
FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Adjacency Concept for Pairs of Natural

Numbers

Yatsuka Nakamura
Shinshu University

Nagano

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. First, we introduce the concept of adjacency for a
pair of natural numbers. Second, we extend the concept for two pairs of
natural numbers. The pairs represent points of a lattice in a plane. We
show that if some property is infectious among adjacent points, and some
points have the property, then all points have the property.

MML Identifier: GOBRD10.

The articles [8], [11], [10], [5], [1], [7], [12], [4], [3], [2], [9], and [6] provide the
notation and terminology for this paper.

In this paper i, j, k, k1, k2, n, m, i1, i2, j1, j2 are natural numbers.
Let us consider i1, i2. We say that i1 and i2 are adjacent if and only if:

(Def. 1) i2 = i1 + 1 or i1 = i2 + 1.

One can prove the following propositions:

(1) For all i1, i2 such that i1 and i2 are adjacent holds i1 + 1 and i2 + 1 are
adjacent.

(2) For all i1, i2 such that i1 and i2 are adjacent and 1 ≤ i1 and 1 ≤ i2
holds i1 −′ 1 and i2 −′ 1 are adjacent.

Let us consider i1, j1, i2, j2. We say that i1, j1, i2, and j2 are adjacent if
and only if:

(Def. 2) i1 and i2 are adjacent and j1 = j2 or i1 = i2 and j1 and j2 are adjacent.

The following propositions are true:

(3) For all i1, i2, j1, j2 such that i1, j1, i2, and j2 are adjacent holds i1 + 1,
j1 + 1, i2 + 1, and j2 + 1 are adjacent.

(4) Given i1, i2, j1, j2. Suppose i1, j1, i2, and j2 are adjacent and 1 ≤ i1
and 1 ≤ i2 and 1 ≤ j1 and 1 ≤ j2. Then i1−′ 1, j1−′ 1, i2−′ 1, and j2−′ 1
are adjacent.

1
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

2 yatsuka nakamura and andrzej trybulec

Let us consider i, n. The functor Repeat(i, n) yields a finite sequence of
elements of

�
and is defined as follows:

(Def. 3) len Repeat(i, n) = n and for every j such that 1 ≤ j and j ≤ n holds
(Repeat(i, n))(j) = i.

Next we state four propositions:

(5) For every i holds Repeat(i, 0) = ε.

(6) Given n, i, j. Suppose i ≤ n and j ≤ n. Then there exists a finite
sequence f1 of elements of

�
such that

(i) f1(1) = i,
(ii) f1(len f1) = j,
(iii) len f1 = i−′ j + j −′ i+ 1,
(iv) for all k, k1 such that 1 ≤ k and k ≤ len f1 and k1 = f1(k) holds

k1 ≤ n, and
(v) for every i1 such that 1 ≤ i1 and i1 < len f1 holds f1(i1 +1) = πi1f1 +1

or f1(i1) = πi1+1f1 + 1.

(7) Given n, i, j. Suppose i ≤ n and j ≤ n. Then there exists a finite
sequence f1 of elements of

�
such that

(i) f1(1) = i,
(ii) f1(len f1) = j,
(iii) len f1 = i−′ j + j −′ i+ 1,
(iv) for all k, k1 such that 1 ≤ k and k ≤ len f1 and k1 = f1(k) holds

k1 ≤ n, and
(v) for every i1 such that 1 ≤ i1 and i1 < len f1 holds πi1f1 and πi1+1f1

are adjacent.

(8) Given n, m, i1, j1, i2, j2. Suppose i1 ≤ n and j1 ≤ m and i2 ≤ n and
j2 ≤ m. Then there exist finite sequences f1, f2 of elements of

�
such that

(i) for all i, k1, k2 such that i ∈ dom f1 and k1 = f1(i) and k2 = f2(i)
holds k1 ≤ n and k2 ≤ m,

(ii) f1(1) = i1,
(iii) f1(len f1) = i2,
(iv) f2(1) = j1,
(v) f2(len f2) = j2,
(vi) len f1 = len f2,

(vii) len f1 = i1 −′ i2 + i2 −′ i1 + j1 −′ j2 + j2 −′ j1 + 1, and
(viii) for every i such that 1 ≤ i and i < len f1 holds πif1, πif2, πi+1f1, and

πi+1f2 are adjacent.

In the sequel S is a set.
Next we state the proposition

(9) Let Y be a subset of S and let F be a matrix over 2S of dimension n ×
m. Suppose that

(i) there exist i, j such that i ∈ Seg n and j ∈ Segm and Fi,j ⊆ Y, and
(ii) for all i1, j1, i2, j2 such that i1 ∈ Seg n and i2 ∈ Segn and j1 ∈ Segm

and j2 ∈ Segm and i1, j1, i2, and j2 are adjacent holds Fi1,j1 ⊆ Y iff

adjacency concept for pairs of natural . . . 3

Fi2,j2 ⊆ Y.
Given i, j. If i ∈ Segn and j ∈ Segm, then Fi,j ⊆ Y.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,

2(4):475–480, 1991.
[7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[9] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[11] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 10, 1996

4

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Inverse Limits of Many Sorted Algebras

Adam Grabowski
Warsaw University

Bia lystok

Summary. This article introduces the construction of an inverse
limit of many sorted algebras. A few preliminary notions such as an
ordered family of many sorted algebras and a binding of family are for-
mulated. Definitions of a set of many sorted signatures and a set of
signature morphisms are also given.

MML Identifier: MSALIMIT.

The terminology and notation used here are introduced in the following articles:
[21], [25], [12], [22], [26], [9], [28], [10], [5], [23], [8], [18], [27], [11], [3], [7], [24],
[2], [1], [20], [15], [19], [6], [14], [17], [16], [4], and [13].

1. Inverse Limits of Many Sorted Algebras

We adopt the following rules: P denotes a non empty poset, i, j, k denote
elements of P , and S denotes a non void non empty many sorted signature.

Let I be a non empty set, let us consider S, let A1 be an algebra family of
I over S, let i be an element of I, and let o be an operation symbol of S. One
can verify that (OPER(A1))(i)(o) is function-like and relation-like.

Let I be a non empty set, let us consider S, let A1 be an algebra family of I
over S, and let s be a sort symbol of S. Note that (SORTS(A1))(s) is functional.

Let us consider P , S. An algebra family of the carrier of P over S is called
a family of algebras over S ordered by P if it satisfies the condition (Def. 1).

(Def. 1) There exists a many sorted function F of the internal relation of P such
that for all i, j, k if i ≥ j and j ≥ k, then there exists a many sorted
function f1 from it(i) into it(j) and there exists a many sorted function
f2 from it(j) into it(k) such that f1 = F (j, i) and f2 = F (k, j) and F (k,
i) = f2 ◦ f1 and f1 is a homomorphism of it(i) into it(j).

5
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

6 adam grabowski

In the sequel O1 is a family of algebras over S ordered by P .
Let us consider P , S, O1. A many sorted function of the internal relation of

P is called a binding of O1 if it satisfies the condition (Def. 2).

(Def. 2) Given i, j, k. Suppose i ≥ j and j ≥ k. Then there exists a many
sorted function f1 from O1(i) into O1(j) and there exists a many sorted
function f2 from O1(j) into O1(k) such that f1 = it(j, i) and f2 = it(k,
j) and it(k, i) = f2 ◦ f1 and f1 is a homomorphism of O1(i) into O1(j).

Let us consider P , S, O1, let B be a binding of O1, and let us consider i,
j. Let us assume that i ≥ j. The functor bind(B, i, j) yielding a many sorted
function from O1(i) into O1(j) is defined by:

(Def. 3) bind(B, i, j) = B(j, i).

In the sequel B will be a binding of O1.
Next we state the proposition

(1) If i ≥ j and j ≥ k, then bind(B, j, k) ◦ bind(B, i, j) = bind(B, i, k).

Let us consider P , S, O1 and let I1 be a binding of O1. We say that I1 is
normalized if and only if:

(Def. 4) For every i holds I1(i, i) = id(the sorts of O1(i)).

We now state the proposition

(2) Given P , S, O1, B, i, j. Suppose i ≥ j. Let f be a many sorted function
from O1(i) into O1(j). If f = bind(B, i, j), then f is a homomorphism of
O1(i) into O1(j).

Let us consider P , S, O1, B. The functor Normalized(B) yields a binding of
O1 and is defined as follows:

(Def. 5) For all i, j such that i ≥ j holds (Normalized(B))(j, i) = (j = i →
id(the sorts of O1(i)),bind(B, i, j) ◦ id(the sorts of O1(i))).

Next we state the proposition

(3) For all i, j such that i ≥ j and i 6= j holds B(j, i) = (Normalized(B))(j,
i).

Let us consider P , S, O1, B. One can verify that Normalized(B) is normal-
ized.

Let us consider P , S, O1. Note that there exists a binding of O1 which is
normalized.

The following proposition is true

(4) For every normalized binding N1 of O1 and for all i, j such that i ≥ j
holds (Normalized(N1))(j, i) = N1(j, i).

Let us consider P , S, O1 and let B be a binding of O1. The functor lim←− B

yields a strict subalgebra of
∏
O1 and is defined by the condition (Def. 6).

(Def. 6) Let s be a sort symbol of S and let f be an element of (SORTS(O1))(s).
Then f ∈ (the sorts of lim←− B)(s) if and only if for all i, j such that i ≥ j

holds (bind(B, i, j))(s)(f(i)) = f(j).

Next we state the proposition

inverse limits of many sorted algebras 7

(5) Let D1 be a discrete non empty poset, and given S, and let O1 be
a family of algebras over S ordered by D1, and let B be a normalized
binding of O1. Then lim←− B =

∏
O1.

2. Sets and Morphisms of Many Sorted Signatures

In the sequel x will be a set and A will be a non empty set.
Let X be a set. We say that X is MSS-membered if and only if:

(Def. 7) If x ∈ X, then x is a strict non empty non void many sorted signature.

One can verify that there exists a set which is non empty and MSS-membered.
The strict many sorted signature TrivialMSSign is defined by:

(Def. 8) TrivialMSSign is empty and void.

Let us note that TrivialMSSign is empty and void.
One can check that there exists a many sorted signature which is strict,

empty, and void.
The following proposition is true

(6) Let S be a void many sorted signature. Then id(the carrier of S) and
id(the operation symbols of S) form morphism between S and S.

Let us consider A. The functor MSS-set(A) is defined by the condition
(Def. 9).

(Def. 9) x ∈ MSS-set(A) if and only if there exists a strict non empty non void
many sorted signature S such that x = S and the carrier of S ⊆ A and
the operation symbols of S ⊆ A.

Let us consider A. One can check that MSS-set(A) is non empty and MSS-
membered.

Let A be a non empty MSS-membered set. We see that the element of A is
a strict non empty non void many sorted signature.

The following proposition is true

(7) Let x be an element of MSS-set(A). Then id(the carrier of x) and
id(the operation symbols of x) form morphism between x and x.

Let S1, S2 be many sorted signatures. The functor MSS-morph(S1, S2) is
defined by:

(Def. 10) x ∈ MSS-morph(S1, S2) iff there exist functions f , g such that x = 〈〈f,
g〉〉 and f and g form morphism between S1 and S2.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–
552, 1991.

[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,
1(3):537–541, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.

8 adam grabowski

[4] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics,
5(3):405–414, 1996.

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[6] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formal-
ized Mathematics, 5(1):47–54, 1996.

[7] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[8] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[9] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[10] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[12] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[13] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,

1996.
[14] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-

ematics, 5(1):61–65, 1996.
[15] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[16] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,

1996.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[18] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[20] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[25] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

Received June 11, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Trivial Many Sorted Algebras and

Many Sorted Congruences

Artur Korni lowicz
Warsaw University

Bia lystok

Summary. This paper contains properties of many sorted func-
tions between two many sorted sets. Other theorems describe trivial
many sorted algebras. In the last section there are theorems about many
sorted congruences, which are defined on many sorted algebras. I have
also proved facts about natural epimorphism.

MML Identifier: MSUALG 9.

The articles [35], [38], [10], [39], [41], [27], [40], [7], [29], [8], [9], [3], [11], [32],
[6], [36], [12], [31], [2], [37], [30], [1], [4], [34], [33], [5], [13], [20], [28], [22], [23],
[25], [26], [21], [17], [15], [19], [14], [18], [16], and [24] provide the terminology
and notation for this paper.

1. Preliminaries

In this paper a, I will be sets and S will be a non empty non void many
sorted signature.

The scheme MSSExD deals with a non empty set A and a binary predicate
P, and states that:

There exists a many sorted set f indexed by A such that for every
element i of A holds P[i, f(i)]

provided the parameters meet the following condition:
• For every element i of A there exists a set j such that P[i, j].
Let I be a set and let M be a many sorted set indexed by I. Note that there

exists an element of Bool(M) which is locally-finite.
Let I be a set and let M be a non-empty many sorted set indexed by I. Note

that there exists a many sorted subset of M which is non-empty and locally-
finite.

9
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

10 artur korni lowicz

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let o be an operation symbol of S. One can verify that every
element of Args(o,A) is finite sequence-like.

Let S be a non void non empty many sorted signature, let I be a set, let s
be a sort symbol of S, and let F be an algebra family of I over S. Note that
every element of SORTS(F)(s) is function-like and relation-like.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. Note that FreeGenerator(X)
is free and non-empty.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. One can verify that Free(X)
is free.

