be a map from Ntop into Mtop. Suppose g = f and Ntop is compact and
g is continuous. Then f is uniformly continuous.

(9) Let g be a map from I into En
T and f be a map from [0, 1]M into En. If

g is continuous and f = g, then f is uniformly continuous.

(10) Let P be a subset of the carrier of En
T, Q be a non empty subset of the

carrier of En, g be a map from I into (En
T)¹P, and f be a map from [0, 1]M

into En¹Q. If P = Q and g is continuous and f = g, then f is uniformly
continuous.

3. Segmentation of Arcs

We now state four propositions:

(11) For every map g from I into En
T there exists a map f from [0, 1]M into

En such that f = g.

(12) For every r such that r  0 holds dre  0 and brc  0 and dre is a
natural number and brc is a natural number.

(13) For all r, s holds |r − s| = |s− r|.
(14) For all r1, r2, s1, s2 such that r1 ∈ [s1, s2] and r2 ∈ [s1, s2] holds |r1−r2| ¬

s2 − s1.

Let I1 be a finite sequence of elements of R. We say that I1 is decreasing if
and only if:

(Def. 2) For all n, m such that n ∈ dom I1 and m ∈ dom I1 and n < m holds
I1(n) > I1(m).

We now state the proposition

(15) Let e be a real number, g be a map from I into En
T, and p1, p2 be elements

of En
T. Suppose e > 0 and g is continuous and one-to-one and g(0) = p1

and g(1) = p2. Then there exists a finite sequence h of elements of R such
that

(i) h(1) = 1,
(ii) h(len h) = 0,

(iii) 5 ¬ len h,

(iv) rng h ⊆ the carrier of I,
(v) h is decreasing, and



528 yatsuka nakamura and andrzej trybulec

(vi) for every natural number i and for every subset Q of the carrier of I
and for every subset W of the carrier of En such that 1 ¬ i and i < len h

and Q = [πi+1h, πih] and W = g◦Q holds ØW < e.
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Summary. The article deals with a rather technical concept – rectangular
sequences of the points of the plane. We mean by that a finite sequence consisting
of five elements, that is circular, i.e. the first element and the fifth one of it are
equal, and such that the polygon determined by it is a non degenerated rectangle,
with sides parallel to axes. The main result is that for the rectangle determined
by such a sequence the left and the right component of the complement of it are
different and disjoint.
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1. General preliminaries

One can prove the following proposition

(1) For every trivial set A and for every set B such that B ⊆ A holds B is
trivial.

One can verify that every function which is non constant is also non trivial.
Let us observe that every function which is trivial is also constant.
One can prove the following proposition

(2) For every function f such that rng f is trivial holds f is constant.
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Let f be a constant function. One can verify that rng f is trivial.
Let us observe that there exists a finite sequence which is non empty and

constant.
We now state three propositions:

(3) For all finite sequences f , g such that f ag is constant holds f is constant
and g is constant.

(4) For all sets x, y such that 〈x, y〉 is constant holds x = y.

(5) For all sets x, y, z such that 〈x, y, z〉 is constant holds x = y and y = z

and z = x.

2. Preliminaries (general topology)

One can prove the following four propositions:

(6) Let G1 be a non empty topological space, A be a subset of the carrier of
G1, and B be a non empty subset of the carrier of G1. If A is a component
of B, then A 6= ∅.

(7) Let G1 be a non empty topological space, A be a subset of the carrier of
G1, and B be a non empty subset of the carrier of G1. If A is a component
of B, then A ⊆ B.

(8) Let T be a non empty topological space, A be a non empty subset of the
carrier of T , and B1, B2, C be subsets of the carrier of T . Suppose B1 is
a component of A and B2 is a component of A and C is a component of
A and B1 ∪B2 = A. Then C = B1 or C = B2.

(9) Let T be a non empty topological space, A be a non empty subset of the
carrier of T , and B1, B2, C1, C2 be subsets of the carrier of T . Suppose B1

is a component of A and B2 is a component of A and C1 is a component
of A and C2 is a component of A and B1∪B2 = A and C1∪C2 = A. Then
{B1, B2} = {C1, C2}.

3. Preliminaries (the topology of the plane)

We follow the rules: C, C1, C2 are non empty compact subsets of E2
T and p,

q are points of E2
T.

Next we state the proposition

(10) For all points p, q, r of E2
T holds L̃(〈p, q, r〉) = L(p, q) ∪ L(q, r).

Let n be a natural number and let f be a non trivial finite sequence of
elements of En

T. Observe that L̃(f) is non empty.
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Let f be a finite sequence of elements of E2
T. Note that L̃(f) is compact.

We now state two propositions:

(11) For all subsets A, B of the carrier of E2
T such that A ⊆ B and B is

horizontal holds A is horizontal.

(12) For all subsets A, B of the carrier of E2
T such that A ⊆ B and B is

vertical holds A is vertical.

Let us observe that ¤E2 is special polygonal.
One can check that ¤E2 is non horizontal and non vertical.
One can check that there exists a subset of E2

T which is non vertical, non
horizontal, non empty, and compact.

4. Special points of a compact non empty subset of the plane

The following propositions are true:

(13) N-min C ∈ C and N-max C ∈ C.

(14) S-min C ∈ C and S-max C ∈ C.

(15) W-min C ∈ C and W-max C ∈ C.

(16) E-min C ∈ C and E-max C ∈ C.

(17) C is vertical iff W-bound C = E-bound C.

(18) C is horizontal iff S-bound C = N-bound C.

(19) For every C such that NW-corner C = NE-corner C holds C is vertical.

(20) For every C such that SW-corner C = SE-corner C holds C is vertical.

(21) For every C such that NW-corner C = SW-corner C holds C is horizon-
tal.

(22) For every C such that NE-corner C = SE-corner C holds C is horizontal.

In the sequel t, r1, r2, s1, s2 are real numbers.
The following propositions are true:

(23) W-bound C ¬ E-bound C.

(24) S-bound C ¬ N-bound C.

(25) L(SE-corner C, NE-corner C) = {p : p1 = E-bound C ∧ p2 ¬
N-bound C ∧ p2  S-bound C}.

(26) L(SW-corner C, SE-corner C) = {p : p1 ¬ E-bound C ∧ p1 
W-bound C ∧ p2 = S-bound C}.

(27) L(NW-corner C, NE-corner C) = {p : p1 ¬ E-bound C ∧ p1 
W-bound C ∧ p2 = N-bound C}.

(28) L(SW-corner C, NW-corner C) = {p : p1 = W-bound C ∧ p2 ¬
N-bound C ∧ p2  S-bound C}.
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(29) L(SW-corner C, NW-corner C) ∩ L(NW-corner C, NE-corner C) =
{NW-corner C}.

(30) L(NW-corner C, NE-corner C) ∩ L(NE-corner C, SE-corner C) =
{NE-corner C}.

(31) L(SE-corner C, NE-corner C) ∩ L(SW-corner C, SE-corner C) =
{SE-corner C}.

(32) L(NW-corner C, SW-corner C) ∩ L(SW-corner C, SE-corner C) =
{SW-corner C}.

5. Subsets of the plane that are neither vertical nor horizontal

In the sequel D is a non vertical non horizontal non empty compact subset
of E2

T.
The following propositions are true:

(33) W-bound D < E-bound D.

(34) S-bound D < N-bound D.

(35) L(SW-corner D, NW-corner D) ∩ L(SE-corner D, NE-corner D) = ∅.
(36) L(SW-corner D, SE-corner D) ∩ L(NW-corner D, NE-corner D) = ∅.

6. A special sequence related to a compact non empty subset of
the plane

Let us consider C. The functor SpStSeq C yielding a finite sequence of ele-
ments of E2

T is defined as follows:

(Def. 1) SpStSeq C = 〈NW-corner C, NE-corner C, SE-corner C〉 a 〈SW-corner C,

NW-corner C〉.
The following propositions are true:

(37) π1 SpStSeq C = NW-corner C.

(38) π2 SpStSeq C = NE-corner C.

(39) π3 SpStSeq C = SE-corner C.

(40) π4 SpStSeq C = SW-corner C.

(41) π5 SpStSeq C = NW-corner C.

(42) len SpStSeq C = 5.

(43) L̃(SpStSeq C) = L(NW-corner C, NE-corner C) ∪ L(NE-corner C,

SE-corner C) ∪ (L(SE-corner C, SW-corner C) ∪ L(SW-corner C,

NW-corner C)).
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Let D be a non vertical non empty compact subset of E2
T. Note that

SpStSeq D is non constant.
Let D be a non horizontal non empty compact subset of E2

T. Note that
SpStSeq D is non constant.

Let us consider D. One can check that SpStSeq D is special unfolded circular
s.c.c. and standard.

Next we state four propositions:

(44) L̃(SpStSeq D) = [. W-bound D, E-bound D, S-bound D, N-bound D.].
(45) Let T be a non empty topological space, X be a non empty subset of T ,

and f be a real map of T . Then rng(f ¹ X) = f◦X.

(46) Let T be a non empty topological space, X be a non empty compact
subset of T , and f be a continuous real map of T . Then f◦X is lower
bounded.

(47) Let T be a non empty topological space, X be a non empty compact
subset of T , and f be a continuous real map of T . Then f◦X is upper
bounded.

Let us observe that there exists a subset of R which is non empty, upper
bounded, and lower bounded.

We now state a number of propositions:

(48) W-bound C = inf((proj1)◦C).
(49) S-bound C = inf((proj2)◦C).
(50) N-bound C = sup((proj2)◦C).
(51) E-bound C = sup((proj1)◦C).
(52) For all non empty lower bounded subsets A, B of R holds inf(A ∪B) =

min(inf A, inf B).
(53) For all non empty upper bounded subsets A, B of R holds sup(A∪B) =

max(sup A, sup B).
(54) If C = C1 ∪ C2, then W-bound C = min(W-bound C1, W-bound C2).
(55) If C = C1 ∪ C2, then S-bound C = min(S-bound C1, S-bound C2).
(56) If C = C1 ∪ C2, then N-bound C = max(N-bound C1, N-bound C2).
(57) If C = C1 ∪ C2, then E-bound C = max(E-bound C1, E-bound C2).

Let us consider p, q. One can check that L(p, q) is compact.
One can verify that ∅R is bounded.
Next we state the proposition

(58) s1 ∈ [r1, r2] iff r1 ¬ s1 and s1 ¬ r2.

Let us consider r1, r2. One can check that [r1, r2] is bounded.
Let us observe that every subset of R which is bounded is also lower bounded

and upper bounded and every subset of R which is lower bounded and upper
bounded is also bounded.
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The following propositions are true:

(59) If r1 ¬ r2, then t ∈ [r1, r2] iff there exists s1 such that 0 ¬ s1 and s1 ¬ 1
and t = s1 · r1 + (1− s1) · r2.

(60) If p1 ¬ q1, then (proj1)◦L(p, q) = [p1, q1].

(61) If p2 ¬ q2, then (proj2)◦L(p, q) = [p2, q2].

(62) If p1 ¬ q1, then W-boundL(p, q) = p1.

(63) If p2 ¬ q2, then S-boundL(p, q) = p2.

(64) If p2 ¬ q2, then N-boundL(p, q) = q2.

(65) If p1 ¬ q1, then E-boundL(p, q) = q1.

(66) W-bound L̃(SpStSeq D) = W-bound D.

(67) S-bound L̃(SpStSeq D) = S-bound D.

(68) N-bound L̃(SpStSeq D) = N-bound D.

(69) E-bound L̃(SpStSeq D) = E-bound D.

(70) NW-corner L̃(SpStSeq D) = NW-corner D.

(71) NE-corner L̃(SpStSeq D) = NE-corner D.

(72) SW-corner L̃(SpStSeq D) = SW-corner D.

(73) SE-corner L̃(SpStSeq D) = SE-corner D.

(74) W-most L̃(SpStSeq D) = L(SW-corner D, NW-corner D).

(75) N-most L̃(SpStSeq D) = L(NW-corner D, NE-corner D).

(76) S-most L̃(SpStSeq D) = L(SW-corner D, SE-corner D).

(77) E-most L̃(SpStSeq D) = L(SE-corner D, NE-corner D).

(78) (proj2)◦L(SW-corner D, NW-corner D) = [S-bound D, N-bound D].

(79) (proj1)◦L(NW-corner D, NE-corner D) = [W-bound D, E-bound D].

(80) (proj2)◦L(NE-corner D, SE-corner D) = [S-bound D, N-bound D].

(81) (proj1)◦L(SE-corner D, SW-corner D) = [W-bound D, E-bound D].

(82) W-min L̃(SpStSeq D) = SW-corner D.

(83) W-max L̃(SpStSeq D) = NW-corner D.

(84) N-min L̃(SpStSeq D) = NW-corner D.

(85) N-max L̃(SpStSeq D) = NE-corner D.

(86) E-min L̃(SpStSeq D) = SE-corner D.

(87) E-max L̃(SpStSeq D) = NE-corner D.

(88) S-min L̃(SpStSeq D) = SW-corner D.

(89) S-max L̃(SpStSeq D) = SE-corner D.
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7. Rectangular finite suequences of the points of the plane

Let f be a finite sequence of elements of E2
T. We say that f is rectangular if

and only if:

(Def. 2) There exists D such that f = SpStSeq D.

Let us consider D. Note that SpStSeq D is rectangular.
Let us mention that there exists a finite sequence of elements of E2

T which is
rectangular.

In the sequel s denotes a rectangular finite sequence of elements of E2
T.

The following proposition is true

(90) len s = 5.

Let us note that every finite sequence of elements of E2
T which is rectangular

is also non constant.
One can verify that every non empty finite sequence of elements of E2

T which
is rectangular is also standard, special, unfolded, circular, and s.c.c..

In the sequel s is a rectangular finite sequence of elements of E2
T.

Next we state four propositions:

(91) π1s = N-min L̃(s) and π1s = W-max L̃(s).
(92) π2s = N-max L̃(s) and π2s = E-max L̃(s).
(93) π3s = S-max L̃(s) and π3s = E-min L̃(s).
(94) π4s = S-min L̃(s) and π4s = W-min L̃(s).

8. Jordan property

One can prove the following proposition

(95) If r1 < r2 and s1 < s2, then [.r1, r2, s1, s2.] is Jordan.

Let f be a rectangular finite sequence of elements of E2
T. Observe that L̃(f)

is Jordan.
Let S be a subset of the carrier of E2

T. Let us observe that S is Jordan if and
only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) Sc 6= ∅, and
(ii) there exist subsets A1, A2 of the carrier of E2

T such that Sc = A1 ∪A2

and A1 misses A2 and A1 \A1 = A2 \A2 and A1 is a component of Sc and
A2 is a component of Sc.

Next we state the proposition

(96) For every rectangular finite sequence f of elements of E2
T holds

LeftComp(f) misses RightComp(f).
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Let f be a non constant standard special circular sequence. One can verify
that LeftComp(f) is non empty and RightComp(f) is non empty.

The following proposition is true

(97) For every rectangular finite sequence f of elements of E2
T holds

LeftComp(f) 6= RightComp(f).
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1. Preliminaries

One can prove the following propositions:
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B holds A ∪ C misses B.

(2) For all sets A, B, C, p such that A ∩ C = {p} and p ∈ B and B ⊆ C

holds A ∩B = {p}.
(3) For all sets A, B such that for every set y such that y ∈ B holds A misses

y holds A misses
⋃

B.

(4) For all sets A, B such that for all sets x, y such that x ∈ A and y ∈ B

holds x misses y holds
⋃

A misses
⋃

B.
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2. On the finite sequences

We adopt the following convention: i, j, k, m, n denote natural numbers, D

denotes a non empty set, and f denotes a finite sequence of elements of D.
The following propositions are true:

(5) For all i, j, k such that i ¬ j and i ∈ dom f and j ∈ dom f and
k ∈ dom mid(f, i, j) holds (k + i)−′ 1 ∈ dom f.

(6) For all i, j, k such that i > j and i ∈ dom f and j ∈ dom f and
k ∈ dom mid(f, i, j) holds i−′ k + 1 ∈ dom f.

(7) For all i, j, k such that i ¬ j and i ∈ dom f and j ∈ dom f and
k ∈ dom mid(f, i, j) holds πk mid(f, i, j) = π(k+i)−′1f.

(8) For all i, j, k such that i > j and i ∈ dom f and j ∈ dom f and
k ∈ dom mid(f, i, j) holds πk mid(f, i, j) = πi−′k+1f.

(9) If i ∈ dom f and j ∈ dom f, then len mid(f, i, j)  1.

(10) If i ∈ dom f and j ∈ dom f and len mid(f, i, j) = 1, then i = j.

(11) If i ∈ dom f and j ∈ dom f, then mid(f, i, j) is non empty.

(12) If i ∈ dom f and j ∈ dom f, then π1 mid(f, i, j) = πif.

(13) If i ∈ dom f and j ∈ dom f, then πlen mid(f,i,j) mid(f, i, j) = πjf.

3. Compact subsets of the plane

In the sequel X denotes a non empty compact subset of E2
T.

One can prove the following four propositions:

(14) For every point p of E2
T such that p ∈ X and p2 = N-bound X holds

p ∈ N-most X.

(15) For every point p of E2
T such that p ∈ X and p2 = S-bound X holds

p ∈ S-most X.

(16) For every point p of E2
T such that p ∈ X and p1 = W-bound X holds

p ∈W-most X.

(17) For every point p of E2
T such that p ∈ X and p1 = E-bound X holds

p ∈ E-most X.
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4. Finite sequences on the plane

We now state several propositions:

(18) For every finite sequence f of elements of E2
T such that 1 ¬ i and i ¬ j

and j ¬ len f holds L̃(mid(f, i, j)) =
⋃{L(f, k) : i ¬ k ∧ k < j}.

(19) For every finite sequence f of elements of E2
T holds dom X-coordinate(f) =

dom f.

(20) For every finite sequence f of elements of E2
T holds dom Y-coordinate(f) =

dom f.

(21) For all points a, b, c of E2
T such that b ∈ L(a, c) and a1 ¬ b1 and c1 ¬ b1

holds a = b or b = c or a1 = b1 and c1 = b1.

(22) For all points a, b, c of E2
T such that b ∈ L(a, c) and a2 ¬ b2 and c2 ¬ b2

holds a = b or b = c or a2 = b2 and c2 = b2.

(23) For all points a, b, c of E2
T such that b ∈ L(a, c) and a1  b1 and c1  b1

holds a = b or b = c or a1 = b1 and c1 = b1.

(24) For all points a, b, c of E2
T such that b ∈ L(a, c) and a2  b2 and c2  b2

holds a = b or b = c or a2 = b2 and c2 = b2.

5. The area of a sequence

Let f be a non trivial finite sequence of elements of E2
T and let g be a finite

sequence of elements of E2
T. We say that g is in the area of f if and only if:

(Def. 1) For every n such that n ∈ dom g holds W-bound L̃(f) ¬ (πng)1
and (πng)1 ¬ E-bound L̃(f) and S-bound L̃(f) ¬ (πng)2 and (πng)2 ¬
N-bound L̃(f).

We now state several propositions:

(25) Every non trivial finite sequence f of elements of E2
T is in the area of f .