Let S be a non empty non void many sorted signature and let A, B be
non-empty algebras over S. One can check that [:A, B :] is non-empty.

The following propositions are true:

(1) For all sets X, Y and for every function f such that a ∈ dom f and
f(a) ∈ [:X, Y :] holds f(a) = 〈〈 pr1(f)(a), pr2(f)(a)〉〉.

(2) For every non empty set X and for every set Y and for every function
f from X into {Y } holds rng f = {Y }.

(3) For every non empty finite set A there exists a function f from
�

into
A such that rng f = A.

(4) Classes(∇I) ⊆ {I}.
(5) For every non empty set I holds Classes(∇I) = {I}.
(6) There exists a many sorted set A indexed by I such that {A} = I 7−→
{a}.

(7) For every many sorted set A indexed by I there exists a non-empty
many sorted set B indexed by I such that A ⊆ B.

(8) Let M be a non-empty many sorted set indexed by I and let B be a
locally-finite many sorted subset of M . Then there exists a non-empty
locally-finite many sorted subset C of M such that B ⊆ C.

(9) For all many sorted sets A, B indexed by I and for all many sorted
functions F , G from A into {B} holds F = G.

(10) For every non-empty many sorted set A indexed by I and for every
many sorted set B indexed by I holds every many sorted function from
A into {B} is onto.

(11) Let A be a many sorted set indexed by I and let B be a non-empty
many sorted set indexed by I. Then every many sorted function from
{A} into B is “1-1”.

(12) For every non-empty many sorted set X indexed by the carrier of S
holds Reverse(X) is “1-1”.

(13) For every non-empty locally-finite many sorted set A indexed by I holds
there exists many sorted function from I 7−→ �

into A which is onto.

on the trivial many sorted algebras and many . . . 11

(14) Let S be a non empty many sorted signature, and let A be a non-empty
algebra over S, and let f , g be elements of

∏
(the sorts of A). Suppose

that for every set i holds (proj(the sorts of A, i))(f) = (proj(the sorts of
A, i))(g). Then f = g.

(15) Let I be a non empty set, and let s be an element of the car-
rier of S, and let A be an algebra family of I over S, and let f ,
g be elements of

∏
Carrier(A, s). If for every element a of I holds

(proj(Carrier(A, s), a))(f) = (proj(Carrier(A, s), a))(g), then f = g.

(16) Let A, B be non-empty algebras over S, and let C be a strict non-empty
subalgebra of A, and let h1 be a many sorted function from B into C.
Suppose h1 is a homomorphism of B into C. Let h2 be a many sorted
function from B into A. If h1 = h2, then h2 is a homomorphism of B into
A.

(17) Let A, B be non-empty algebras over S and let F be a many sorted
function from A into B. If F is a monomorphism of A into B, then A
and ImF are isomorphic.

(18) Let A, B be non-empty algebras over S and let F be a many sorted
function from A into B. Suppose F is onto. Let o be an operation symbol
of S and let x be an element of Args(o,B). Then there exists an element
y of Args(o,A) such that F#y = x.

(19) Let A be a non-empty algebra over S, and let o be an operation symbol
of S, and let x be an element of Args(o,A). Then (Den(o,A))(x) ∈ (the
sorts of A)(the result sort of o).

(20) Let A, B, C be non-empty algebras over S, and let F1 be a many
sorted function from A into B, and let F2 be a many sorted function
from A into C. Suppose F1 is an epimorphism of A onto B and F2 is a
homomorphism of A into C. Let G be a many sorted function from B
into C. If G ◦ F1 = F2, then G is a homomorphism of B into C.

In the sequel A, M will be many sorted sets indexed by I and B, C will be
non-empty many sorted sets indexed by I.

Let I be a set, let A be a many sorted set indexed by I, let B, C be non-
empty many sorted sets indexed by I, and let F be a many sorted function from
A into [[B,C]]. The functor Mpr1(F) yields a many sorted function from A into
B and is defined as follows:

(Def. 1) For every set i such that i ∈ I holds (Mpr1(F))(i) = pr1(F (i)).

The functor Mpr2(F) yielding a many sorted function from A into C is defined
by:

(Def. 2) For every set i such that i ∈ I holds (Mpr2(F))(i) = pr2(F (i)).

One can prove the following four propositions:

(21) For every many sorted function F from A into [[I 7−→ {a}, I 7−→ {a}]]
holds Mpr1(F) = Mpr2(F).

(22) For every many sorted function F from A into [[B,C]] such that F is
onto holds Mpr1(F) is onto.

12 artur korni lowicz

(23) For every many sorted function F from A into [[B,C]] such that F is
onto holds Mpr2(F) is onto.

(24) Let F be a many sorted function fromA into [[B,C]]. IfM ∈ domκ F (κ),
then for every set i such that i ∈ I holds (F � M)(i) = 〈〈((Mpr1(F)) �
M)(i), ((Mpr2(F)) � M)(i)〉〉.

2. On the Trivial Many Sorted Algebras

Let S be a non empty many sorted signature. Note that the sorts of the
trivial algebra of S is locally-finite and non-empty.

Let S be a non empty many sorted signature. Note that the trivial algebra
of S is locally-finite and non-empty.

We now state three propositions:

(25) Let A be a non-empty algebra over S, and let F be a many sorted
function from A into the trivial algebra of S, and let o be an operation
symbol of S, and let x be an element of Args(o,A). Then F (the result sort
of o)((Den(o,A))(x)) = 0 and (Den(o, the trivial algebra of S))(F#x) = 0.

(26) For every non-empty algebra A over S holds every many sorted function
from A into the trivial algebra of S is an epimorphism of A onto the trivial
algebra of S.

(27) Let A be an algebra over S. Given a many sorted set X indexed by
the carrier of S such that the sorts of A = {X}. Then A and the trivial
algebra of S are isomorphic.

3. On the Many Sorted Congruences

One can prove the following propositions:

(28) For every non-empty algebra A over S holds every congruence of A is
a many sorted subset of [[the sorts of A, the sorts of A]].

(29) Let A be a non-empty algebra over S, and let R be a subset of the
carrier of CongrLatt(A), and let F be a family of many sorted subsets of
[[the sorts of A, the sorts of A]]. If R = F, then

⋂ |:F :| is a congruence of
A.

(30) Let A be a non-empty algebra over S and let C be a congruence of
A. Suppose C = [[the sorts of A, the sorts of A]]. Then the sorts of
QuotMSAlg(C) = {the sorts of A }.

(31) Let A, B be non-empty algebras over S and let F be a many sorted
function from A into B. If F is a homomorphism of A into B, then
MSHomQuot(F) ◦MSNatHom(A,Congruence(F)) = F.

on the trivial many sorted algebras and many . . . 13

(32) Let A be a non-empty algebra over S, and let C be a congruence of A,
and let s be a sort symbol of S, and let a be an element of (the sorts of
QuotMSAlg(C))(s). Then there exists an element x of (the sorts of A)(s)
such that a = [x]C .

(33) Let A be an algebra over S and let C1, C2 be equivalence many sorted
relations of A. Suppose C1 ⊆ C2. Let i be an element of the carrier of
S and let x, y be elements of (the sorts of A)(i). If 〈〈x, y〉〉 ∈ C1(i), then
[x](C1) ⊆ [y](C2) and if A is non-empty, then [y](C1) ⊆ [x](C2).

(34) Let A be a non-empty algebra over S, and let C be a congruence of A,
and let s be a sort symbol of S, and let x, y be elements of (the sorts
of A)(s). Then (MSNatHom(A,C))(s)(x) = (MSNatHom(A,C))(s)(y) if
and only if 〈〈x, y〉〉 ∈ C(s).

(35) Let A be a non-empty algebra over S, and let C1, C2 be congruences
of A, and let G be a many sorted function from QuotMSAlg(C1) into
QuotMSAlg(C2). Suppose that for every element i of the carrier of S
and for every element x of (the sorts of QuotMSAlg(C1))(i) and for every
element x1 of (the sorts of A)(i) such that x = [x1](C1) holds G(i)(x) =

[x1](C2). Then G ◦MSNatHom(A,C1) = MSNatHom(A,C2).

(36) Let A be a non-empty algebra over S, and let C1, C2 be congru-
ences of A, and let G be a many sorted function from QuotMSAlg(C1)
into QuotMSAlg(C2). Suppose that for every element i of the carrier
of S and for every element x of (the sorts of QuotMSAlg(C1))(i) and
for every element x1 of (the sorts of A)(i) such that x = [x1](C1) holds

G(i)(x) = [x1](C2). Then G is an epimorphism of QuotMSAlg(C1) onto

QuotMSAlg(C2).

(37) Let A, B be non-empty algebras over S and let F be a many sorted func-
tion from A into B. Suppose F is a homomorphism of A into B. Let C1

be a congruence of A. Suppose C1 ⊆ Congruence(F). Then there exists a
many sorted function H from QuotMSAlg(C1) into B such that H is a ho-
momorphism of QuotMSAlg(C1) into B and F = H ◦MSNatHom(A,C1).

References

[1] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,
1993.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized

Mathematics, 4(1):91–101, 1993.
[5] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formal-

ized Mathematics, 5(1):47–54, 1996.
[6] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.

14 artur korni lowicz

[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[10] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[11] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - Part 1. Formalized

Mathematics, 2(5):683–687, 1991.
[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Mariusz Giero. More on products of many sorted algebras. Formalized Mathematics,

5(4):621–626, 1996.
[14] Artur Korni lowicz. Certain facts about families of subsets of many sorted sets. Formal-

ized Mathematics, 5(3):451–456, 1996.
[15] Artur Korni lowicz. Extensions of mappings on generator set. Formalized Mathematics,

5(2):269–272, 1996.
[16] Artur Korni lowicz. On the closure operator and the closure system of many sorted sets.

Formalized Mathematics, 5(4):543–551, 1996.
[17] Artur Korni lowicz. On the group of automorphisms of universal algebra & many sorted

algebra. Formalized Mathematics, 5(2):221–226, 1996.
[18] Artur Korni lowicz. On the many sorted closure operator and the many sorted closure

system. Formalized Mathematics, 5(4):529–536, 1996.
[19] Artur Korni lowicz. Some basic properties of many sorted sets. Formalized Mathematics,

5(3):395–399, 1996.
[20] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-

ematics, 5(1):61–65, 1996.
[21] Ma lgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics,

5(1):79–84, 1996.
[22] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[23] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,

1996.
[24] Robert Milewski. Lattice of congruences in many sorted algebra. Formalized Mathemat-

ics, 5(4):479–483, 1996.
[25] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[26] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.
[27] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[28] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67–

74, 1996.
[29] Konrad Raczkowski and Pawe l Sadowski. Equivalence relations and classes of abstrac-

tion. Formalized Mathematics, 1(3):441–444, 1990.
[30] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathemat-

ics, 5(2):233–236, 1996.
[31] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[32] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[33] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[34] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[35] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[36] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[37] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[38] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.

on the trivial many sorted algebras and many . . . 15

[39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[40] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[41] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

Received June 11, 1996

16

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Examples of Category Structures

Adam Grabowski
Warsaw University

Bia lystok

Summary. This article contains definitions of two category struc-
tures: the category of many sorted signatures and the category of many
sorted algebras. Some facts about these structures are proved.

MML Identifier: MSINST 1.

The papers [22], [10], [23], [24], [7], [8], [17], [25], [9], [6], [2], [5], [18], [1], [21],
[15], [20], [14], [12], [19], [16], [13], [3], [4], and [11] provide the terminology and
notation for this paper.

1. Category of Many Sorted Signatures

In this paper A denotes a non empty set, S denotes a non void non empty
many sorted signature, and x denotes a set.

Let us considerA. The functor MSSCat(A) yields a strict non empty category
structure and is defined by the conditions (Def. 1).

(Def. 1) (i) The carrier of MSSCat(A) = MSS-set(A),
(ii) for all elements i, j of MSS-set(A) holds (the arrows of MSSCat(A))(i,

j) = MSS-morph(i, j), and
(iii) for all objects i, j, k of MSSCat(A) such that i ∈ MSS-set(A) and

j ∈ MSS-set(A) and k ∈ MSS-set(A) and for all functions f1, f2, g1, g2

such that 〈〈f1, f2〉〉 ∈ (the arrows of MSSCat(A))(i, j) and 〈〈g1, g2〉〉 ∈ (the
arrows of MSSCat(A))(j, k) holds (the composition of MSSCat(A))(i, j,
k)(〈〈g1, g2〉〉, 〈〈f1, f2〉〉) = 〈〈g1 · f1, g2 · f2〉〉.

Let us consider A. Note that MSSCat(A) is transitive and associative and
has units.

The following proposition is true

17
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

18 adam grabowski

(1) For every category C such that C = MSSCat(A) holds every object of
C is a non empty non void many sorted signature.

Let us consider S. Note that there exists an algebra over S which is strict
and feasible.

Let us consider S, A. The functor MSAlg set(S,A) is defined by the condition
(Def. 2).

(Def. 2) x ∈ MSAlg set(S,A) if and only if there exists a strict feasible algebra
M over S such that x = M and for every component C of the sorts of M
holds C ⊆ A.

Let us consider S, A. Observe that MSAlg set(S,A) is non empty.

2. Category of Many Sorted Algebras

In the sequel o is an operation symbol of S.
One can prove the following four propositions:

(2) Let x be an algebra over S. Suppose x ∈ MSAlg set(S,A). Then
the sorts of x ∈ (2A)the carrier of S and the characteristics of x ∈
((

� →̇A)→̇A)the operation symbols of S .