(26) Let f be a non trivial finite sequence of elements of E2
T and g be a finite

sequence of elements of E2
T. Suppose g is in the area of f . Let given i, j.

If i ∈ dom g and j ∈ dom g, then mid(g, i, j) is in the area of f .

(27) Let f be a non trivial finite sequence of elements of E2
T and given i, j. If

i ∈ dom f and j ∈ dom f, then mid(f, i, j) is in the area of f .

(28) Let f be a non trivial finite sequence of elements of E2
T and g, h be finite

sequences of elements of E2
T. Suppose g is in the area of f and h is in the

area of f . Then g a h is in the area of f .

(29) For every non trivial finite sequence f of elements of E2
T holds

〈NE-corner L̃(f)〉 is in the area of f .
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(30) For every non trivial finite sequence f of elements of E2
T holds

〈NW-corner L̃(f)〉 is in the area of f .

(31) For every non trivial finite sequence f of elements of E2
T holds

〈SE-corner L̃(f)〉 is in the area of f .

(32) For every non trivial finite sequence f of elements of E2
T holds

〈SW-corner L̃(f)〉 is in the area of f .

6. Horizontal and vertical connections

Let f be a non trivial finite sequence of elements of E2
T and let g be a finite

sequence of elements of E2
T. We say that g is a h.c. for f if and only if:

(Def. 2) g is in the area of f and (π1g)1 = W-bound L̃(f) and (πlen gg)1 =
E-bound L̃(f).

We say that g is a v.c. for f if and only if:

(Def. 3) g is in the area of f and (π1g)2 = S-bound L̃(f) and (πlen gg)2 =
N-bound L̃(f).

Next we state the proposition

(33) Let f be a non trivial finite sequence of elements of E2
T and g, h be S-

sequences in R2. If g is a h.c. for f and h is a v.c. for f , then L̃(g) meets
L̃(h).

7. Orientation

Let f be a non trivial finite sequence of elements of E2
T. We say that f is

clockwise oriented if and only if:

(Def. 4) π2f
N-min eL(f)
ª ∈ N-most L̃(f).

The following proposition is true

(34) Let f be a non constant standard special circular sequence. If π1f =
N-min L̃(f), then f is clockwise oriented iff π2f ∈ N-most L̃(f).

Let us note that ¤E2 is compact.
We now state several propositions:

(35) N-bound ¤E2 = 1.

(36) W-bound ¤E2 = 0.

(37) E-bound ¤E2 = 1.

(38) S-bound ¤E2 = 0.

(39) N-most ¤E2 = L([0, 1], [1, 1]).
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(40) N-min ¤E2 = [0, 1].

Let X be a non vertical non horizontal non empty compact subset of E2
T.

One can verify that SpStSeq X is clockwise oriented.
One can verify that there exists a non constant standard special circular

sequence which is clockwise oriented.
One can prove the following propositions:

(41) Let f be a non constant standard special circular sequence and given i,
j. Suppose i > j but 1 < j and i ¬ len f or 1 ¬ j and i < len f. Then
mid(f, i, j) is a S-sequence in R2.

(42) Let f be a non constant standard special circular sequence and given i,
j. Suppose i < j but 1 < i and j ¬ len f or 1 ¬ i and j < len f. Then
mid(f, i, j) is a S-sequence in R2.

In the sequel f is a clockwise oriented non constant standard special circular
sequence.

One can prove the following propositions:

(43) N-min L̃(f) ∈ rng f.

(44) N-max L̃(f) ∈ rng f.

(45) S-min L̃(f) ∈ rng f.

(46) S-max L̃(f) ∈ rng f.

(47) W-min L̃(f) ∈ rng f.

(48) W-max L̃(f) ∈ rng f.

(49) E-min L̃(f) ∈ rng f.

(50) E-max L̃(f) ∈ rng f.

(51) If 1 ¬ i and i ¬ j and j < m and m ¬ n and n ¬ len f and 1 < i or
n < len f, then L̃(mid(f, i, j)) misses L̃(mid(f, m, n)).

(52) If 1 ¬ i and i ¬ j and j < m and m ¬ n and n ¬ len f and 1 < i or
n < len f, then L̃(mid(f, i, j)) misses L̃(mid(f, n,m)).

(53) If 1 ¬ i and i ¬ j and j < m and m ¬ n and n ¬ len f and 1 < i or
n < len f, then L̃(mid(f, j, i)) misses L̃(mid(f, n, m)).

(54) If 1 ¬ i and i ¬ j and j < m and m ¬ n and n ¬ len f and 1 < i or
n < len f, then L̃(mid(f, j, i)) misses L̃(mid(f, m, n)).

(55) (N-min L̃(f))1 < (N-max L̃(f))1.

(56) N-min L̃(f) 6= N-max L̃(f).
(57) (E-min L̃(f))2 < (E-max L̃(f))2.

(58) E-min L̃(f) 6= E-max L̃(f).
(59) (S-min L̃(f))1 < (S-max L̃(f))1.

(60) S-min L̃(f) 6= S-max L̃(f).
(61) (W-min L̃(f))2 < (W-max L̃(f))2.
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(62) W-min L̃(f) 6= W-max L̃(f).
(63) L(NW-corner L̃(f), N-min L̃(f)) misses L(N-max L̃(f), NE-corner L̃(f)).
(64) Let f be a S-sequence in R2 and p be a point of E2

T. Suppose p 6= π1f but
p1 = (π1f)1 or p2 = (π1f)2 but L(p, π1f) ∩ L̃(f) = {π1f}. Then 〈p〉 a f

is a S-sequence in R2.

(65) Let f be a S-sequence in R2 and p be a point of E2
T. Suppose p 6= πlen ff

but p1 = (πlen ff)1 or p2 = (πlen ff)2 but L(p, πlen ff) ∩ L̃(f) = {πlen ff}.
Then f a 〈p〉 is a S-sequence in R2.

8. Appending corners

We now state several propositions:

(66) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j) is a S-
sequence in R2 and πjf = N-max L̃(f) and N-max L̃(f) 6= NE-corner L̃(f).
Then (mid(f, i, j)) a 〈NE-corner L̃(f)〉 is a S-sequence in R2.

(67) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j) is a S-
sequence in R2 and πjf = E-max L̃(f) and E-max L̃(f) 6= NE-corner L̃(f).
Then (mid(f, i, j)) a 〈NE-corner L̃(f)〉 is a S-sequence in R2.

(68) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j) is a S-
sequence in R2 and πjf = S-max L̃(f) and S-max L̃(f) 6= SE-corner L̃(f).
Then (mid(f, i, j)) a 〈SE-corner L̃(f)〉 is a S-sequence in R2.

(69) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j) is a S-
sequence in R2 and πjf = E-max L̃(f) and E-max L̃(f) 6= NE-corner L̃(f).
Then (mid(f, i, j)) a 〈NE-corner L̃(f)〉 is a S-sequence in R2.

(70) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j) is a S-
sequence in R2 and πif = N-min L̃(f) and N-min L̃(f) 6= NW-corner L̃(f).
Then 〈NW-corner L̃(f)〉 a mid(f, i, j) is a S-sequence in R2.

(71) Let given i, j. Suppose i ∈ dom f and j ∈ dom f and mid(f, i, j)
is a S-sequence in R2 and πif = W-min L̃(f) and W-min L̃(f) 6=
SW-corner L̃(f). Then 〈SW-corner L̃(f)〉 a mid(f, i, j) is a S-sequence in
R2.

Let f be a non constant standard special circular sequence. One can check
that L̃(f) is simple closed curve.
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9. The order

We now state a number of propositions:

(72) If π1f = N-min L̃(f), then (N-min L̃(f)) " f < (N-max L̃(f)) " f.

(73) If π1f = N-min L̃(f), then (N-max L̃(f)) " f > 1.

(74) If π1f = N-min L̃(f) and N-max L̃(f) 6= E-max L̃(f), then
(N-max L̃(f)) " f < (E-max L̃(f)) " f.

(75) If π1f = N-min L̃(f), then (E-max L̃(f)) " f < (E-min L̃(f)) " f.

(76) If π1f = N-min L̃(f) and E-min L̃(f) 6= S-max L̃(f), then
(E-min L̃(f)) " f < (S-max L̃(f)) " f.

(77) If π1f = N-min L̃(f), then (S-max L̃(f)) " f < (S-min L̃(f)) " f.

(78) If π1f = N-min L̃(f) and S-min L̃(f) 6= W-min L̃(f), then
(S-min L̃(f)) " f < (W-min L̃(f)) " f.

(79) If π1f = N-min L̃(f) and N-min L̃(f) 6= W-max L̃(f), then
(W-min L̃(f)) " f < (W-max L̃(f)) " f.

(80) If π1f = N-min L̃(f), then (W-min L̃(f)) " f < len f.

(81) If π1f = N-min L̃(f), then (W-max L̃(f)) " f < len f.
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Summary. This article is concerned with the Euler’s function [10] that
plays an important role in cryptograms. In the first section, we present some
selected theorems on integers. Next, we define the Euler’s function. Finally, three
theorems relating to the Euler’s function are proved. The third theorem concerns
two relatively prime integers which make up the Euler’s function parameter. In
the public key cryptography these two integer values are used as public and secret
keys.
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The notation and terminology used here are introduced in the following papers:
[12], [6], [1], [13], [9], [2], [3], [7], [8], [14], [11], [15], [4], and [5].

1. Preliminary

We follow the rules: a, b, c, k, l, m, n are natural numbers and i, j, x, y are
integers.

The following propositions are true:

(1) k ∈ n iff k < n.

(2) n and n are relative prime iff n = 1.