(3) Let U1, U2 be algebras over S. Suppose the sorts of U1 is transformable
to the sorts of U2 and Args(o, U1) 6= ∅. Then Args(o, U2) 6= ∅.

(4) Let U1, U2, U3 be feasible algebras over S, and let F be a many sorted
function from U1 into U2, and let G be a many sorted function from U2

into U3, and let x be an element of Args(o, U1). Suppose that
(i) Args(o, U1) 6= ∅,

(ii) the sorts of U1 is transformable to the sorts of U2, and
(iii) the sorts of U2 is transformable to the sorts of U3.

Then there exists a many sorted function G1 from U1 into U3 such that
G1 = G ◦ F and G1#x = G#(F#x).

(5) Let U1, U2, U3 be feasible algebras over S, and let F be a many sorted
function from U1 into U2, and let G be a many sorted function from U2

into U3. Suppose that
(i) the sorts of U1 is transformable to the sorts of U2,

(ii) the sorts of U2 is transformable to the sorts of U3,
(iii) F is a homomorphism of U1 into U2, and
(iv) G is a homomorphism of U2 into U3.

Then there exists a many sorted function G1 from U1 into U3 such that
G1 = G ◦ F and G1 is a homomorphism of U1 into U3.

Let us consider S, A and let i, j be sets. Let us assume that i ∈ MSAlg set(S,A)
and j ∈ MSAlg set(S,A). The functor MSAlg morph(S,A, i, j) is defined by the
condition (Def. 3).

(Def. 3) x ∈ MSAlg morph(S,A, i, j) if and only if there exist strict feasible
algebras M , N over S and there exists a many sorted function f from M

examples of category structures 19

into N such that M = i and N = j and f = x and the sorts of M is
transformable to the sorts of N and f is a homomorphism of M into N .

Let us consider S, A. The functor MSAlgCat(S,A) yields a strict non empty
category structure and is defined by the conditions (Def. 4).

(Def. 4) (i) The carrier of MSAlgCat(S,A) = MSAlg set(S,A),
(ii) for all elements i, j of MSAlg set(S,A) holds (the arrows of

MSAlgCat(S,A))(i, j) = MSAlg morph(S,A, i, j), and
(iii) for all objects i, j, k of MSAlgCat(S,A) and for all function yield-

ing functions f , g such that f ∈ (the arrows of MSAlgCat(S,A))(i, j)
and g ∈ (the arrows of MSAlgCat(S,A))(j, k) holds (the composition of
MSAlgCat(S,A))(i, j, k)(g, f) = g ◦ f.

Let us consider S, A. One can verify that MSAlgCat(S,A) is transitive and
associative and has units.

One can prove the following proposition

(6) For every category C such that C = MSAlgCat(S,A) holds every object
of C is a strict feasible algebra over S.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–
552, 1991.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics,

5(3):405–414, 1996.
[4] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. For-

malized Mathematics, 5(4):553–564, 1996.
[5] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[10] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[11] Adam Grabowski. Inverse limits of many sorted algebras. Formalized Mathematics,
6(1):5–8, 1997.

[12] Artur Korni lowicz. Extensions of mappings on generator set. Formalized Mathematics,
5(2):269–272, 1996.

[13] Artur Korni lowicz. On the group of automorphisms of universal algebra & many sorted
algebra. Formalized Mathematics, 5(2):221–226, 1996.

[14] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-
ematics, 5(1):61–65, 1996.

[15] Beata Madras. Product of family of universal algebras. Formalized Mathematics,
4(1):103–108, 1993.

[16] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,
1996.

[17] Micha l Muzalewski and Wojciech Skaba. N-tuples and Cartesian products for n=5.
Formalized Mathematics, 2(2):255–258, 1991.

[18] Micha l Muzalewski and Wojciech Skaba. Three-argument operations and four-argument
operations. Formalized Mathematics, 2(2):221–224, 1991.

20 adam grabowski

[19] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathe-
matics, 5(2):259–267, 1996.

[20] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[23] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received June 11, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Compositions of Macro

Instructions. Part I

Andrzej Trybulec
Warsaw University

Bia lystok

Yatsuka Nakamura
Shinshu University

Nagano

Noriko Asamoto
Ochanomizu University

Tokyo

MML Identifier: SCMFSA6A.

The notation and terminology used here are introduced in the following papers:
[21], [28], [14], [2], [26], [17], [29], [8], [9], [3], [7], [27], [11], [1], [19], [6], [12], [13],
[10], [20], [15], [16], [24], [4], [18], [5], [25], [22], and [23].

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g and for all sets x, y such that g ⊆ f and x /∈ dom g
holds g ⊆ f +· (x, y).

(2) For all functions f , g and for every set A such that f � A = g � A and
f and g are equal outside A holds f = g.

(3) For every function f and for all sets a, b, A such that a ∈ A holds f
and f +· (a, b) are equal outside A.

(4) For every function f and for all sets a, b, A holds a ∈ A or (f +· (a, b)) �
A = f � A.

(5) For all functions f , g and for all sets a, b, A such that f � A = g � A
holds (f +· (a, b)) � A = (g +· (a, b)) � A.

(6) For all functions f , g, h such that f ⊆ h and g ⊆ h holds f+·g ⊆ h.
(7) For arbitrary a, b and for every function f holds a7−→. b ⊆ f iff a ∈ dom f

and f(a) = b.

(8) For every function f and for every set A holds dom(f � (dom f \A)) =
dom f \ A.

21
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

22 andrzej trybulec et al.

(9) Let f , g be functions and let D be a set. Suppose D ⊆ dom f and
D ⊆ dom g. Then f � D = g � D if and only if for arbitrary x such that
x ∈ D holds f(x) = g(x).

(10) For every function f and for every set D holds f � D = f � (dom f ∩D).

(11) Let f , g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then f+·h and g+·h are equal outside A.

(12) Let f , g, h be functions and let A be a set. Suppose f and g are equal
outside A. Then h+·f and h+·g are equal outside A.

(13) For all functions f , g, h holds f+·h = g+·h iff f and g are equal outside
domh.

2. Macroinstructions

A macro instruction is an initial programmed finite partial state of SCMFSA.
We follow a convention: m, n denote natural numbers, i, j, k denote instruc-

tions of SCMFSA, and I, J , K denote macro instructions.
Let I be a programmed finite partial state of SCMFSA. The functor Directed(I)

yields a programmed finite partial state of SCMFSA and is defined by:

(Def. 1) Directed(I) = (id(the instructions of SCMFSA)+·(haltSCMFSA
7−→. goto

insloc(card I))) · I.
The following proposition is true

(14) dom Directed(I) = dom I.

Let I be a macro instruction. Note that Directed(I) is initial.
Let us consider i. The functor Macro(i) yields a macro instruction and is

defined by:

(Def. 2) Macro(i) = [insloc(0) 7−→ i, insloc(1) 7−→ haltSCMFSA
].

Let us consider i. One can check that Macro(i) is non empty.
We now state the proposition

(15) For every macro instruction P and for every n holds n < cardP iff
insloc(n) ∈ domP.

Let I be an initial finite partial state of SCMFSA. Observe that ProgramPart(I)
is initial.

One can prove the following propositions:

(16) dom I misses dom ProgramPart(Relocated(J, card I)).

(17) For every programmed finite partial state I of SCMFSA holds
card ProgramPart(Relocated(I,m)) = card I.

(18) haltSCMFSA
/∈ rng Directed(I).

(19) ProgramPart(Relocated(Directed(I),m)) = (id(the instructions of SCMFSA)

+·(haltSCMFSA
7−→. goto insloc(m+card I)))·ProgramPart(Relocated(I,m)).

(20) For all finite partial states I, J of SCMFSA holds ProgramPart(I+·J) =
ProgramPart(I)+·ProgramPart(J).

on the compositions of macro instructions. . . . 23

(21) For all finite partial states I, J of SCMFSA holds ProgramPart
(Relocated(I+·J, n)) = ProgramPart(Relocated(I, n))
+·ProgramPart(Relocated(J, n)).

(22) ProgramPart(Relocated(ProgramPart(Relocated(I,m)), n)) =
ProgramPart(Relocated(I,m+ n)).

In the sequel s, s1, s2 denote states of SCMFSA.
Let us consider I. The functor Initialized(I) yields a finite partial state of

SCMFSA and is defined by:

(Def. 3) Initialized(I) = I+·(intloc(0) 7−→. 1)+· Start-At(insloc(0)).

Next we state a number of propositions:

(23) InsCode(i) ∈ {0, 6, 7, 8} or (Exec(i, s))(ICSCMFSA
) = Next(ICs).

(24) ICSCMFSA
∈ dom Initialized(I).

(25) ICInitialized(I) = insloc(0).

(26) I ⊆ Initialized(I).

(27) s and s+·I are equal outside the instruction locations of SCMFSA.

(28) Let s1, s2 be states of SCMFSA. Suppose IC(s1) = IC(s2) and for
every integer location a holds s1(a) = s2(a) and for every finite sequence
location f holds s1(f) = s2(f). Then s1 and s2 are equal outside the
instruction locations of SCMFSA.

(29) If s1 and s2 are equal outside the instruction locations of SCMFSA,
then IC(s1) = IC(s2).

(30) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Let a be an integer location. Then s1(a) = s2(a).

(31) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Let f be a finite sequence location. Then s1(f) = s2(f).

(32) Suppose s1 and s2 are equal outside the instruction locations of
SCMFSA. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMFSA.

(33) Initialized(I) � (the instruction locations of SCMFSA) = I.

The scheme SCMFSAEx deals with a unary functor F yielding an instruction
of SCMFSA, a unary functor G yielding an integer, a unary functor H yielding
a finite sequence of elements of � , and an instruction-location A of SCMFSA,
and states that:

There exists a state S of SCMFSA such that ICS = A and for every
natural number i holds S(insloc(i)) = F(i) and S(intloc(i)) = G(i)
and S(fsloc(i)) = H(i)

for all values of the parameters.
One can prove the following propositions:

(34) For every state s of SCMFSA holds dom s = Int-Locations∪
FinSeq-Locations∪{ICSCMFSA

} ∪ the instruction locations of SCMFSA.

(35) Let s be a state of SCMFSA and let x be arbitrary. Suppose x ∈ dom s.
Then

24 andrzej trybulec et al.

(i) x is an integer location or a finite sequence location, or

(ii) x = ICSCMFSA
, or

(iii) x is an instruction-location of SCMFSA.

(36) Let s1, s2 be states of SCMFSA. Then for every instruction-location l
of SCMFSA holds s1(l) = s2(l) if and only if s1 � (the instruction locations
of SCMFSA) = s2 � (the instruction locations of SCMFSA).

(37) For every instruction-location i of SCMFSA holds i /∈ Int-Locations∪
FinSeq-Locations and ICSCMFSA

/∈ Int-Locations∪FinSeq-Locations .

(38) Let s1, s2 be states of SCMFSA. Then for every integer location
a holds s1(a) = s2(a) and for every finite sequence location f holds
s1(f) = s2(f) if and only if s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations).

(39) Let s1, s2 be states of SCMFSA. Suppose s1 and s2 are equal outside
the instruction locations of SCMFSA.

Then s1 � (Int-Locations∪FinSeq-Locations) = s2 � (Int-Locations∪
FinSeq-Locations).

(40) For all states s, s3 of SCMFSA and for every set A holds (s3+·s � A) � A =
s � A.

(41) Let s1, s2 be states of SCMFSA, and let n be a natu-
ral number, and let i be an instruction of SCMFSA. Suppose
IC(s1) + n = IC(s2) and s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations). Then ICExec(i,s1) + n =
ICExec(IncAddr(i,n),s2) and Exec(i, s1) � (Int-Locations∪FinSeq-Locations) =
Exec(IncAddr(i, n), s2) � (Int-Locations∪FinSeq-Locations).

(42) For all macro instructions I, J holds I and J are equal outside the
instruction locations of SCMFSA.

(43) For every macro instruction I holds dom Initialized(I) = dom I ∪
{intloc(0)} ∪ {ICSCMFSA

}.
(44) For every macro instruction I and for arbitrary x such that x ∈

dom Initialized(I) holds x ∈ dom I or x = intloc(0) or x = ICSCMFSA
.

(45) For every macro instruction I holds intloc(0) ∈ dom Initialized(I).

(46) For every macro instruction I holds (Initialized(I))(intloc(0)) = 1 and
(Initialized(I))(ICSCMFSA

) = insloc(0).

(47) For every macro instruction I holds intloc(0) /∈ dom I and ICSCMFSA
/∈

dom I.

(48) For every macro instruction I and for every integer location a such that
a 6= intloc(0) holds a /∈ dom Initialized(I).

(49) For every macro instruction I and for every finite sequence location f
holds f /∈ dom Initialized(I).

(50) For every macro instruction I and for arbitrary x such that x ∈ dom I
holds I(x) = (Initialized(I))(x).

on the compositions of macro instructions. . . . 25

(51) For all macro instructions I, J and for every state s of SCMFSA such
that Initialized(J) ⊆ s holds s+· Initialized(I) = s+·I.

(52) For all macro instructions I, J and for every state s of SCMFSA such
that Initialized(J) ⊆ s holds Initialized(I) ⊆ s+·I.

(53) Let I, J be macro instructions and let s be a state of SCMFSA. Then
s+· Initialized(I) and s+· Initialized(J) are equal outside the instruction
locations of SCMFSA.

3. The composition of macroinstructions

Let I, J be macro instructions. The functor I;J yields a macro instruction
and is defined by:

(Def. 4) I;J = Directed(I)+·ProgramPart(Relocated(J, card I)).

Let I, J be macro instructions. Note that I;J is initial.
Next we state several propositions:

(54) Let I, J be macro instructions and let l be an instruction-location of
SCMFSA. If l ∈ dom I and I(l) 6= haltSCMFSA

, then (I;J)(l) = I(l).

(55) For all macro instructions I, J holds Directed(I) ⊆ I;J.

(56) For all macro instructions I, J holds dom I ⊆ dom(I;J).

(57) For all macro instructions I, J holds I+·(I;J) = I;J.

(58) For all macro instructions I, J holds Initialized(I)+·(I;J) =
Initialized(I;J).

4. The compostion of instruction and macroinstructions

Let us consider i, J . The functor i;J yielding a macro instruction is defined
as follows:

(Def. 5) i;J = Macro(i);J.

Let us consider I, j. The functor I;j yields a macro instruction and is defined
by:

(Def. 6) I;j = I; Macro(j).

Let us consider i, j. The functor i;j yields a macro instruction and is defined
by:

(Def. 7) i;j = Macro(i); Macro(j).

The following propositions are true:

(59) i;j = Macro(i);j.

(60) i;j = i; Macro(j).

(61) card(I;J) = card I + card J.

(62) (I;J);K = I;(J ;K).

26 andrzej trybulec et al.

(63) (I;J);k = I;(J ;k).

(64) (I;j);K = I;(j;K).

(65) (I;j);k = I;(j;k).

(66) (i;J);K = i;(J ;K).

(67) (i;J);k = i;(J ;k).

(68) (i;j);K = i;(j;K).

(69) (i;j);k = i;(j;k).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[7] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[8] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[9] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[10] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[11] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[12] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[13] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[16] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[17] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[23] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.

on the compositions of macro instructions. . . . 27

[25] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[26] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[28] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 20, 1996

28

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Memory Handling for SCMFSA
1

Piotr Rudnicki
University of Alberta

Edmonton

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. We introduce some terminology for reasoning about
memory used in programs in general and in macro instructions (intro-
duced in [26]) in particular. The usage of integer locations and of finite
sequence locations by a program is treated separately. We define some
functors for selecting memory locations needed for local (temporary) vari-
ables in macro instructions. Some semantic properties of the introduced
notions are given in terms of executions of macro instructions.

MML Identifier: SF MASTR.

The articles [21], [31], [19], [12], [30], [22], [14], [2], [28], [15], [20], [6], [13], [1],
[3], [17], [11], [4], [7], [29], [32], [8], [9], [10], [5], [16], [25], [18], [27], [23], [24],
and [26] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following three propositions:

(1) For all sets x, y, a and for every function f such that f(x) = f(y) holds
f(a) = (f · (iddom f +· (x, y)))(a).

(2) For all sets x, y and for every function f such that if x ∈ dom f, then
y ∈ dom f and f(x) = f(y) holds f = f · (iddom f +· (x, y)).

(3) For all sets A, B and for every function f from A into B holds dom f ⊆
A.

Let A be a finite set and let B be a set. Note that every function from A
into B is finite.

Let A be a finite set, let B be a set, and let f be a function from A into
FinB. Observe that Union f is finite.

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

29
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

30 piotr rudnicki and andrzej trybulec

In the sequel N will be a non empty set with non empty elements.
The following proposition is true

(4) Let S be a definite AMI over N and let p be a programmed finite partial
state of S. Then rng p ⊆ the instructions of S.

Let us mention that Int-Locations is non empty.
Let us mention that FinSeq-Locations is non empty.

2. Uniqueness of instruction components

For simplicity we adopt the following rules: a, b, c, a1, a2, b1, b2 will be
integer locations, l, l1, l2 will be instructions-locations of SCMFSA, f , f1, f2

will be finite sequence locations, and i, j will be instructions of SCMFSA.
The following propositions are true:

(5) If a1:=b1 = a2:=b2, then a1 = a2 and b1 = b2.

(6) If AddTo(a1, b1) = AddTo(a2, b2), then a1 = a2 and b1 = b2.

(7) If SubFrom(a1, b1) = SubFrom(a2, b2), then a1 = a2 and b1 = b2.

(8) If MultBy(a1, b1) = MultBy(a2, b2), then a1 = a2 and b1 = b2.

(9) If Divide(a1, b1) = Divide(a2, b2), then a1 = a2 and b1 = b2.

(10) If goto l1 = goto l2, then l1 = l2.

(11) If if a1 = 0 goto l1 = if a2 = 0 goto l2, then a1 = a2 and l1 = l2.

(12) If if a1 > 0 goto l1 = if a2 > 0 goto l2, then a1 = a2 and l1 = l2.

(13) If b1:=f1a1
= b2:=f2a2

, then a1 = a2 and b1 = b2 and f1 = f2.

(14) If f1a1
:=b1 = f2a2

:=b2, then a1 = a2 and b1 = b2 and f1 = f2.

(15) If a1:=lenf1 = a2:=lenf2, then a1 = a2 and f1 = f2.

(16) If f1:=〈0, . . . , 0︸ ︷︷ ︸
a1

〉 = f2:=〈0, . . . , 0︸ ︷︷ ︸
a2

〉, then a1 = a2 and f1 = f2.

3. Integer locations used in macros

Let i be an instruction of SCMFSA. The functor UsedIntLoc(i) yields an
element of Fin Int-Locations and is defined as follows:

(Def. 1) (i) There exist integer locations a, b such that i = a:=b or i =
AddTo(a, b) or i = SubFrom(a, b) or i = MultBy(a, b) or i = Divide(a, b)
but UsedIntLoc(i) = {a, b} if InsCode(i) ∈ {1, 2, 3, 4, 5},

(ii) there exists an integer location a and there exists an instruction-
location l of SCMFSA such that i = if a = 0 goto l or i = if a >
0 goto l but UsedIntLoc(i) = {a} if InsCode(i) = 7 or InsCode(i) = 8,

(iii) there exist integer locations a, b and there exists a finite sequence
location f such that i = b:=fa or i = fa:=b but UsedIntLoc(i) = {a, b} if
InsCode(i) = 9 or InsCode(i) = 10,

memory handling for SCMFSA 31

(iv) there exists an integer location a and there exists a finite sequence
location f such that i = a:=lenf or i = f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉 but UsedIntLoc(i) =

{a} if InsCode(i) = 11 or InsCode(i) = 12,
(v) UsedIntLoc(i) = ∅, otherwise.

Next we state several propositions:

(17) UsedIntLoc(haltSCMFSA
) = ∅.

(18) If i = a:=b or i = AddTo(a, b) or i = SubFrom(a, b) or i = MultBy(a, b)
or i = Divide(a, b), then UsedIntLoc(i) = {a, b}.

(19) UsedIntLoc(goto l) = ∅.
(20) If i = if a = 0 goto l or i = if a > 0 goto l, then UsedIntLoc(i) =

{a}.
(21) If i = b:=fa or i = fa:=b, then UsedIntLoc(i) = {a, b}.
(22) If i = a:=lenf or i = f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉, then UsedIntLoc(i) = {a}.

Let p be a programmed finite partial state of SCMFSA. The functor
UsedIntLoc(p) yields a subset of Int-Locations and is defined by the condition

(Def. 2).

(Def. 2) There exists a function U1 from the instructions of SCMFSA into
Fin Int-Locations such that for every instruction i of SCMFSA holds
U1(i) = UsedIntLoc(i) and UsedIntLoc(p) = Union(U1 · p).

Let p be a programmed finite partial state of SCMFSA. Note that
UsedIntLoc(p) is finite.
We follow the rules: p, r denote programmed finite partial states of SCMFSA,

I, J denote macro instructions, and k, m, n denote natural numbers.
Next we state a number of propositions:

(23) If i ∈ rng p, then UsedIntLoc(i) ⊆ UsedIntLoc(p).

(24) UsedIntLoc(p+·r) ⊆ UsedIntLoc(p) ∪UsedIntLoc(r).

(25) If dom p misses dom r, then UsedIntLoc(p+·r) = UsedIntLoc(p) ∪
UsedIntLoc(r).

(26) UsedIntLoc(p) = UsedIntLoc(Shift(p, k)).

(27) UsedIntLoc(i) = UsedIntLoc(IncAddr(i, k)).

(28) UsedIntLoc(p) = UsedIntLoc(IncAddr(p, k)).

(29) UsedIntLoc(I) = UsedIntLoc(ProgramPart(Relocated(I, k))).

(30) UsedIntLoc(I) = UsedIntLoc(Directed(I)).

(31) UsedIntLoc(I;J) = UsedIntLoc(I) ∪UsedIntLoc(J).

(32) UsedIntLoc(Macro(i)) = UsedIntLoc(i).

(33) UsedIntLoc(i;J) = UsedIntLoc(i) ∪UsedIntLoc(J).

(34) UsedIntLoc(I;j) = UsedIntLoc(I) ∪UsedIntLoc(j).

(35) UsedIntLoc(i;j) = UsedIntLoc(i) ∪UsedIntLoc(j).

32 piotr rudnicki and andrzej trybulec

4. Finite sequence locations used in macros

Let i be an instruction of SCMFSA. The functor UsedInt∗ Loc(i) yielding an
element of Fin FinSeq-Locations is defined by:

(Def. 3) (i) There exist integer locations a, b and there exists a finite sequence
location f such that i = b:=fa or i = fa:=b but UsedInt∗ Loc(i) = {f} if
InsCode(i) = 9 or InsCode(i) = 10,

(ii) there exists an integer location a and there exists a finite sequence lo-
cation f such that i = a:=lenf or i = f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉 but UsedInt∗ Loc(i) =

{f} if InsCode(i) = 11 or InsCode(i) = 12,
(iii) UsedInt∗ Loc(i) = ∅, otherwise.

One can prove the following propositions:

(36) If i = haltSCMFSA
or i = a:=b or i = AddTo(a, b) or i = SubFrom(a, b)

or i = MultBy(a, b) or i = Divide(a, b) or i = goto l or i = if a = 0 goto l
or i = if a > 0 goto l, then UsedInt∗ Loc(i) = ∅.

(37) If i = b:=fa or i = fa:=b, then UsedInt∗ Loc(i) = {f}.
(38) If i = a:=lenf or i = f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉, then UsedInt∗ Loc(i) = {f}.

Let p be a programmed finite partial state of SCMFSA. The functor
UsedInt∗ Loc(p) yields a subset of FinSeq-Locations and is defined by the

condition (Def. 4).

(Def. 4) There exists a function U1 from the instructions of SCMFSA into
Fin FinSeq-Locations such that for every instruction i of SCMFSA holds
U1(i) = UsedInt∗ Loc(i) and UsedInt∗ Loc(p) = Union(U1 · p).

Let p be a programmed finite partial state of SCMFSA. Note that
UsedInt∗ Loc(p) is finite.
The following propositions are true:

(39) If i ∈ rng p, then UsedInt∗ Loc(i) ⊆ UsedInt∗ Loc(p).

(40) UsedInt∗ Loc(p+·r) ⊆ UsedInt∗ Loc(p) ∪UsedInt∗ Loc(r).

(41) If dom p misses dom r, then UsedInt∗ Loc(p+·r) = UsedInt∗ Loc(p) ∪
UsedInt∗ Loc(r).

(42) UsedInt∗ Loc(p) = UsedInt∗ Loc(Shift(p, k)).

(43) UsedInt∗ Loc(i) = UsedInt∗ Loc(IncAddr(i, k)).

(44) UsedInt∗ Loc(p) = UsedInt∗ Loc(IncAddr(p, k)).

(45) UsedInt∗ Loc(I) = UsedInt∗ Loc(ProgramPart(Relocated(I, k))).

(46) UsedInt∗ Loc(I) = UsedInt∗ Loc(Directed(I)).

(47) UsedInt∗ Loc(I;J) = UsedInt∗ Loc(I) ∪UsedInt∗ Loc(J).

(48) UsedInt∗ Loc(Macro(i)) = UsedInt∗ Loc(i).

(49) UsedInt∗ Loc(i;J) = UsedInt∗ Loc(i) ∪UsedInt∗ Loc(J).

(50) UsedInt∗ Loc(I;j) = UsedInt∗ Loc(I) ∪UsedInt∗ Loc(j).

memory handling for SCMFSA 33

(51) UsedInt∗ Loc(i;j) = UsedInt∗ Loc(i) ∪UsedInt∗ Loc(j).

5. Choosing an integer location not used in a program

Let I1 be an integer location. We say that I1 is read-only if and only if:

(Def. 5) I1 = intloc(0).

We introduce I1 is read-write as an antonym of I1 is read-only.

Let us observe that intloc(0) is read-only.

One can check that there exists an integer location which is read-write.

In the sequel L will be a finite subset of Int-Locations.

Let L be a finite subset of Int-Locations. The functor FirstNotIn(L) yields
an integer location and is defined by:

(Def. 6) There exists a non empty subset s1 of
�

such that FirstNotIn(L) =
intloc(min s1) and s1 = {k : k ranges over natural numbers, intloc(k) /∈
L}.

Next we state two propositions:

(52) FirstNotIn(L) /∈ L.
(53) If FirstNotIn(L) = intloc(m) and intloc(n) /∈ L, then m ≤ n.