(3) If k 6= 0 and k < n and n is prime, then k and n are relative prime.

(4) n is prime and k ∈ {k1; k1 ranges over natural numbers: n and k1 are
relative prime ∧ k1  1 ∧ k1 ¬ n} if and only if n is prime and k ∈ n and
k /∈ {0}.

(5) For every finite set A and for every set x such that x ∈ A holds A \ {x} =
A − {x} .
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(6) If gcd(a, b) = 1, then for every c holds gcd(a · c, b · c) = c.

(7) If a 6= 0 and b 6= 0 and c 6= 0 and gcd(a · c, b · c) = c, then a and b are
relative prime.

(8) If gcd(a, b) = 1, then gcd(a + b, b) = 1.

(9) For every c holds gcd(a + b · c, b) = gcd(a, b).
(10) Suppose m and n are relative prime. Then there exists k such that

(i) there exist integers i0, j0 such that k = i0 ·m + j0 · n and k > 0, and
(ii) for every l such that there exist integers i, j such that l = i ·m + j · n

and l > 0 holds k ¬ l.

(11) If m and n are relative prime, then for every k there exist i, j such that
i ·m + j · n = k.

(12) For all non empty finite sets A, B such that there exists a function from
A into B which is one-to-one and onto holds A = B.

(13) For all integers i, k, n such that n 6= 0 holds (i + k ·n) mod n = i mod n.

(14) If a 6= 0 and b 6= 0 and c 6= 0 and c | a · b and a and c are relative prime,
then c | b.

(15) Suppose a 6= 0 and b 6= 0 and c 6= 0 and a and c are relative prime and
b and c are relative prime. Then a · b and c are relative prime.

(16) If x 6= 0 and y 6= 0 and i > 0, then i · x gcd i · y = i · (x gcd y).
(17) For every x such that a 6= 0 and b 6= 0 holds a + x · b gcd b = a gcd b.

2. Definition of Euler’s Function

Let n be a natural number. The functor Euler n yields a natural number and
is defined as follows:

(Def. 1) Euler n = {k; k ranges over natural numbers: n and k are

{relative prime ∧ k  1 ∧ k ¬ n} .
We now state several propositions:

(18) Euler 1 = 1.

(19) Euler 2 = 1.

(20) If n > 1, then Euler n ¬ n− 1.

(21) If n is prime, then Euler n = n− 1.

(22) If m > 1 and n > 1 and m and n are relative prime, then Euler m · n =
Euler m · Euler n.
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Summary. The article defines while macro instructions based on
SCMFSA. Some theorems about the generalized halting problems of while macro
instructions are proved.

MML Identifier: SCMFSA 9.

The notation and terminology used in this paper are introduced in the following
papers: [24], [32], [19], [8], [13], [33], [15], [16], [17], [12], [34], [7], [10], [14], [31],
[18], [9], [20], [21], [25], [11], [23], [30], [29], [26], [27], [1], [28], [22], [5], [6], [4],
[2], and [3].

The following propositions are true:

(1) For every macro instruction I and for every integer location a holds
card if = 0(a, I; Goto(insloc(0)), StopSCMFSA

) = card I + 6.

(2) For every macro instruction I and for every integer location a holds
card if > 0(a, I; Goto(insloc(0)), StopSCMFSA

) = card I + 6.

Let a be an integer location and let I be a macro instruction. The functor
while = 0(a, I) yielding a macro instruction is defined as follows:

(Def. 1) while = 0(a, I) = if = 0(a, I; Goto(insloc(0)), StopSCMFSA
)+·(insloc

(card I + 4)7−→. goto insloc(0)).
The functor while > 0(a, I) yielding a macro instruction is defined by:

(Def. 2) while > 0(a, I) = if > 0(a, I; Goto(insloc(0)), StopSCMFSA
)+·(insloc

(card I + 4)7−→. goto insloc(0)).
The following proposition is true

1Part of the work was done while the author was visiting the Institute of Mathematics at
the University of Białystok.
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(3) For every macro instruction I and for every integer location a holds
card if = 0(a, StopSCMFSA

, if > 0(a, StopSCMFSA
, I; Goto(insloc(0)))) =

card I + 11.

Let a be an integer location and let I be a macro instruction. The functor
while < 0(a, I) yields a macro instruction and is defined as follows:

(Def. 3) while < 0(a, I) = if = 0(a, StopSCMFSA
, if > 0(a, StopSCMFSA

, I; Goto
(insloc(0))))+·(insloc(card I + 4)7−→. goto insloc(0)).

Next we state a number of propositions:

(4) For every macro instruction I and for every integer location a holds
card while = 0(a, I) = card I + 6.

(5) For every macro instruction I and for every integer location a holds
card while > 0(a, I) = card I + 6.

(6) For every macro instruction I and for every integer location a holds
card while < 0(a, I) = card I + 11.

(7) For every integer location a and for every instruction-location l of
SCMFSA holds if a = 0 goto l 6= haltSCMFSA .

(8) For every integer location a and for every instruction-location l of
SCMFSA holds if a > 0 goto l 6= haltSCMFSA .

(9) For every instruction-location l of SCMFSA holds goto l 6= haltSCMFSA .

(10) Let a be an integer location and I be a macro instruction. Then
insloc(0) ∈ dom while = 0(a, I) and insloc(1) ∈ dom while = 0(a, I) and
insloc(0) ∈ dom while > 0(a, I) and insloc(1) ∈ dom while > 0(a, I).

(11) Let a be an integer location and I be a macro instruction. Then
(while = 0(a, I))(insloc(0)) = if a = 0 goto insloc(4) and (while =
0(a, I))(insloc(1)) = goto insloc(2) and (while > 0(a, I))(insloc(0)) =
if a > 0 goto insloc(4) and (while > 0(a, I))(insloc(1)) = goto insloc(2).

(12) Let a be an integer location, I be a macro instruction, and k be a natural
number. If k < 6, then insloc(k) ∈ dom while = 0(a, I).

(13) Let a be an integer location, I be a macro instruction, and k be a natural
number. If k < 6, then insloc(card I + k) ∈ dom while = 0(a, I).

(14) For every integer location a and for every macro instruction I holds
(while = 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(15) For every integer location a and for every macro instruction I holds
(while = 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(16) For every integer location a and for every macro instruction I holds
(while = 0(a, I))(insloc(2)) = goto insloc(3).

(17) Let a be an integer location, I be a macro instruction, and k be a natural
number. If k < card I + 6, then insloc(k) ∈ dom while = 0(a, I).
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(18) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-
write integer location. If s(a) 6= 0, then while = 0(a, I) is halting on s and
while = 0(a, I) is closed on s.

(19) Let a be an integer location, I be a macro instruction, s be a state of
SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,
(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),
(iii) IC(Computation(s+·(while=0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) + 4, and
(iv) (Computation(s+·(while = 0(a, I)+· Start-At(insloc(0)))))(1 + k)

¹(Int-Locations∪FinSeq-Locations) = (Computation(s+·(I+· Start-At
(insloc(0)))))(k)¹(Int-Locations∪FinSeq-Locations).
Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+k+1) =
IC(Computation(s+·(I+·Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

= 0(a, I)+· Start-At(insloc(0)))))(1 + k + 1)¹(Int-Locations
∪FinSeq-Locations) = (Computation(s+·(I+· Start-At(insloc(0)))))
(k + 1)¹(Int-Locations∪FinSeq-Locations).

(20) Let a be an integer location, I be a macro instruction, and s be a state
of SCMFSA. Suppose I is closed on s and halting on s and
IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =
IC(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while = 0(a, I)+· Start-At(insloc(0)))))
(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(21) For every integer location a and for every macro instruction I holds
(while = 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(22) Let s be a state of SCMFSA, I be a macro instruction, and a be a
read-write integer location. Suppose I is closed on s and halting on s and
s(a) = 0. Then IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+· Start-At(insloc(0))))+3) = insloc(0) and for every natural num-
ber k such that k ¬ LifeSpan(s+·(I+· Start-At(insloc(0)))) + 3 holds
IC(Computation(s+·(while=0(a,I)+·Start-At(insloc(0)))))(k) ∈ dom while = 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,
and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile = 0(a, I, s) yields a function
from N into

∏
(the object kind of SCMFSA) and is defined by the conditions

(Def. 4).

(Def. 4)(i) (StepWhile = 0(a, I, s))(0) = s, and
(ii) for every natural number i and for every element x of

∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile = 0(a, I, s))(i)
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holds (StepWhile = 0(a, I, s))(i + 1) = (Computation(x+·(while =
0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).

In the sequel k, n are natural numbers.
We now state three propositions:

(23) (StepWhile = 0(a, I, s))(0) = s.

(24) (StepWhile = 0(a, I, s))(k + 1) = (Computation((StepWhile =
0(a, I, s))(k)+·(while = 0(a, I)+·s0)))(LifeSpan((StepWhile = 0(a, I, s))
(k)+·(I+·s0)) + 3).

(25) (StepWhile = 0(a, I, s))(k + 1) = (StepWhile = 0(a, I, (StepWhile =
0(a, I, s))(k)))(1).

The scheme MinIndex deals with a unary functor F yielding a natural num-
ber and a natural number A, and states that:

There exists k such that F(k) = 0 and for every n such that
F(n) = 0 holds k ¬ n

provided the parameters meet the following conditions:
• F(0) = A, and
• For every k holds F(k + 1) < F(k) or F(k) = 0.

We now state a number of propositions:

(26) For all functions f , g holds f+·g+·g = f+·g.

(27) For all functions f , g, h and for every set D such that (f+·g)¹D = h¹D
holds (h+·g)¹D = (f+·g)¹D.

(28) For all functions f , g, h and for every set D such that f¹D = h¹D holds
(h+·g)¹D = (f+·g)¹D.

(29) For all states s1, s2 of SCMFSA such that IC(s1) = IC(s2) and
s1¹(Int-Locations∪FinSeq-Locations) =
s2¹(Int-Locations∪FinSeq-Locations) and s1¹I1 = s2¹I1 holds s1 = s2.

(30) Let I be a macro instruction, a be a read-write integer location, and
s be a state of SCMFSA. Then (StepWhile = 0(a, I, s))(0 + 1) =
(Computation(s+·(while = 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(31) Let I be a macro instruction, a be a read-write integer location,
s be a state of SCMFSA, and k, n be natural numbers. Suppose
IC(StepWhile=0(a,I,s))(k) = insloc(0) and (StepWhile = 0(a, I, s))(k) =
(Computation(s+·(while = 0(a, I)+· Start-At(insloc(0)))))(n). Then
(StepWhile = 0(a, I, s))(k) = (StepWhile = 0(a, I, s))(k)+·(while =
0(a, I)+· Start-At(insloc(0))) and (StepWhile = 0(a, I, s))(k + 1) =
(Computation(s+·(while = 0(a, I)+· Start-At(insloc(0)))))(n + (LifeSpan
((StepWhile = 0(a, I, s))(k)+·(I+· Start-At(insloc(0)))) + 3)).

(32) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that
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(i) for every natural number k holds I is closed on (StepWhile =
0(a, I, s))(k) and halting on (StepWhile = 0(a, I, s))(k), and

(ii) there exists a function f from
∏

(the object kind of SCMFSA)
into N such that for every natural number k holds f((StepWhile =
0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or f((StepWhile =
0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) = 0 iff
(StepWhile = 0(a, I, s))(k)(a) 6= 0.

Then while = 0(a, I) is halting on s and while = 0(a, I) is closed on s.

(33) Let I be a parahalting macro instruction, a be a read-write integer loca-
tion, and s be a state of SCMFSA. Given a function f from

∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then
f((StepWhile = 0(a, I, s))(k + 1)) < f((StepWhile = 0(a, I, s))(k)) or
f((StepWhile = 0(a, I, s))(k)) = 0 but f((StepWhile = 0(a, I, s))(k)) =
0 iff (StepWhile = 0(a, I, s))(k)(a) 6= 0. Then while = 0(a, I) is halting
on s and while = 0(a, I) is closed on s.

(34) Let I be a parahalting macro instruction and a be a read-write inte-
ger location. Given a function f from

∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile =
0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) 6= 0. Then
while = 0(a, I) is parahalting.

(35) For all instructions-locations l1, l2 of SCMFSA and for every integer
location a holds l1 7−→. goto l2 does not destroy a.

(36) For every instruction i of SCMFSA such that i does not destroy intloc(0)
holds Macro(i) is good.

Let I, J be good macro instructions and let a be an integer location. Note
that if = 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can
verify that while = 0(a, I) is good.

We now state a number of propositions:

(37) Let a be an integer location, I be a macro instruction, and k be a natural
number. If k < 6, then insloc(k) ∈ dom while > 0(a, I).

(38) Let a be an integer location, I be a macro instruction, and k be a natural
number. If k < 6, then insloc(card I + k) ∈ dom while > 0(a, I).

(39) For every integer location a and for every macro instruction I holds
(while > 0(a, I))(insloc(card I + 5)) = haltSCMFSA .

(40) For every integer location a and for every macro instruction I holds
(while > 0(a, I))(insloc(3)) = goto insloc(card I + 5).

(41) For every integer location a and for every macro instruction I holds
(while > 0(a, I))(insloc(2)) = goto insloc(3).

(42) Let a be an integer location, I be a macro instruction, and k be a natural
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number. If k < card I + 6, then insloc(k) ∈ dom while > 0(a, I).
(43) Let s be a state of SCMFSA, I be a macro instruction, and a be a read-

write integer location. If s(a) ¬ 0, then while > 0(a, I) is halting on s and
while > 0(a, I) is closed on s.

(44) Let a be an integer location, I be a macro instruction, s be a state of
SCMFSA, and k be a natural number. Suppose that

(i) I is closed on s and halting on s,
(ii) k < LifeSpan(s+·(I+·Start-At(insloc(0)))),
(iii) IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+k) =

IC(Computation(s+·(I+· Start-At(insloc(0)))))(k) + 4, and
(iv) (Computation(s+·(while > 0(a, I)+· Start-At(insloc(0)))))(1+k)¹D =

(Computation(s+·(I+· Start-At(insloc(0)))))(k)¹D.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))(1+k+1) =
IC(Computation(s+·(I+· Start-At(insloc(0)))))(k+1)+4 and (Computation(s+·(while

> 0(a, I)+· Start-At(insloc(0)))))(1 + k + 1)¹D =
(Computation(s+·(I+· Start-At(insloc(0)))))(k + 1)¹D.

(45) Let a be an integer location, I be a macro instruction, and s be
a state of SCMFSA. Suppose I is closed on s and halting on s and
IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(1+LifeSpan(s+·(I+·Start-At

(insloc(0))))) =
IC(Computation(s+·(I+· Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At(insloc(0)))))+4.

Then CurInstr((Computation(s+·(while > 0(a, I)+·Start-At(insloc(0)))))
(1 + LifeSpan(s+·(I+·Start-At(insloc(0)))))) = goto insloc(card I + 4).

(46) For every integer location a and for every macro instruction I holds
(while > 0(a, I))(insloc(card I + 4)) = goto insloc(0).

(47) Let s be a state of SCMFSA, I be a macro instruction, and a be a
read-write integer location. Suppose I is closed on s and halting on s and
s(a) > 0.

Then IC(Computation(s+·(while>0(a,I)+·Start-At(insloc(0)))))

(LifeSpan(s+·(I+·Start-At(insloc(0))))+3) = insloc(0) and for every natural num-
ber k such that k ¬ LifeSpan(s+·(I+· Start-At(insloc(0)))) + 3 holds
IC(Computation(s+·(while>0(a,I)+· Start-At(insloc(0)))))(k) ∈ dom while > 0(a, I).

In the sequel s denotes a state of SCMFSA, I denotes a macro instruction,
and a denotes a read-write integer location.

Let us consider s, I, a. The functor StepWhile > 0(a, I, s) yielding a function
from N into

∏
(the object kind of SCMFSA) is defined by the conditions (Def. 5).

(Def. 5)(i) (StepWhile > 0(a, I, s))(0) = s, and
(ii) for every natural number i and for every element x of

∏
(the ob-

ject kind of SCMFSA) such that x = (StepWhile > 0(a, I, s))(i)
holds (StepWhile > 0(a, I, s))(i + 1) = (Computation(x+·(while >

0(a, I)+·s0)))(LifeSpan(x+·(I+·s0)) + 3).
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One can prove the following propositions:

(48) (StepWhile > 0(a, I, s))(0) = s.

(49) (StepWhile > 0(a, I, s))(k + 1) = (Computation((StepWhile >

0(a, I, s))(k)+·(while > 0(a, I)+·s0)))(LifeSpan((StepWhile > 0(a, I, s))
(k)+·(I+·s0)) + 3).

(50) (StepWhile > 0(a, I, s))(k + 1) = (StepWhile > 0(a, I, (StepWhile >

0(a, I, s))(k)))(1).

(51) Let I be a macro instruction, a be a read-write integer location, and
s be a state of SCMFSA. Then (StepWhile > 0(a, I, s))(0 + 1) =
(Computation(s+·(while > 0(a, I)+·s0)))(LifeSpan(s+·(I+·s0)) + 3).

(52) Let I be a macro instruction, a be a read-write integer location,
s be a state of SCMFSA, and k, n be natural numbers. Suppose
IC(StepWhile>0(a,I,s))(k) = insloc(0) and (StepWhile > 0(a, I, s))(k) =
(Computation(s+·(while > 0(a, I)+· Start-At(insloc(0)))))(n). Then
(StepWhile > 0(a, I, s))(k) = (StepWhile > 0(a, I, s))(k)+·(while >

0(a, I)+·Start-At(insloc(0))) and (StepWhile > 0(a, I, s))(k + 1) =
(Computation(s+·(while > 0(a, I)+· Start-At(insloc(0)))))(n + (LifeSpan
((StepWhile > 0(a, I, s))(k)+·(I+· Start-At(insloc(0)))) + 3)).

(53) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Suppose that
(i) for every natural number k holds I is closed on (StepWhile >

0(a, I, s))(k) and halting on (StepWhile > 0(a, I, s))(k), and
(ii) there exists a function f from

∏
(the object kind of SCMFSA)

into N such that for every natural number k holds f((StepWhile >

0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or f((StepWhile >

0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) = 0 iff
(StepWhile > 0(a, I, s))(k)(a) ¬ 0.

Then while > 0(a, I) is halting on s and while > 0(a, I) is closed on s.

(54) Let I be a parahalting macro instruction, a be a read-write integer loca-
tion, and s be a state of SCMFSA. Given a function f from

∏
(the object

kind of SCMFSA) into N such that let k be a natural number. Then
f((StepWhile > 0(a, I, s))(k + 1)) < f((StepWhile > 0(a, I, s))(k)) or
f((StepWhile > 0(a, I, s))(k)) = 0 but f((StepWhile > 0(a, I, s))(k)) =
0 iff (StepWhile > 0(a, I, s))(k)(a) ¬ 0. Then while > 0(a, I) is halting
on s and while > 0(a, I) is closed on s.