Let p be a programmed finite partial state of SCMFSA. The functor

FirstNotUsed(p) yields an integer location and is defined by:

(Def. 7) There exists a finite subset s2 of Int-Locations such that s2 =
UsedIntLoc(p) ∪ {intloc(0)} and FirstNotUsed(p) = FirstNotIn(s2).

Let p be a programmed finite partial state of SCMFSA. Observe that
FirstNotUsed(p) is read-write.

We now state several propositions:

(54) FirstNotUsed(p) /∈ UsedIntLoc(p).

(55) If a:=b ∈ rng p or AddTo(a, b) ∈ rng p or SubFrom(a, b) ∈ rng p or
MultBy(a, b) ∈ rng p or Divide(a, b) ∈ rng p, then FirstNotUsed(p) 6= a
and FirstNotUsed(p) 6= b.

(56) If if a = 0 goto l ∈ rng p or if a > 0 goto l ∈ rng p, then
FirstNotUsed(p) 6= a.

(57) If b:=fa ∈ rng p or fa:=b ∈ rng p, then FirstNotUsed(p) 6= a and
FirstNotUsed(p) 6= b.

(58) If a:=lenf ∈ rng p or f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉 ∈ rng p, then FirstNotUsed(p) 6= a.

34 piotr rudnicki and andrzej trybulec

6. Choosing a finite sequence location not used in a program

In the sequel L is a finite subset of FinSeq-Locations.
Let L be a finite subset of FinSeq-Locations. The functor First∗NotIn(L)

yielding a finite sequence location is defined by:

(Def. 8) There exists a non empty subset s1 of
�

such that First∗NotIn(L) =
fsloc(min s1) and s1 = {k : k ranges over natural numbers, fsloc(k) /∈ L}.

We now state two propositions:

(59) First∗NotIn(L) /∈ L.
(60) If First∗NotIn(L) = fsloc(m) and fsloc(n) /∈ L, then m ≤ n.

Let p be a programmed finite partial state of SCMFSA. The functor
First∗NotUsed(p) yields a finite sequence location and is defined by:

(Def. 9) There exists a finite subset s2 of FinSeq-Locations such that s2 =
UsedInt∗ Loc(p) and First∗NotUsed(p) = First∗NotIn(s2).

One can prove the following propositions:

(61) First∗NotUsed(p) /∈ UsedInt∗ Loc(p).

(62) If b:=fa ∈ rng p or fa:=b ∈ rng p, then First∗NotUsed(p) 6= f.

(63) If a:=lenf ∈ rng p or f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉 ∈ rng p, then First∗NotUsed(p) 6= f.

7. Semantics

In the sequel s, t will be states of SCMFSA.
We now state a number of propositions:

(64) dom I ∩ dom Start-At(insloc(n)) = ∅.
(65) ICSCMFSA

∈ dom(I+· Start-At(insloc(n))).

(66) (I+·Start-At(insloc(n)))(ICSCMFSA
) = insloc(n).

(67) If I+· Start-At(insloc(n)) ⊆ s, then ICs = insloc(n).

(68) If c /∈ UsedIntLoc(i), then (Exec(i, s))(c) = s(c).

(69) If I+· Start-At(insloc(0)) ⊆ s and for every m such that m <
n holds IC(Computation(s))(m) ∈ dom I and a /∈ UsedIntLoc(I), then
(Computation(s))(n)(a) = s(a).

(70) If f /∈ UsedInt∗ Loc(i), then (Exec(i, s))(f) = s(f).

(71) If I+·Start-At(insloc(0)) ⊆ s and for every m such that m < n
holds IC(Computation(s))(m) ∈ dom I and f /∈ UsedInt∗ Loc(I), then
(Computation(s))(n)(f) = s(f).

(72) If s � UsedIntLoc(i) = t � UsedIntLoc(i) and s � UsedInt∗ Loc(i) =
t � UsedInt∗ Loc(i) and ICs = ICt, then ICExec(i,s) = ICExec(i,t) and
Exec(i, s) � UsedIntLoc(i) = Exec(i, t) � UsedIntLoc(i) and Exec(i, s) �
UsedInt∗ Loc(i) = Exec(i, t) � UsedInt∗ Loc(i).

memory handling for SCMFSA 35

(73) Suppose I+·Start-At(insloc(0)) ⊆ s and I+·Start-At(insloc(0)) ⊆ t
and s � UsedIntLoc(I) = t � UsedIntLoc(I) and s � UsedInt∗ Loc(I) =
t � UsedInt∗ Loc(I) and for every m such that m < n holds
IC(Computation(s))(m) ∈ dom I. Then

(i) for every m such that m < n holds IC(Computation(t))(m) ∈ dom I, and
(ii) for every m such that m ≤ n holds IC(Computation(s))(m) =

IC(Computation(t))(m) and for every a such that a ∈ UsedIntLoc(I)
holds (Computation(s))(m)(a) = (Computation(t))(m)(a) and for ev-
ery f such that f ∈ UsedInt∗ Loc(I) holds (Computation(s))(m)(f) =
(Computation(t))(m)(f).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[7] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[8] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[9] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[10] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[11] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Agata Darmochwa l and Andrzej Trybulec. Similarity of formulae. Formalized Mathe-

matics, 2(5):635–642, 1991.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative

primes. Formalized Mathematics, 1(5):829–832, 1990.
[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[17] Andrzej Ne

‘
dzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407,

1990.
[18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.

36 piotr rudnicki and andrzej trybulec

[23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-
ematics, 5(4):583–586, 1996.

[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[28] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[31] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 18, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Some Topological Properties of Cells in R2

Yatsuka Nakamura
Shinshu University

Nagano

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. We examine the topological property of cells (rect-
angles) in a plane. First, some Fraenkel expressions of cells are shown.
Second, it is proved that cells are closed. The last theorem asserts that
the closure of the interior of a cell is the same as itself.

MML Identifier: GOBRD11.

The articles [7], [11], [19], [20], [24], [23], [8], [1], [21], [15], [25], [17], [18], [5],
[4], [2], [22], [9], [10], [26], [16], [3], [6], [12], [14], and [13] provide the notation
and terminology for this paper.

We adopt the following convention: i, j, j1, j2 will be natural numbers, r, s,
r2, s1, s2 will be real numbers, and G1 will be a non empty topological space.

Next we state two propositions:

(1) For every subset A of the carrier of G1 and for every point p of G1 such
that p ∈ A and A is connected holds A ⊆ Component(p).

(2) Let A, B, C be subsets of the carrier of G1. Suppose C is a component
of G1 and A ⊆ C and B is connected and A ∩B 6= ∅. Then B ⊆ C.

In the sequel G2 denotes a non empty topological space.
Next we state three propositions:

(3) Let A, B be subsets of the carrier of G2. Suppose A is a component of
G2 and B is a component of G2. Then A ∪ B is a union of components
of G2.

(4) For all subsets B1, B2, V of the carrier of G1 such that V 6= ∅ holds
Down(B1 ∪B2, V) = Down(B1, V) ∪Down(B2, V).

(5) For all subsets B1, B2, V of the carrier of G1 such that V 6= ∅ holds
Down(B1 ∩B2, V) = Down(B1, V) ∩Down(B2, V).

In the sequel f will denote a non constant standard special circular sequence
and G will denote a Go-board.

We now state a number of propositions:

37
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

38 yatsuka nakamura and andrzej trybulec

(6) (L̃(f))c 6= ∅.
(7) Given j1, j2. Suppose j1 = len the Go-board of f and j2 = width the

Go-board of f . Then the carrier of E 2
T =

⋃{cell(the Go-board of f ,
i, j) : i ≤ j1 ∧ j ≤ j2}.

(8) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[r, s] : s ≤ s1}

and P2 = {[r2, s2] : s2 > s1} holds P1 = −P2.

(9) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[r, s] : s ≥ s1}

and P2 = {[r2, s2] : s2 < s1} holds P1 = −P2.

(10) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[s, r] : s ≥ s1}

and P2 = {[s2, r2] : s2 < s1} holds P1 = −P2.

(11) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[s, r] : s ≤ s1}

and P2 = {[s2, r2] : s2 > s1} holds P1 = −P2.

(12) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[r, s] : s ≤ s1} holds P is closed.

(13) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[r, s] : s1 ≤ s} holds P is closed.

(14) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[s, r] : s ≤ s1} holds P is closed.

(15) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[s, r] : s1 ≤ s} holds P is closed.

(16) For every j holds hstrip(G, j) is closed.

(17) For every i holds vstrip(G, i) is closed.

(18) vstrip(G, 0) = {[r, s] : r ≤ (G1,1)1}.
(19) vstrip(G, lenG) = {[r, s] : (GlenG,1)1 ≤ r}.
(20) If 1 ≤ i and i < lenG, then vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤

(Gi+1,1)1}.
(21) hstrip(G, 0) = {[r, s] : s ≤ (G1,1)2}.
(22) hstrip(G,widthG) = {[r, s] : (G1,widthG)2 ≤ s}.
(23) If 1 ≤ j and j < widthG, then hstrip(G, j) = {[r, s] : (G1,j)2 ≤ s ∧ s ≤

(G1,j+1)2}.
(24) cell(G, 0, 0) = {[r, s] : r ≤ (G1,1)1 ∧ s ≤ (G1,1)2}.
(25) cell(G, 0,widthG) = {[r, s] : r ≤ (G1,1)1 ∧ (G1,widthG)2 ≤ s}.
(26) If 1 ≤ j and j < widthG, then cell(G, 0, j) = {[r, s] : r ≤ (G1,1)1 ∧

(G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.
(27) cell(G, lenG, 0) = {[r, s] : (GlenG,1)1 ≤ r ∧ s ≤ (G1,1)2}.
(28) cell(G, lenG,widthG) = {[r, s] : (GlenG,1)1 ≤ r ∧ (G1,widthG)2 ≤ s}.
(29) If 1 ≤ j and j < widthG, then cell(G, lenG, j) = {[r, s] : (GlenG,1)1 ≤

r ∧ (G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.
(30) If 1 ≤ i and i < lenG, then cell(G, i, 0) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤

(Gi+1,1)1 ∧ s ≤ (G1,1)2}.

some topological properties of cells in R2 39

(31) If 1 ≤ i and i < lenG, then cell(G, i,widthG) = {[r, s] : (Gi,1)1 ≤
r ∧ r ≤ (Gi+1,1)1 ∧ (G1,widthG)2 ≤ s}.

(32) If 1 ≤ i and i < lenG and 1 ≤ j and j < widthG, then cell(G, i, j) = {[r,
s] : (Gi,1)1 ≤ r ∧ r ≤ (Gi+1,1)1 ∧ (G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.

(33) For all i, j holds cell(G, i, j) is closed.

(34) 1 ≤ lenG and 1 ≤ widthG.

(35) For all i, j such that i ≤ lenG and j ≤ widthG holds cell(G, i, j) =
Int cell(G, i, j).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[4] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Agata Darmochwa l. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[7] Agata Darmochwa l and Yatsuka Nakamura. The topological space E2

T. Arcs, line seg-
ments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[10] Stanis lawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Math-
ematics, 1(3):607–610, 1990.

[11] Jaros law Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part I. Formal-
ized Mathematics, 3(1):107–115, 1992.

[12] Jaros law Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part II. For-
malized Mathematics, 3(1):117–121, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. For-
malized Mathematics, 5(4):513–517, 1996.

[14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formal-
ized Mathematics, 5(3):323–328, 1996.

[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[16] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[18] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[19] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics,

5(3):317–322, 1996.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[24] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.

40 yatsuka nakamura and andrzej trybulec

[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[26] Miros law Wysocki and Agata Darmochwa l. Subsets of topological spaces. Formalized
Mathematics, 1(1):231–237, 1990.

Received July 22, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Composition of Macro Instructions.

Part II 1

Noriko Asamoto
Ochanomizu University

Tokyo

Yatsuka Nakamura
Shinshu University

Nagano

Piotr Rudnicki
University of Alberta

Edmonton

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. We define the semantics of macro instructions (intro-
duced in [26]) in terms of executions of SCMFSA. In a similar way, we
define the semantics of macro composition. Several attributes of macro
instructions are introduced (paraclosed, parahalting, keeping 0) and their
usage enables a systematic treatment of the composition of macro intruc-
tions. This article is continued in [1].

MML Identifier: SCMFSA6B.

The notation and terminology used in this paper are introduced in the following
articles: [20], [30], [14], [3], [28], [31], [9], [10], [4], [21], [8], [29], [12], [2], [19],
[7], [13], [11], [15], [16], [25], [5], [18], [6], [27], [22], [23], [24], [26], and [17].

1. Preliminaries

The following propositions are true:

(1) For all functions f , g and for all sets x, y such that x /∈ dom f and
f ⊆ g holds f ⊆ g +· (x, y).

(2) For every function f and for all sets x, y, A such that x /∈ A holds
f � A = (f +· (x, y)) � A.

(3) For all functions f , g and for every set A such that A∩dom f ⊆ A∩dom g
holds (f+·g � A) � A = g � A.

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

41
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

42 noriko asamoto et al.

2. Properties of Start-At

For simplicity we follow a convention: m, n will denote natural numbers, x
will denote a set, i will denote an instruction of SCMFSA, I, J will denote macro
instructions, a will denote an integer location, f will denote a finite sequence
location, l, l1 will denote instructions-locations of SCMFSA, and s, s1, s2 will
denote states of SCMFSA.

We now state a number of propositions:

(4) Start-At(insloc(0)) ⊆ Initialized(I).

(5) If I+· Start-At(insloc(n)) ⊆ s, then I ⊆ s.
(6) (I+·Start-At(insloc(n))) � (the instruction locations of SCMFSA) = I.

(7) If x ∈ dom I, then I(x) = (I+· Start-At(insloc(n)))(x).

(8) If Initialized(I) ⊆ s, then I+·Start-At(insloc(0)) ⊆ s.
(9) a /∈ dom Start-At(l).

(10) f /∈ dom Start-At(l).

(11) l1 /∈ dom Start-At(l).

(12) a /∈ dom(I+·Start-At(l)).

(13) f /∈ dom(I+·Start-At(l)).

(14) s+·I+·Start-At(insloc(0)) = s+·Start-At(insloc(0))+·I.

3. Properties of AMI structures

In the sequel N will denote a non empty set with non empty elements.

Next we state two propositions:

(15) If s = Following(s), then for every n holds (Computation(s))(n) = s.

(16) Let S be a halting von Neumann definite AMI over N and let s be a state
of S. If s is halting, then Result(s) = (Computation(s))(LifeSpan(s)).

Let us consider N , let S be a von Neumann definite AMI over N , let s be a
state of S, let l be an instruction-location of S, and let i be an instruction of S.
Then s+· (l, i) is a state of S.

Let s be a state of SCMFSA, let l2 be an integer location, and let k be an
integer. Then s+· (l2, k) is a state of SCMFSA.

We now state the proposition

(17) Let S be a steady-programmed von Neumann definite AMI over N , and
let s be a state of S, and given n. Then s � (the instruction locations of
S) = (Computation(s))(n) � (the instruction locations of S).

on the composition of macro instructions. . . . 43

4. Execution of macro instructions

Let I be a macro instruction and let s be a state of SCMFSA. The functor
IExec(I, s) yielding a state of SCMFSA is defined as follows:

(Def. 1) IExec(I, s) = Result(s+· Initialized(I))+·s � (the instruction locations
of SCMFSA).

Let I be a macro instruction. We say that I is paraclosed if and only if:

(Def. 2) For every state s of SCMFSA and for every natural number n such that
I+·Start-At(insloc(0)) ⊆ s holds IC(Computation(s))(n) ∈ dom I.

We say that I is parahalting if and only if:

(Def. 3) I+·Start-At(insloc(0)) is halting.

We say that I is keeping 0 if and only if:

(Def. 4) For every state s of SCMFSA such that I+·Start-At(insloc(0)) ⊆ s
and for every natural number k holds (Computation(s))(k)(intloc(0)) =
s(intloc(0)).

Let us note that there exists a macro instruction which is parahalting.
Next we state two propositions:

(18) For every parahalting macro instruction I such that I+·Start-At(insloc
(0)) ⊆ s holds s is halting.

(19) For every parahalting macro instruction I such that Initialized(I) ⊆ s
holds s is halting.

Let I be a parahalting macro instruction. One can verify that Initialized(I)
is halting.

We now state two propositions:

(20) s2 +· (IC(s2), goto (IC(s2))) is not halting.

(21) Suppose that
(i) s1 and s2 are equal outside the instruction locations of SCMFSA,
(ii) I ⊆ s1,

(iii) I ⊆ s2, and
(iv) for every m such that m < n holds IC(Computation(s2))(m) ∈ dom I.

Given m. Suppose m ≤ n. Then (Computation(s1))(m) and
(Computation(s2))(m) are equal outside the instruction locations of
SCMFSA.

One can check that every macro instruction which is parahalting is also
paraclosed and every macro instruction which is keeping 0 is also paraclosed.

The following propositions are true:

(22) Let I be a parahalting macro instruction and let a be a read-write
integer location. If a /∈ UsedIntLoc(I), then (IExec(I, s))(a) = s(a).

(23) For every parahalting macro instruction I such that f /∈
UsedInt∗ Loc(I) holds (IExec(I, s))(f) = s(f).

(24) If ICs = l and s(l) = goto l, then s is not halting.

44 noriko asamoto et al.

One can verify that every macro instruction which is parahalting is also non
empty.

One can prove the following propositions:

(25) For every parahalting macro instruction I holds dom I 6= ∅.
(26) For every parahalting macro instruction I holds insloc(0) ∈ dom I.

(27) Let J be a parahalting macro instruction. Suppose J+·Start-At(insloc

(0)) ⊆ s1. Let n be a natural number. Suppose ProgramPart(Relocated

(J, n)) ⊆ s2 and IC(s2) = insloc(n) and s1 � (Int-Locations∪
FinSeq-Locations) = s2 � (Int-Locations∪FinSeq-Locations). Let
i be a natural number. Then IC(Computation(s1))(i) + n =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), n) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i) � (Int-Locations

∪FinSeq-Locations) = (Computation(s2))(i) � (Int-Locations

∪FinSeq-Locations).

(28) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc

(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2 and s1 and s2 are equal outside
the instruction locations of SCMFSA. Let k be a natural number. Then
(Computation(s1))(k) and (Computation(s2))(k) are equal outside the
instruction locations of SCMFSA and CurInstr((Computation(s1))(k)) =
CurInstr((Computation(s2))(k)).

(29) Let I be a parahalting macro instruction. Suppose I+·Start-At(insloc

(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2 and s1 and s2 are equal outside
the instruction locations of SCMFSA. Then LifeSpan(s1) = LifeSpan(s2)
and Result(s1) and Result(s2) are equal outside the instruction locations
of SCMFSA.

(30) For every parahalting macro instruction I holds ICIExec(I,s) =
ICResult(s+· Initialized(I)).

(31) For every non empty macro instruction I holds insloc(0) ∈ dom I and
insloc(0) ∈ dom Initialized(I) and insloc(0) ∈ dom(I+·Start-At(insloc(0))).

(32) x ∈ dom Macro(i) iff x = insloc(0) or x = insloc(1).

(33) (Macro(i))(insloc(0)) = i and (Macro(i))(insloc(1)) = haltSCMFSA
and

(Initialized(Macro(i)))(insloc(0)) = i and (Initialized(Macro(i)))(insloc(1))

= haltSCMFSA
and (Macro(i)+· Start-At(insloc(0)))(insloc(0)) = i.

(34) If Initialized(I) ⊆ s, then ICs = insloc(0).

Let us observe that there exists a macro instruction which is keeping 0 and
parahalting.

One can prove the following proposition

(35) For every keeping 0 parahalting macro instruction I holds
(IExec(I, s))(intloc(0)) = 1.

on the composition of macro instructions. . . . 45

5. The composition of macro instructions

We now state several propositions:

(36) Let I be a paraclosed macro instruction and let J be a macro
instruction. Suppose I+· Start-At(insloc(0)) ⊆ s and s is halting.
Given m. Suppose m ≤ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+·(I;J)))(m) are equal outside the instruction locations
of SCMFSA.

(37) For every paraclosed macro instruction I such that s+·I is halt-
ing and Directed(I) ⊆ s and Start-At(insloc(0)) ⊆ s holds
IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I).

(38) Let I be a paraclosed macro instruction. If s+·I is halt-
ing and Directed(I) ⊆ s and Start-At(insloc(0)) ⊆ s, then
(Computation(s))(LifeSpan(s+·I)) � (Int-Locations∪FinSeq-Locations) =
(Computation(s))(LifeSpan(s+·I)+1) � (Int-Locations∪FinSeq-Locations).

(39) Let I be a parahalting macro instruction. Suppose Initialized(I) ⊆
s. Let k be a natural number. If k ≤ LifeSpan(s), then
CurInstr((Computation(s+·Directed(I)))(k)) 6= haltSCMFSA

.

(40) Let I be a paraclosed macro instruction. Suppose s+·(I+·Start-At
(insloc(0))) is halting. Let J be a macro instruction and let k be a nat-
ural number. Suppose k ≤ LifeSpan(s+·(I+· Start-At(insloc(0)))). Then
(Computation(s+·(I+·Start-At(insloc(0)))))(k) and (Computation(s+·
((I;J)+·Start-At(insloc(0)))))(k) are equal outside the instruction loca-
tions of SCMFSA.

Let I, J be parahalting macro instructions. Note that I;J is parahalting.
Next we state two propositions:

(41) Let I be a keeping 0 macro instruction. Suppose s+·(I+· Start-At(insloc
(0))) is not halting. Let J be a macro instruction and let k be a nat-
ural number. Then (Computation(s+·(I+·Start-At(insloc(0)))))(k) and
(Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) are equal outside the
instruction locations of SCMFSA.

(42) Let I be a keeping 0 macro instruction. Suppose s+·I is
halting. Let J be a paraclosed macro instruction. Suppose
(I;J)+·Start-At(insloc(0)) ⊆ s. Let k be a natural number. Then
(Computation(Result(s+·I)+·(J+·Start-At(insloc(0)))))(k)+· Start-At
(IC(Computation(Result(s+·I)+·(J+·Start-At(insloc(0)))))(k) + card I) and
(Computation(s+·(I;J)))(LifeSpan(s+·I) + 1 + k) are equal outside the
instruction locations of SCMFSA.

Let I, J be keeping 0 macro instructions. Note that I;J is keeping 0.
The following two propositions are true:

(43) Let I be a keeping 0 parahalting macro instruction and let J be a
parahalting macro instruction. Then LifeSpan(s+· Initialized(I;J)) =

46 noriko asamoto et al.

LifeSpan(s+· Initialized(I)) + 1 + LifeSpan(Result(s+· Initialized(I))+·
Initialized(J)).

(44) Let I be a keeping 0 parahalting macro instruction and let
J be a parahalting macro instruction. Then IExec(I;J, s) =
IExec(J, IExec(I, s))+· Start-At(ICIExec(J,IExec(I,s)) + card I).

References

[1] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[7] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[8] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[9] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[10] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[13] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[16] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[17] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized

Mathematics, 6(1):29–36, 1997.
[18] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.
[22] Andrzej Trybulec and Yatsuka Nakamura. Computation in SCMFSA. Formalized Math-

ematics, 5(4):537–542, 1996.
[23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.

on the composition of macro instructions. . . . 47

[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[28] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[30] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 22, 1996

48

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

The First Part of Jordan’s Theorem for

Special Polygons

Yatsuka Nakamura
Shinshu University

Nagano

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. We prove here the first part of Jordan’s theorem for
special polygons, i.e., the complement of a special polygon is the union of
two components (a left component and a right component). At this stage,
we do not know if the two components are different from each other.

MML Identifier: GOBRD12.

The articles [7], [11], [5], [21], [24], [23], [8], [1], [16], [25], [18], [19], [4], [3], [2],
[22], [9], [10], [26], [17], [6], [12], [15], [20], [14], and [13] provide the notation
and terminology for this paper.

We adopt the following convention: i, j, k1, k2, i1, i2, j1, j2 will be natural
numbers and f will be a non constant standard special circular sequence.

The following propositions are true:

(1) (L̃(f))c 6= ∅.
(2) For all i, j such that i ≤ len the Go-board of f and j ≤ width the

Go-board of f holds Int cell(the Go-board of f , i, j) ⊆ (L̃(f))c.

(3) Given i, j. Suppose i ≤ len the Go-board of f and j ≤ width the

Go-board of f . Then Down(Int cell(the Go-board of f , i, j), (L̃(f))c) =

cell(the Go-board of f , i, j) ∩ (L̃(f))c.

(4) Given i, j. Suppose i ≤ len the Go-board of f and j ≤ width the Go-

board of f . Then Down(Int cell(the Go-board of f , i, j), (L̃(f))c) is con-

nected and Down(Int cell(the Go-board of f , i, j), (L̃(f))c) = Int cell(the
Go-board of f , i, j).

(5) (L̃(f))c =
⋃{Down(Int cell(the Go-board of f , i, j), (L̃(f))c) : i ≤

len the Go-board of f ∧ j ≤ width the Go-board of f}.

49
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

50 yatsuka nakamura and andrzej trybulec

(6) Down(LeftComp(f), (L̃(f))c) ∪ Down(RightComp(f), (L̃(f))c) is a

union of components of (E2
T) � (L̃(f))c and Down(LeftComp(f), (L̃(f))c) =

LeftComp(f) and Down(RightComp(f), (L̃(f))c) = RightComp(f).

(7) Given i1, j1, i2, j2. Suppose that
(i) i1 ≤ len the Go-board of f ,

(ii) j1 ≤ width the Go-board of f ,
(iii) i2 ≤ len the Go-board of f ,
(iv) j2 ≤ width the Go-board of f , and
(v) i1, j1, i2, and j2 are adjacent.

Then Int cell(the Go-board of f , i1, j1) ⊆ LeftComp(f) ∪ RightComp(f)
if and only if Int cell(the Go-board of f , i2, j2) ⊆ LeftComp(f) ∪
RightComp(f).

(8) Let F1, F2 be finite sequences of elements of
�
. Suppose that

(i) lenF1 = lenF2,
(ii) there exists i such that i ∈ domF1 and Int cell(the Go-board of f ,

πiF1, πiF2) ⊆ LeftComp(f) ∪RightComp(f),
(iii) for every i such that 1 ≤ i and i < lenF1 holds πiF1, πiF2, πi+1F1,

and πi+1F2 are adjacent, and
(iv) for all i, k1, k2 such that i ∈ domF1 and k1 = F1(i) and k2 = F2(i)

holds k1 ≤ len the Go-board of f and k2 ≤ width the Go-board of f .
Given i. If i ∈ domF1, then Int cell(the Go-board of f , πiF1, πiF2) ⊆
LeftComp(f) ∪RightComp(f).