(55) Let I be a parahalting macro instruction and a be a read-write inte-
ger location. Given a function f from

∏
(the object kind of SCMFSA)

into N such that let s be a state of SCMFSA. Then f((StepWhile >

0(a, I, s))(1)) < f(s) or f(s) = 0 but f(s) = 0 iff s(a) ¬ 0. Then
while > 0(a, I) is parahalting.
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Let I, J be good macro instructions and let a be an integer location. One
can verify that if > 0(a, I, J) is good.

Let I be a good macro instruction and let a be an integer location. One can
verify that while > 0(a, I) is good.
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Summary. The goal of the article is to introduce an order on a simple
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arcs. We prove that such a decomposition is unique. Other auxiliary theorems
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1. Middle Points of Arcs

For simplicity, we use the following convention: a, b, c, s, r are real numbers,
n is a natural number, p, q are points of E2

T, and P is a subset of the carrier of
E2

T.
The following propositions are true:

(1) If a = a+b
2 , then a = b.

(2) If r ¬ s, then r ¬ r+s
2 and r+s

2 ¬ s.

(3) Let T1 be a non empty topological space, P be a subset of the carrier of
T1, A be a subset of the carrier of T1¹P, and B be a subset of the carrier
of T1. If B is closed and A = B ∩ P, then A is closed.
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(4) Let T1, T2 be non empty topological spaces, P be a non empty subset of
the carrier of T2, and f be a map from T1 into T2¹P. Then

(i) f is a map from T1 into T2, and
(ii) for every map f2 from T1 into T2 such that f2 = f and f is continuous

holds f2 is continuous.

(5) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p1  r}, then P is closed.

(6) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p1 ¬ r}, then P is closed.

(7) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p1 = r}, then P is closed.

(8) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p2  r}, then P is closed.

(9) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p2 ¬ r}, then P is closed.

(10) Let r be a real number and P be a subset of the carrier of E2
T. If P = {p; p

ranges over points of E2
T: p2 = r}, then P is closed.

(11) Let P be a non empty subset of the carrier of En
T and p1, p2 be points of

En
T. If P is an arc from p1 to p2, then P is connected.

(12) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then P is closed.

(13) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. Suppose P is an arc from p1 to p2. Then there exists a point q of E2

T

such that q ∈ P and q1 = (p1)1+(p2)1
2 .

(14) Let P be a non empty subset of the carrier of E2
T, Q be a subset of the

carrier of E2
T, and p1, p2 be points of E2

T. Suppose P is an arc from p1 to
p2 and Q = {q : q1 = (p1)1+(p2)1

2 }. Then P meets Q and P ∩Q is closed.

(15) Let P be a non empty subset of the carrier of E2
T, Q be a subset of the

carrier of E2
T, and p1, p2 be points of E2

T. Suppose P is an arc from p1 to
p2 and Q = {q : q2 = (p1)2+(p2)2

2 }. Then P meets Q and P ∩Q is closed.

Let P be a non empty subset of the carrier of E2
T and let p1, p2 be points of

E2
T. Let us assume that P is an arc from p1 to p2. The functor xMiddle(P, p1, p2)

yields a point of E2
T and is defined as follows:

(Def. 1) For every subset Q of the carrier of E2
T such that Q = {q : q1 =

(p1)1+(p2)1
2 } holds xMiddle(P, p1, p2) = FPoint(P, p1, p2, Q).

Let P be a non empty subset of the carrier of E2
T and let p1, p2 be points of

E2
T. Let us assume that P is an arc from p1 to p2. The functor yMiddle(P, p1, p2)

yields a point of E2
T and is defined by:
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(Def. 2) For every subset Q of the carrier of E2
T such that Q = {q : q2 =

(p1)2+(p2)2
2 } holds yMiddle(P, p1, p2) = FPoint(P, p1, p2, Q).

One can prove the following propositions:

(16) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points

of E2
T. If P is an arc from p1 to p2, then xMiddle(P, p1, p2) ∈ P and

yMiddle(P, p1, p2) ∈ P.

(17) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then p1 = xMiddle(P, p1, p2) iff (p1)1 =

(p2)1.

(18) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then p1 = yMiddle(P, p1, p2) iff (p1)2 =

(p2)2.

2. Segments of Arcs

The following proposition is true

(19) Let P be a non empty subset of the carrier of E2
T and p1, p2, q1, q2 be

points of E2
T. If P is an arc from p1 to p2 and LE q1, q2, P , p1, p2, then

LE q2, q1, P , p2, p1.

Let P be a non empty subset of the carrier of E2
T and let p1, p2, q1 be points

of E2
T. The functor LSegment(P, p1, p2, q1) yields a subset of the carrier of E2

T
and is defined by:

(Def. 3) LSegment(P, p1, p2, q1) = {q : LE q, q1, P , p1, p2}.
Let P be a non empty subset of the carrier of E2

T and let p1, p2, q1 be points
of E2

T. The functor RSegment(P, p1, p2, q1) yielding a subset of the carrier of E2
T

is defined as follows:

(Def. 4) RSegment(P, p1, p2, q1) = {q : LE q1, q, P , p1, p2}.
Next we state several propositions:

(20) For every non empty subset P of the carrier of E2
T and for all points p1,

p2, q1 of E2
T holds LSegment(P, p1, p2, q1) ⊆ P.

(21) For every non empty subset P of the carrier of E2
T and for all points p1,

p2, q1 of E2
T holds RSegment(P, p1, p2, q1) ⊆ P.

(22) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then LSegment(P, p1, p2, p1) = {p1}.

(23) Let P be a non empty subset of the carrier of E2
T and p1, p2, q be points

of E2
T. If P is an arc from p1 to p2 and q ∈ P, then LE q, p2, P , p1, p2.

(24) Let P be a non empty subset of the carrier of E2
T and p1, p2, q be points

of E2
T. If P is an arc from p1 to p2 and q ∈ P, then LE p1, q, P , p1, p2.
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(25) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then LSegment(P, p1, p2, p2) = P.

(26) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then RSegment(P, p1, p2, p2) = {p2}.

(27) Let P be a non empty subset of the carrier of E2
T and p1, p2 be points of

E2
T. If P is an arc from p1 to p2, then RSegment(P, p1, p2, p1) = P.

(28) Let P be a non empty subset of the carrier of E2
T and p1, p2, q1 be points of

E2
T. If P is an arc from p1 to p2 and q1 ∈ P, then RSegment(P, p1, p2, q1) =

LSegment(P, p2, p1, q1).
Let P be a non empty subset of the carrier of E2

T and let p1, p2, q1, q2

be points of E2
T. The functor Segment(P, p1, p2, q1, q2) yielding a subset of the

carrier of E2
T is defined by:

(Def. 5) Segment(P, p1, p2, q1, q2) = RSegment(P, p1, p2, q1)∩LSegment(P, p1, p2, q2).
Next we state four propositions:

(29) Let P be a non empty subset of the carrier of E2
T and p1, p2, q1, q2

be points of E2
T. Then Segment(P, p1, p2, q1, q2) = {q : LE q1, q, P , p1,

p2 ∧ LE q, q2, P , p1, p2}.
(30) Let P be a non empty subset of the carrier of E2

T and p1, p2, q1, q2 be
points of E2

T. Suppose P is an arc from p1 to p2. Then LE q1, q2, P , p1, p2

if and only if LE q2, q1, P , p2, p1.

(31) Let P be a non empty subset of the carrier of E2
T and p1, p2, q be points

of E2
T. If P is an arc from p1 to p2 and q ∈ P, then LSegment(P, p1, p2, q) =

RSegment(P, p2, p1, q).
(32) Let P be a non empty subset of the carrier of E2

T and p1, p2, q1, q2 be
points of E2

T. If P is an arc from p1 to p2 and q1 ∈ P and q2 ∈ P, then
Segment(P, p1, p2, q1, q2) = Segment(P, p2, p1, q2, q1).

3. Decomposition of a Simple Closed Curve Into Two Arcs

Let s be a real number. The functor VerticalLine s yields a subset of the
carrier of E2

T and is defined as follows:

(Def. 6) VerticalLine s = {p; p ranges over points of E2
T: p1 = s}.

The functor HorizontalLine s yielding a subset of the carrier of E2
T is defined as

follows:

(Def. 7) HorizontalLine s = {p : p2 = s}.
Next we state several propositions:

(33) For every real number r holds VerticalLine r is closed and
HorizontalLine r is closed.
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(34) For every real number r and for every point p of E2
T such that p ∈

VerticalLine r holds p1 = r.

(35) For every real number r and for every point p of E2
T such that p ∈

HorizontalLine r holds p2 = r.

(36) For every compact non empty subset P of E2
T holds W-min P ∈ P and

W-max P ∈ P.

(37) For every compact non empty subset P of E2
T holds N-min P ∈ P and

N-max P ∈ P.

(38) For every compact non empty subset P of E2
T holds E-min P ∈ P and

E-max P ∈ P.

(39) For every compact non empty subset P of E2
T holds S-min P ∈ P and

S-max P ∈ P.

(40) Let P be a compact non empty subset of E2
T. Suppose P is a simple

closed curve. Then there exist non empty subsets P1, P2 of the carrier of
E2

T such that
(i) P1 is an arc from W-min P to E-max P,

(ii) P2 is an arc from E-max P to W-min P,

(iii) P1 ∩ P2 = {W-min P, E-max P},
(iv) P1 ∪ P2 = P, and
(v) (FPoint(P1, W-min P, E-max P, VerticalLine W-bound P+E-bound P

2 ))2 >

(LPoint(P2, E-max P, W-min P, VerticalLine W-bound P+E-bound P
2 ))2.

4. Uniqueness of Decomposition of a Simple Closed Curve

One can prove the following propositions:

(41) For every subset P of the carrier of I such that P = (the carrier of
I) \ {0, 1} holds P is open.

(42) For all subsets B1, B2 of R such that B2 is lower bounded and B1 ⊆ B2

holds B1 is lower bounded.

(43) For all subsets B1, B2 of R such that B2 is upper bounded and B1 ⊆ B2

holds B1 is upper bounded.

(44) For all r, s holds ]r, s[ ∩ {r, s} = ∅.
(45) For all a, b, c holds c ∈ ]a, b[ iff a < c and c < b.

(46) For every subset P of the carrier of R1 and for all r, s such that P = ]r, s[
holds P is open.

(47) Let S be a non empty topological space, P1, P2 be subsets of the carrier
of S, and P ′1 be a subset of the carrier of S¹P2. If P1 = P ′1 and P1 6= ∅ and
P1 ⊆ P2, then S¹P1 = S¹P2¹P ′1.
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(48) For every subset P7 of the carrier of I such that P7 = (the carrier of
I) \ {0, 1} holds P7 6= ∅ and P7 is connected.

(49) Let P be a non empty subset of the carrier of En
T and p1, p2 be points of

En
T. If P is an arc from p1 to p2, then p1 6= p2.

(50) Let P be a non empty subset of the carrier of En
T, Q be a subset of the

carrier of (En
T)¹P, and p1, p2 be points of En

T. If P is an arc from p1 to p2

and Q = P \ {p1, p2}, then Q is open.

(51) For all points p, q of En
T and for every non empty subset P of En

T such
that P is an arc from p to q holds P is compact.

(52) Let P be a subset of the carrier of En
T, P1, P2 be non empty subsets of

the carrier of En
T, Q be a subset of the carrier of (En

T)¹P, and p1, p2 be
points of En

T. Suppose p1 ∈ P and p2 ∈ P and P1 is an arc from p1 to p2

and P2 is an arc from p1 to p2 and P1 ∪ P2 = P and P1 ∩ P2 = {p1, p2}
and Q = P1 \ {p1, p2}. Then Q is open.

(53) Let P be a non empty subset of the carrier of En
T, Q be a subset of the

carrier of (En
T)¹P, and p1, p2 be points of En

T. If P is an arc from p1 to p2

and Q = P \ {p1, p2}, then Q is connected.

(54) Let G1 be a non empty topological space, P1, P be non empty subsets
of the carrier of G1, Q′ be a subset of the carrier of G1¹P1, and Q be a
non empty subset of the carrier of G1¹P. If P1 ⊆ P and Q = Q′ and Q′ is
connected, then Q is connected.

(55) Let P be a non empty subset of the carrier of En
T and p1, p2 be points of

En
T. Suppose P is an arc from p1 to p2. Then there exists a point p3 of En

T
such that p3 ∈ P and p3 6= p1 and p3 6= p2.

(56) Let P be a non empty subset of the carrier of En
T and p1, p2 be points of

En
T. If P is an arc from p1 to p2, then P \ {p1, p2} 6= ∅.

(57) Let P1 be a non empty subset of the carrier of En
T, P be a subset of the

carrier of En
T, Q be a subset of the carrier of (En

T)¹P, and p1, p2 be points
of En

T. If P1 is an arc from p1 to p2 and P1 ⊆ P and Q = P1 \ {p1, p2},
then Q is connected.

(58) Let T , S, V be non empty topological spaces, P1 be a non empty subset
of the carrier of S, P2 be a subset of the carrier of S, f be a map from T

into S¹P1, and g be a map from S¹P2 into V . Suppose P1 ⊆ P2 and f is
continuous and g is continuous. Then there exists a map h from T into V

such that h = g · f and h is continuous.

(59) Let P1, P2 be non empty subsets of the carrier of En
T and p1, p2 be points

of En
T. If P1 is an arc from p1 to p2 and P2 is an arc from p1 to p2 and

P1 ⊆ P2, then P1 = P2.

(60) Let P be a non empty subset of the carrier of E2
T, Q be a subset of the

carrier of (E2
T)¹P, and p1, p2 be points of E2

T. Suppose P is a simple closed
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curve and p1 ∈ P and p2 ∈ P and p1 6= p2 and Q = P \ {p1, p2}. Then Q

is not connected.

(61) Let P , P1, P2, P ′1, P ′2 be non empty subsets of the carrier of E2
T and p1,

p2 be points of E2
T. Suppose that

(i) P is a simple closed curve,
(ii) P1 is an arc from p1 to p2,
(iii) P2 is an arc from p1 to p2,
(iv) P1 ∪ P2 = P,

(v) P1 ∩ P2 = {p1, p2},
(vi) P ′1 is an arc from p1 to p2,
(vii) P ′2 is an arc from p1 to p2,
(viii) P ′1 ∪ P ′2 = P, and
(ix) P ′1 ∩ P ′2 = {p1, p2}.

Then P1 = P ′1 and P2 = P ′2 or P1 = P ′2 and P2 = P ′1.

5. Lower Arcs and Upper Arcs

One can prove the following propositions:

(62) Let P1 be a non empty subset of the carrier of E2
T and p1, p2 be points

of E2
T. If P1 is an arc from p1 to p2, then P1 is closed.

(63) Let G1, G2 be non empty topological spaces, P be a non empty subset
of the carrier of G2, f be a map from G1 into G2¹P, and f1 be a map from
G1 into G2. If f = f1 and f is continuous, then f1 is continuous.

(64) Let P1 be a non empty subset of the carrier of E2
T and p1, p2 be points

of E2
T. Suppose (p1)1 ¬ (p2)1 and P1 is an arc from p1 to p2. Then P1 ∩

VerticalLine (p1)1+(p2)1
2 6= ∅ and P1 ∩VerticalLine (p1)1+(p2)1

2 is closed.

Let P be a compact non empty subset of E2
T. Let us assume that P is a

simple closed curve. The functor UpperArc P yields a non empty subset of the
carrier of E2

T and is defined by the conditions (Def. 8).

(Def. 8)(i) UpperArc P is an arc from W-min P to E-max P, and
(ii) there exists a non empty subset P2 of the carrier of E2

T such that
P2 is an arc from E-max P to W-min P and UpperArc P ∩ P2 =
{W-min P, E-max P} and UpperArc P ∪ P2 = P and
(FPoint(UpperArc P, W-min P, E-max P,

VerticalLine W-bound P+E-bound P
2 ))2 >

(LPoint(P2, E-max P, W-min P,

VerticalLine W-bound P+E-bound P
2 ))2.

Let P be a compact non empty subset of E2
T. Let us assume that P is a

simple closed curve. The functor LowerArc P yielding a non empty subset of
the carrier of E2

T is defined as follows:
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(Def. 9) LowerArc P is an arc from E-max P to W-min P and UpperArc P ∩
LowerArc P = {W-min P, E-max P} and UpperArc P ∪ LowerArc P = P

and (FPoint(UpperArc P, W-min P, E-max P,

VerticalLine W-bound P+E-bound P
2 ))2 > (LPoint(LowerArc P, E-max P,

W-min P, VerticalLine W-bound P+E-bound P
2 ))2.

The following propositions are true:

(65) Let P be a compact non empty subset of E2
T. Suppose P is a simple

closed curve. Then
(i) UpperArc P is an arc from W-min P to E-max P,

(ii) UpperArc P is an arc from E-max P to W-min P,

(iii) LowerArc P is an arc from E-max P to W-min P,

(iv) LowerArc P is an arc from W-min P to E-max P,

(v) UpperArc P ∩ LowerArc P = {W-min P, E-max P},
(vi) UpperArc P ∪ LowerArc P = P, and
(vii) (FPoint(UpperArc P, W-min P, E-max P,

VerticalLine W-bound P+E-bound P
2 ))2 > (LPoint(LowerArc P, E-max P,

W-min P, VerticalLine W-bound P+E-bound P
2 ))2.

(66) Let P be a compact non empty subset of E2
T. If P is a simple closed

curve, then LowerArc P = (P \ UpperArc P ) ∪ {W-min P, E-max P} and
UpperArc P = (P \ LowerArc P ) ∪ {W-min P, E-max P}.

(67) Let P be a compact non empty subset of E2
T and P1 be a subset of the

carrier of (E2
T)¹P. If P is a simple closed curve and UpperArc P ∩ P1 =

{W-min P, E-max P} and UpperArc P ∪ P1 = P, then P1 = LowerArc P.

(68) Let P be a compact non empty subset of E2
T and P1 be a subset of the

carrier of (E2
T)¹P. If P is a simple closed curve and P1 ∩ LowerArc P =

{W-min P, E-max P} and P1 ∪ LowerArc P = P, then P1 = UpperArc P.

6. An Order of Points in a Simple Closed Curve

One can prove the following propositions:

(69) Let P be a non empty subset of the carrier of E2
T and p1, p2, q be points

of E2
T. If P is an arc from p1 to p2 and LE q, p1, P , p1, p2, then q = p1.

(70) Let P be a non empty subset of the carrier of E2
T and p1, p2, q be points

of E2
T. If P is an arc from p1 to p2 and LE p2, q, P , p1, p2, then q = p2.

Let P be a compact non empty subset of E2
T and let q1, q2 be points of E2

T.
The predicate LE(q1, q2, P ) is defined by the conditions (Def. 10).

(Def. 10)(i) q1 ∈ UpperArc P and q2 ∈ LowerArc P and q2 6= W-min P, or
(ii) q1 ∈ UpperArc P and q2 ∈ UpperArc P and LE q1, q2, UpperArc P,

W-min P, E-max P, or
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(iii) q1 ∈ LowerArc P and q2 ∈ LowerArc P and q2 6= W-min P and LE q1,
q2, LowerArc P, E-max P, W-min P.