(9) There exist i, j such that i ≤ len the Go-board of f and j ≤ width the
Go-board of f and Int cell(the Go-board of f , i, j) ⊆ LeftComp(f) ∪
RightComp(f).

(10) For all i, j such that i ≤ len the Go-board of f and j ≤ width the
Go-board of f holds Int cell(the Go-board of f , i, j) ⊆ LeftComp(f) ∪
RightComp(f).

(11) (L̃(f))c = LeftComp(f) ∪RightComp(f).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[5] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[6] Agata Darmochwa l. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[7] Agata Darmochwa l and Yatsuka Nakamura. The topological space E2

T. Arcs, line seg-
ments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

the first part of jordan’s theorem for . . . 51

[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[10] Stanis lawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Math-
ematics, 1(3):607–610, 1990.

[11] Jaros law Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part I. Formal-
ized Mathematics, 3(1):107–115, 1992.

[12] Jaros law Kotowicz and Yatsuka Nakamura. Introduction to Go-board - Part II. For-
malized Mathematics, 3(1):117–121, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. Adjacency concept for pairs of natural num-
bers. Formalized Mathematics, 6(1):1–3, 1997.

[14] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. For-
malized Mathematics, 5(4):513–517, 1996.

[15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formal-
ized Mathematics, 5(3):323–328, 1996.

[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[17] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[19] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[20] Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465–468, 1996.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[24] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[26] Miros law Wysocki and Agata Darmochwa l. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received July 22, 1996

52

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

On the Composition of Macro Instructions.

Part III 1

Noriko Asamoto
Ochanomizu University

Tokyo

Yatsuka Nakamura
Shinshu University

Nagano

Piotr Rudnicki
University of Alberta

Edmonton

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. This article is a continuation of [27] and [2]. First,
we recast the semantics of the macro composition in more convenient
terms. Then, we introduce terminology and basic properties of macros
constructed out of single instructions of SCMFSA. We give the complete
semantics of composing a macro instruction with an instruction and for
composing two machine instructions (this is also done in terms of macros).
The introduced terminology is tested on the simple example of a macro
for swapping two integer locations.

MML Identifier: SCMFSA6C.

The papers [23], [31], [15], [4], [29], [18], [32], [10], [11], [5], [24], [9], [30], [13],
[3], [21], [8], [14], [12], [22], [16], [17], [26], [6], [20], [7], [28], [25], [27], [19], and
[1] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we adopt the following rules: i will denote an instruction of
SCMFSA, a, b will denote integer locations, f will denote a finite sequence
location, l will denote an instruction-location of SCMFSA, and s, s1, s2 will
denote states of SCMFSA.

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

53
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

54 noriko asamoto et al.

(1) Let I be a keeping 0 parahalting macro instruction and let J
be a parahalting macro instruction. Then (IExec(I;J, s))(a) =
(IExec(J, IExec(I, s)))(a).

(2) Let I be a keeping 0 parahalting macro instruction and let J
be a parahalting macro instruction. Then (IExec(I;J, s))(f) =
(IExec(J, IExec(I, s)))(f).

2. Parahalting and keeping 0 macro instructions

Let i be an instruction of SCMFSA. We say that i is parahalting if and only
if:

(Def. 1) Macro(i) is parahalting.

We say that i is keeping 0 if and only if:

(Def. 2) Macro(i) is keeping 0.

Let us observe that haltSCMFSA
is keeping 0 and parahalting.

Let us note that there exists an instruction of SCMFSA which is keeping 0
and parahalting.

Let i be a parahalting instruction of SCMFSA. Observe that Macro(i) is
parahalting.

Let i be a keeping 0 instruction of SCMFSA. Observe that Macro(i) is
keeping 0.

Let a, b be integer locations. One can check the following observations:

∗ a:=b is parahalting,

∗ AddTo(a, b) is parahalting,

∗ SubFrom(a, b) is parahalting,

∗ MultBy(a, b) is parahalting, and

∗ Divide(a, b) is parahalting.

Let f be a finite sequence location. Note that b:=fa is parahalting and fa:=b is
parahalting and keeping 0.

Let a be an integer location and let f be a finite sequence location. Note
that a:=lenf is parahalting and f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉 is parahalting and keeping 0.

Let a be a read-write integer location and let b be an integer location. One
can verify the following observations:

∗ a:=b is keeping 0,

∗ AddTo(a, b) is keeping 0,

∗ SubFrom(a, b) is keeping 0, and

∗ MultBy(a, b) is keeping 0.

Let a, b be read-write integer locations. Note that Divide(a, b) is keeping 0.
Let a be an integer location, let f be a finite sequence location, and let b be

a read-write integer location. Observe that b:=fa is keeping 0.

on the composition of macro instructions. . . . 55

Let f be a finite sequence location and let b be a read-write integer location.
Observe that b:=lenf is keeping 0.

Let i be a parahalting instruction of SCMFSA and let J be a parahalting
macro instruction. One can verify that i;J is parahalting.

Let I be a parahalting macro instruction and let j be a parahalting instruc-
tion of SCMFSA. Note that I;j is parahalting.

Let i be a parahalting instruction of SCMFSA and let j be a parahalting
instruction of SCMFSA. Note that i;j is parahalting.

Let i be a keeping 0 instruction of SCMFSA and let J be a keeping 0 macro
instruction. Observe that i;J is keeping 0.

Let I be a keeping 0 macro instruction and let j be a keeping 0 instruction
of SCMFSA. One can check that I;j is keeping 0.

Let i, j be keeping 0 instructions of SCMFSA. One can check that i;j is
keeping 0.

3. Semantics of compositions

Let s be a state of SCMFSA. The functor Initialize(s) yielding a state of
SCMFSA is defined as follows:

(Def. 3) Initialize(s) = s+·(intloc(0) 7−→. 1)+·Start-At(insloc(0)).

The following propositions are true:

(3) (i) ICInitialize(s) = insloc(0),

(ii) (Initialize(s))(intloc(0)) = 1,

(iii) for every read-write integer location a holds (Initialize(s))(a) = s(a),

(iv) for every f holds (Initialize(s))(f) = s(f), and

(v) for every l holds (Initialize(s))(l) = s(l).

(4) s1 and s2 are equal outside the instruction locations of SCMFSA

iff s1 � (Int-Locations∪FinSeq-Locations∪{ICSCMFSA
}) = s2 �

(Int-Locations∪FinSeq-Locations∪{ICSCMFSA
}).

(5) If s1 � (Int-Locations∪FinSeq-Locations) = s2 � (Int-Locations∪
FinSeq-Locations), then Exec(i, s1) � (Int-Locations∪FinSeq-Locations) =
Exec(i, s2) � (Int-Locations∪FinSeq-Locations).

(6) For every parahalting instruction i of SCMFSA holds Exec(i, Initialize

(s)) = IExec(Macro(i), s).

(7) Let I be a keeping 0 parahalting macro instruction and let j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(a) =
(Exec(j, IExec(I, s)))(a).

(8) Let I be a keeping 0 parahalting macro instruction and let j be
a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(f) =
(Exec(j, IExec(I, s)))(f).

56 noriko asamoto et al.

(9) Let i be a keeping 0 parahalting instruction of SCMFSA and let j
be a parahalting instruction of SCMFSA. Then (IExec(i;j, s))(a) =
(Exec(j,Exec(i, Initialize(s))))(a).

(10) Let i be a keeping 0 parahalting instruction of SCMFSA and let j
be a parahalting instruction of SCMFSA. Then (IExec(i;j, s))(f) =
(Exec(j,Exec(i, Initialize(s))))(f).

4. An example: swap

Let a, b be integer locations. The functor swap(a, b) yields a macro instruc-
tion and is defined as follows:

(Def. 4) swap(a, b) = (FirstNotUsed(Macro(a:=b)):=a);(a:=b);(b:= FirstNotUsed
(Macro(a:=b))).

Let a, b be integer locations. Observe that swap(a, b) is parahalting.
Let a, b be read-write integer locations. Note that swap(a, b) is keeping 0.
We now state two propositions:

(11) For all read-write integer locations a, b holds (IExec(swap(a, b), s))(a) =
s(b) and (IExec(swap(a, b), s))(b) = s(a).

(12) UsedInt∗ Loc(swap(a, b)) = ∅.

References

[1] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[2] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[8] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[9] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[11] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[12] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[13] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[14] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.

on the composition of macro instructions. . . . 57

[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[17] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[18] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized
Mathematics, 6(1):29–36, 1997.

[20] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.
[25] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[26] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[27] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[28] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[29] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[31] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 22, 1996

58

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Constant Assignment Macro Instructions

of SCMFSA. Part II

Noriko Asamoto
Ochanomizu University

Tokyo

MML Identifier: SCMFSA7B.

The notation and terminology used in this paper have been introduced in the
following articles: [20], [28], [12], [4], [25], [29], [10], [11], [7], [5], [9], [27], [15],
[26], [18], [6], [3], [19], [8], [13], [14], [22], [17], [24], [21], [1], [23], [16], and [2].

In this paper m is a natural number.
Next we state two propositions:

(1) For every finite sequence p of elements of the instructions of SCMFSA

holds dom Load(p) = {insloc(m) : m < len p}.
(2) For every finite sequence p of elements of the instructions of SCMFSA

holds rng Load(p) = rng p.

Let p be a finite sequence of elements of the instructions of SCMFSA. Ob-
serve that Load(p) is initial and programmed.

We now state several propositions:

(3) For every instruction i of SCMFSA holds Load(〈i〉) = insloc(0)7−→. i.

(4) For every instruction i of SCMFSA holds dom Macro(i) =
{insloc(0), insloc(1)}.

(5) For every instruction i of SCMFSA holds Macro(i) = Load(〈i,
haltSCMFSA

〉).
(6) For every instruction i of SCMFSA holds card Macro(i) = 2.

(7) For every instruction i of SCMFSA holds if i = haltSCMFSA
, then

(Directed(Macro(i)))(insloc(0)) = goto insloc(2) and if i 6= haltSCMFSA
,

then (Directed(Macro(i)))(insloc(0)) = i.

(8) For every instruction i of SCMFSA holds (Directed(Macro(i)))(insloc(1))
= goto insloc(2).

Let a be an integer location and let k be an integer. Observe that a:=k is
initial and programmed.

59
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

60 noriko asamoto

Let a be an integer location and let k be an integer. Observe that a:=k is
parahalting.

We now state the proposition

(9) Let s be a state of SCMFSA, and let a be a read-write integer location,
and let k be an integer. Then

(i) (IExec(a:=k, s))(a) = k,
(ii) for every read-write integer location b such that b 6= a holds

(IExec(a:=k, s))(b) = s(b), and
(iii) for every finite sequence location f holds (IExec(a:=k, s))(f) = s(f).

Let f be a finite sequence location and let p be a finite sequence of elements
of � . One can check that f :=p is initial and programmed.

Let f be a finite sequence location and let p be a finite sequence of elements
of � . Observe that f :=p is parahalting.

The following proposition is true

(10) Let s be a state of SCMFSA, and let f be a finite sequence location,
and let p be a finite sequence of elements of � . Then

(i) (IExec(f :=p, s))(f) = p,
(ii) for every read-write integer location a such that a 6= intloc(1) and

a 6= intloc(2) holds (IExec(f :=p, s))(a) = s(a), and
(iii) for every finite sequence location g such that g 6= f holds

(IExec(f :=p, s))(g) = s(g).

Let i be an instruction of SCMFSA and let a be an integer location. We say
that i does not refer a if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let b be an integer location, and let l be an instruction-location of
SCMFSA, and let f be a finite sequence location. Then

(i) b:=a 6= i,
(ii) AddTo(b, a) 6= i,
(iii) SubFrom(b, a) 6= i,
(iv) MultBy(b, a) 6= i,
(v) Divide(b, a) 6= i,
(vi) Divide(a, b) 6= i,

(vii) if a = 0 goto l 6= i,
(viii) if a > 0 goto l 6= i,

(ix) b:=fa 6= i,
(x) fb:=a 6= i,
(xi) fa:=b 6= i, and

(xii) f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉 6= i.

Let I be a programmed finite partial state of SCMFSA and let a be an integer
location. We say that I does not refer a if and only if:

(Def. 2) For every instruction i of SCMFSA such that i ∈ rng I holds i does not
refer a.

Let i be an instruction of SCMFSA and let a be an integer location. We say
that i does not destroy a if and only if the condition (Def. 3) is satisfied.

constant assignment macro instructions of . . . 61

(Def. 3) Let b be an integer location and let f be a finite sequence location. Then
a:=b 6= i and AddTo(a, b) 6= i and SubFrom(a, b) 6= i and MultBy(a, b) 6= i
and Divide(a, b) 6= i and Divide(b, a) 6= i and a:=fb 6= i and a:=lenf 6= i.

Let I be a finite partial state of SCMFSA and let a be an integer location.
We say that I does not destroy a if and only if:

(Def. 4) For every instruction i of SCMFSA such that i ∈ rng I holds i does not
destroy a.

Let I be a finite partial state of SCMFSA. We say that I is good if and only
if:

(Def. 5) I does not destroy intloc(0).

Let I be a finite partial state of SCMFSA. We say that I is halt-free if and
only if:

(Def. 6) haltSCMFSA
/∈ rng I.