Next we state three propositions:

(71) Let P be a compact non empty subset of E2
T and q be a point of E2

T. If
P is a simple closed curve and q ∈ P, then LE(q, q, P ).

(72) Let P be a compact non empty subset of E2
T and q1, q2 be points of

E2
T. If P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q1, P ), then

q1 = q2.

(73) Let P be a compact non empty subset of E2
T and q1, q2, q3 be points of

E2
T. If P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P ), then

LE(q1, q3, P ).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics,

1(4):643–649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics,
1(4):651–656, 1990.

[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[13] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[14] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[18] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - funda-

mental concepts. Formalized Mathematics, 2(4):605–608, 1991.
[20] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[21] Agata Darmochwał and Yatsuka Nakamura. The topological space E2
T. Simple closed

curves. Formalized Mathematics, 2(5):663–664, 1991.
[22] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathema-

tics, 2(5):635–642, 1991.



572 yatsuka nakamura and andrzej trybulec

[23] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562,
1991.

[24] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics,
6(4):449–454, 1997.

[25] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II.
Formalized Mathematics, 6(4):467–473, 1997.

[26] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[27] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[28] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. For-
malized Mathematics, 2(5):665–674, 1991.

[29] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Ma-
thematics, 3(1):1–16, 1992.

[30] Zbigniew Karno. On Kolmogorov topological spaces. Formalized Mathematics, 5(1):119–
124, 1996.

[31] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[32] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[33] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean
space to each coordinates. Formalized Mathematics, 6(4):505–509, 1997.

[34] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[35] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[36] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[37] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[38] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in EN

T . Formalized
Mathematics, 5(1):93–96, 1996.

[39] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[40] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[41] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[42] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
2(4):535–545, 1991.

[43] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[44] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[45] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[46] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[47] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathe-

matics, 3(1):85–88, 1992.
[48] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[49] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received December 19, 1997



FORMALIZED MATHEMATICS

Volume 6, Number 4, 1997
University of Białystok

The Chinese Remainder Theorem

Andrzej Kondracki
AMS Management Systems Poland

Warsaw

Summary. The article is a translation of the first chapters of a book Wstęp
do teorii liczb (Eng. Introduction to Number Theory) by W. Sierpiński, WSiP,
Biblioteczka Matematyczna, Warszawa, 1987. The first few pages of this book
have already been formalized in MML. We prove the Chinese Remainder Theorem
and Thue’s Theorem as well as several useful number theory propositions.

MML Identifier: WSIERP 1.

The terminology and notation used in this paper are introduced in the following
articles: [20], [16], [9], [14], [18], [1], [10], [13], [12], [15], [11], [17], [21], [6], [7],
[2], [5], [3], [8], [4], and [19].

For simplicity, we follow the rules: x, y, z, w denote real numbers, a, b, c, d,
e, f , g denote natural numbers, k, l, m, n, m1, n1 denote integers, and q denotes
a rational number.

The following propositions are true:

(1) If y 6= 0, then (x
y )a = xa

ya .

(2) x2 = x · x and (−x)2 = x2.

(3) (−x)2·a = x2·a and (−x)2·a+1 = −x2·a+1.

(4) If x 6= 0, then xa
Z = xa.

(5) If x  0 and y  0 and d > 0 and xd = yd, then x = y.

(6) x > max(y, z) iff x > y and x > z.

(7) If x ¬ 0 and y  z, then y − x  z and y  z + x.

(8) If x ¬ 0 and y > z or x < 0 and y  z, then y > z + x and y − x > z.

Let us consider a, b. Then gcd(a, b) is a natural number. Let us observe that
the functor gcd(a, b) is commutative.

Let us consider m, n. Then m gcd n is an integer. Let us observe that the
functor m gcd n is commutative.
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Let us consider k, a. Then ka is an integer.
Let us consider a, b. Then ab is a natural number.
We now state a number of propositions:

(9) If k | m and k | n, then k | m + n.

(10) If k | m and k | n, then k | m ·m1 + n · n1.

(11) If m gcd n = 1 and k gcd n = 1, then m · k gcd n = 1.

(12) If gcd(a, b) = 1 and gcd(c, b) = 1, then gcd(a · c, b) = 1.

(13) 0 gcd m = |m| and 1 gcd m = 1.

(14) 1 and k are relative prime.

(15) If k and l are relative prime, then ka and l are relative prime.

(16) If k and l are relative prime, then ka and lb are relative prime.

(17) If k gcd l = 1, then k gcd lb = 1 and ka gcd lb = 1.

(18) |m| | k iff m | k.

(19) If a | b, then ac | bc.

(20) If a | 1, then a = 1.

(21) If d | a and gcd(a, b) = 1, then gcd(d, b) = 1.

(22) If k 6= 0, then k | l iff l
k is an integer.

(23) If a ¬ b− c, then a ¬ b and c ¬ b.

In the sequel f1, f2, f3 are finite sequences.
Next we state two propositions:

(24) If a ∈ Seg len f2, then a ∈ Seg len(f2
a f3).

(25) If a ∈ Seg len f3, then len f2 + a ∈ Seg len(f2
a f3).

Let f4 be a finite sequence of elements of R and let us consider a. Then f4(a)
is a real number.

Let f5 be a finite sequence of elements of Z and let us consider a. Then f5(a)
is an integer.

Let f6 be a finite sequence of elements of N and let us consider a. Then f6(a)
is a natural number.

Let D be a non empty set and let D1 be a non empty subset of D. We see
that the finite sequence of elements of D1 is a finite sequence of elements of D.

Let D be a non empty set, let D1 be a non empty subset of D, and let f7,
f8 be finite sequences of elements of D1. Then f7

a f8 is a finite sequence of
elements of D1.

Let D be a non empty set and let D1 be a non empty subset of D. Then
ε(D1) is an empty finite sequence of elements of D1.
Z is a non empty subset of R.
For simplicity, we adopt the following convention: D, D1 are non empty

sets, v1, v2, v3 are sets, f6 is a finite sequence of elements of N, f5, f9 are finite
sequences of elements of Z, and f4 is a finite sequence of elements of R.
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Let us consider f5. Then
∑

f5 is an integer. Then
∏

f5 is an integer.
Let us consider f6. Then

∑
f6 is a natural number. Then

∏
f6 is a natural

number.
Let us consider a, f1. The functor f1∼a yielding a finite sequence is defined

as follows:

(Def. 1)(i) f1∼a = f1 if a /∈ dom f1,

(ii) len(f1∼a) + 1 = len f1 and for every b holds if b < a, then (f1∼a)(b) =
f1(b) and if b  a, then (f1∼a)(b) = f1(b + 1), otherwise.

Let us consider D, let us consider a, and let f1 be a finite sequence of elements
of D. Then f1∼a is a finite sequence of elements of D.

Let us consider D, let D1 be a non empty subset of D, let us consider a, and
let f1 be a finite sequence of elements of D1. Then f1∼a is a finite sequence of
elements of D1.

One can prove the following propositions:

(26) 〈v1〉∼1 = ε and 〈v1, v2〉∼1 = 〈v2〉 and 〈v1, v2〉∼2 = 〈v1〉 and 〈v1, v2,

v3〉∼1 = 〈v2, v3〉 and 〈v1, v2, v3〉∼2 = 〈v1, v3〉 and 〈v1, v2, v3〉∼3 = 〈v1, v2〉.
(27) If 1 ¬ a and a ¬ len f4, then

∑
(f4∼a) + f4(a) =

∑
f4.

(28) If a ∈ Seg len f6 and f6(a) 6= 0, then
Q

f6

f6(a) is a natural number.

(29) num q and den q are relative prime.

(30) If q 6= 0 and q = k
a and a 6= 0 and k and a are relative prime, then

k = num q and a = den q.

(31) If there exists q such that a = qb, then there exists k such that a = kb.

(32) If there exists q such that a = qd, then there exists b such that a = bd.

(33) If e > 0 and ae | be, then a | b.
(34) There exist m, n such that gcd(a, b) = a ·m + b · n.

(35) There exist m1, n1 such that m gcd n = m ·m1 + n · n1.

(36) If m | n · k and m gcd n = 1, then m | k.

(37) If gcd(a, b) = 1 and a | b · c, then a | c.
(38) If a 6= 0 and b 6= 0, then there exist c, d such that gcd(a, b) = a · c− b · d.

(39) If f > 0 and g > 0 and gcd(f, g) = 1 and af = bg, then there exists e

such that a = eg and b = ef .

In the sequel x, y, z, t denote integers.
Next we state several propositions:

(40) There exist x, y such that m · x + n · y = k iff m gcd n | k.

(41) Suppose m 6= 0 and n 6= 0 and m ·m1 + n · n1 = k. Let given x, y. If
m · x + n · y = k, then there exists t such that x = m1 + t · n

m gcd n and
y = n1 − t · m

m gcd n .

(42) If gcd(a, b) = 1 and a · b = cd, then there exist e, f such that a = ed and
b = fd.
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(43) For every d such that for every a such that a ∈ Seg len f6 holds
gcd(f6(a), d) = 1 holds gcd(

∏
f6, d) = 1.

(44) Suppose len f6  2 and for all b, c such that b ∈ Seg len f6 and c ∈
Seg len f6 and b 6= c holds gcd(f6(b), f6(c)) = 1. Let given f5. Suppose
len f5 = len f6. Then there exists f9 such that len f9 = len f6 and for every
b such that b ∈ Seg len f6 holds f6(b) · f9(b) + f5(b) = f6(1) · f9(1) + f5(1).

(45) If x < y and z  w or x ¬ y and z > w or x < y and z > w, then
x− z < y − w.

(46) If a 6= 0 and a gcd k = 1, then there exist b, e such that 0 6= b and 0 6= e

and b ¬ √a and e ¬ √a and a | k · b + e or a | k · b− e.
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