Let us observe that there exists a macro instruction which is halt-free and
good.

The following propositions are true:

(11) For every integer location a holds haltSCMFSA
does not destroy a.

(12) For all integer locations a, b, c such that a 6= b holds b:=c does not
destroy a.

(13) For all integer locations a, b, c such that a 6= b holds AddTo(b, c) does
not destroy a.

(14) For all integer locations a, b, c such that a 6= b holds SubFrom(b, c) does
not destroy a.

(15) For all integer locations a, b, c such that a 6= b holds MultBy(b, c) does
not destroy a.

(16) For all integer locations a, b, c such that a 6= b and a 6= c holds
Divide(b, c) does not destroy a.

(17) For every integer location a and for every instruction-location l of
SCMFSA holds goto l does not destroy a.

(18) For all integer locations a, b and for every instruction-location l of
SCMFSA holds if b = 0 goto l does not destroy a.

(19) For all integer locations a, b and for every instruction-location l of
SCMFSA holds if b > 0 goto l does not destroy a.

(20) Let a, b, c be integer locations and let f be a finite sequence location.
If a 6= b, then b:=fc does not destroy a.

(21) For all integer locations a, b, c and for every finite sequence location f
holds fc:=b does not destroy a.

(22) Let a, b be integer locations and let f be a finite sequence location. If
a 6= b, then b:=lenf does not destroy a.

(23) For all integer locations a, b and for every finite sequence location f
holds f :=〈0, . . . , 0︸ ︷︷ ︸

b

〉 does not destroy a.

62 noriko asamoto

Let I be a finite partial state of SCMFSA and let s be a state of SCMFSA.
We say that I is closed on s if and only if:

(Def. 7) For every natural number k holds
IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈ dom I.

We say that I is halting on s if and only if:

(Def. 8) s+·(I+· Start-At(insloc(0))) is halting.

We now state several propositions:

(24) For every macro instruction I holds I is paraclosed iff for every state s
of SCMFSA holds I is closed on s.

(25) For every macro instruction I holds I is parahalting iff for every state
s of SCMFSA holds I is halting on s.

(26) Let i be an instruction of SCMFSA, and let a be an integer location, and
let s be a state of SCMFSA. If i does not destroy a then (Exec(i, s))(a) =
s(a).

(27) Let s be a state of SCMFSA, and let I be a macro instruc-
tion, and let a be an integer location. Suppose I does not de-
stroy a and I is closed on s. Let k be a natural number. Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k)(a) = s(a).

(28) StopSCMFSA
does not destroy intloc(0).

One can verify that there exists a macro instruction which is parahalting and
good.

One can check that StopSCMFSA
is parahalting and good.

One can check that every macro instruction which is paraclosed and good is
also keeping 0.

One can prove the following two propositions:

(29) For every integer location a and for every integer k holds
rng aSeq(a, k) ⊆ {a:= intloc(0),AddTo(a, intloc(0)),SubFrom(a, intloc(0))}.

(30) For every integer location a and for every integer k holds rng(a:=k) ⊆
{haltSCMFSA

, a:= intloc(0),AddTo(a, intloc(0)),SubFrom(a, intloc(0))}.
Let a be a read-write integer location and let k be an integer. One can check

that a:=k is good.
Let a be a read-write integer location and let k be an integer. Observe that

a:=k is keeping 0.

References

[1] Noriko Asamoto. Some multi instructions defined by sequence of instructions of
SCMFSA. Formalized Mathematics, 5(4):615–619, 1996.

[2] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.

constant assignment macro instructions of . . . 63

[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized
Mathematics, 4(1):91–101, 1993.

[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485–492, 1996.

[8] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–
676, 1990.

[9] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529–536, 1990.

[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[11] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[16] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized
Mathematics, 6(1):29–36, 1997.

[17] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[23] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[24] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[25] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[26] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[28] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 27, 1996

64

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Conditional Branch Macro Instructions of

SCMFSA. Part I

Noriko Asamoto
Ochanomizu University

Tokyo

MML Identifier: SCMFSA8A.

The terminology and notation used in this paper are introduced in the following
papers: [16], [22], [6], [10], [23], [11], [12], [9], [5], [7], [13], [19], [15], [21], [17],
[18], [2], [8], [20], [14], [4], [3], and [1].

One can prove the following propositions:

(1) For all functions f , g such that dom f misses dom g holds f+·g = g+·f.
(2) For all functions f , g and for every set D such that dom g misses D

holds (f+·g) � D = f � D.
(3) For every state s of SCMFSA holds dom(s � (the instruction locations

of SCMFSA)) = the instruction locations of SCMFSA.

(4) For every state s of SCMFSA such that s is halting and
for every natural number k such that LifeSpan(s) ≤ k holds
CurInstr((Computation(s))(k)) = haltSCMFSA

.

(5) For every state s of SCMFSA such that s is halting and for every nat-
ural number k such that LifeSpan(s) ≤ k holds IC(Computation(s))(k) =
IC(Computation(s))(LifeSpan(s)).

(6) Let s1, s2 be states of SCMFSA. Then s1 and s2 are
equal outside the instruction locations of SCMFSA if and only if
IC(s1) = IC(s2) and s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations).

(7) For every state s of SCMFSA and for every macro instruction I holds
ICIExec(I,s) = ICResult(s+· Initialized(I)).

(8) For every state s of SCMFSA and for every macro instruction I holds
Initialize(s)+· Initialized(I) = s+· Initialized(I).

(9) For every macro instruction I and for every instruction-location l of
SCMFSA holds I ⊆ I+· Start-At(l).

65
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

66 noriko asamoto

(10) For every state s of SCMFSA and for every instruction-
location l of SCMFSA holds s � (Int-Locations∪FinSeq-Locations) =
(s+· Start-At(l)) � (Int-Locations∪FinSeq-Locations).

(11) Let s be a state of SCMFSA, and let I be a macro instruc-
tion, and let l be an instruction-location of SCMFSA. Then
s � (Int-Locations∪FinSeq-Locations) = (s+·(I+· Start-At(l))) �
(Int-Locations∪FinSeq-Locations).

(12) Let s be a state of SCMFSA and let l be an instruction-location of
SCMFSA. Then dom(s � (the instruction locations of SCMFSA)) misses
dom Start-At(l).

(13) For every state s of SCMFSA and for every macro instruction I holds
s+· Initialized(I) = Initialize(s)+·(I+· Start-At(insloc(0))).

(14) Let s be a state of SCMFSA, and let I1, I2 be macro instructions, and
let l be an instruction-location of SCMFSA. Then s+·(I1+· Start-At(l))
and s+·(I2+·Start-At(l)) are equal outside the instruction locations of
SCMFSA.

(15) dom(StopSCMFSA
) = {insloc(0)}.

(16) insloc(0) ∈ dom(StopSCMFSA
) and StopSCMFSA

(insloc(0)) = haltSCMFSA
.

(17) card(StopSCMFSA
) = 1.

Let P be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. The functor Directed(P, l) yields a programmed
finite partial state of SCMFSA and is defined as follows:

(Def. 1) Directed(P, l) = (id(the instructions of SCMFSA)+·(haltSCMFSA
7−→. goto l))·

P.

One can prove the following proposition

(18) For every programmed finite partial state I of SCMFSA holds
Directed(I) = Directed(I, insloc(card I)).

Let P be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. One can check that Directed(P, l) is halt-free.

Let P be a programmed finite partial state of SCMFSA. Note that Directed(P)
is halt-free.

Next we state several propositions:

(19) For every programmed finite partial state P of SCMFSA and for every
instruction-location l of SCMFSA holds dom Directed(P, l) = domP.

(20) Let P be a programmed finite partial state of SCMFSA and let
l be an instruction-location of SCMFSA. Then Directed(P, l) =
P+·(haltSCMFSA

7−→. goto l) · P.
(21) Let P be a programmed finite partial state of SCMFSA, and let l be

an instruction-location of SCMFSA, and let x be arbitrary. Suppose x ∈
domP. Then if P (x) = haltSCMFSA

, then (Directed(P, l))(x) = goto l
and if P (x) 6= haltSCMFSA

, then (Directed(P, l))(x) = P (x).

conditional branch macro instructions of . . . 67

(22) Let i be an instruction of SCMFSA, and let a be an integer location,
and let n be a natural number. If i does not destroy a, then IncAddr(i, n)
does not destroy a.

(23) Let P be a programmed finite partial state of SCMFSA, and let n be a
natural number, and let a be an integer location. If P does not destroy
a, then ProgramPart(Relocated(P, n)) does not destroy a.

(24) For every good programmed finite partial state P of SCMFSA and for
every natural number n holds ProgramPart(Relocated(P, n)) is good.

(25) Let I, J be programmed finite partial states of SCMFSA and let a be
an integer location. Suppose I does not destroy a and J does not destroy
a. Then I+·J does not destroy a.

(26) For all good programmed finite partial states I, J of SCMFSA holds
I+·J is good.

(27) Let I be a programmed finite partial state of SCMFSA, and let l be an
instruction-location of SCMFSA, and let a be an integer location. If I
does not destroy a, then Directed(I, l) does not destroy a.

Let I be a good programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. Note that Directed(I, l) is good.

Let I be a good macro instruction. Note that Directed(I) is good.
Let I be a macro instruction and let l be an instruction-location of SCMFSA.

One can verify that Directed(I, l) is initial.
Let I, J be good macro instructions. Observe that I;J is good.
Let l be an instruction-location of SCMFSA. The functor Goto(l) yields a

halt-free good macro instruction and is defined by:

(Def. 2) Goto(l) = insloc(0) 7−→. goto l.

Let s be a state of SCMFSA and let I be a finite partial state of SCMFSA.
We say that I is psuedo-closed on s if and only if the condition (Def. 3) is
satisfied.

(Def. 3) There exists a natural number k such that
IC(Computation(s+·(I+·Start-At(insloc(0)))))(k) = insloc(card I) and for every
natural number n such that n < k holds
IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ dom I.

Let I be a finite partial state of SCMFSA. We say that I is psuedo-paraclosed
if and only if:

(Def. 4) For every state s of SCMFSA holds I is psuedo-closed on s.

Let us observe that there exists a macro instruction which is psuedo-paraclosed.
Let s be a state of SCMFSA and let I be a macro instruction. Let us assume

that I is psuedo-closed on s. The functor psuedo− LifeSpan(s, I) yielding a
natural number is defined by:

(Def. 5) IC(Computation(s+·(I+·Start-At(insloc(0)))))(psuedo−LifeSpan(s,I)) = insloc(card I)
and for every natural number n such that
IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) /∈ dom I holds
psuedo− LifeSpan(s, I) ≤ n.

68 noriko asamoto

We now state a number of propositions:

(28) For all macro instructions I, J and for arbitrary x such that x ∈ dom I
holds (I;J)(x) = (Directed(I))(x).

(29) For every instruction-location l of SCMFSA holds card Goto(l) = 1.

(30) Let P be a programmed finite partial state of SCMFSA and let x
be arbitrary. Suppose x ∈ domP. Then if P (x) = haltSCMFSA

, then
(Directed(P))(x) = goto insloc(cardP) and if P (x) 6= haltSCMFSA

, then
(Directed(P))(x) = P (x).

(31) Let s be a state of SCMFSA and let I be a macro instruction. Sup-
pose I is psuedo-closed on s. Let n be a natural number. If n <
psuedo− LifeSpan(s, I), then IC(Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈
dom I and CurInstr((Computation(s+·(I+· Start-At(insloc(0)))))(n)) 6=
haltSCMFSA

.

(32) Let s be a state of SCMFSA and let I, J be macro in-
structions. Suppose I is psuedo-closed on s. Let k be a
natural number. Suppose k ≤ psuedo− LifeSpan(s, I). Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k) and (Computation(s+·
((I;J)+·Start-At(insloc(0)))))(k) are equal outside the instruction loca-
tions of SCMFSA.

(33) For every programmed finite partial state I of SCMFSA and for every
instruction-location l of SCMFSA holds card Directed(I, l) = card I.

(34) For every macro instruction I holds card Directed(I) = card I.

(35) Let s be a state of SCMFSA and let I be a macro instruction.
Suppose I is closed on s and halting on s. Let k be a natural
number. Suppose k ≤ LifeSpan(s+·(I+· Start-At(insloc(0)))). Then
(Computation(s+·(I+· Start-At(insloc(0)))))(k) and (Computation(s+·
(Directed(I)+·Start-At(insloc(0)))))(k) are equal outside the instruction
locations of SCMFSA and CurInstr((Computation(s+·(Directed(I)+·
Start-At(insloc(0)))))(k)) 6= haltSCMFSA

.

(36) Let s be a state of SCMFSA and let I be a macro instruction. Suppose
I is closed on s and halting on s.

Then IC(Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At

(insloc(0))))+1) = insloc(card I) and (Computation(s+·(I+· Start-At(insloc

(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))) � (Int-Locations

∪FinSeq-Locations) = (Computation(s+·(Directed(I)+·Start-At(insloc

(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1) � (Int-Locations∪
FinSeq-Locations).

(37) Let s be a state of SCMFSA and let I be a macro instruction. If I is
closed on s and halting on s, then Directed(I) is psuedo-closed on s.

(38) Let s be a state of SCMFSA and let I be a macro instruction. If I is
closed on s and halting on s, then psuedo− LifeSpan(s,Directed(I)) =
LifeSpan(s+·(I+·Start-At(insloc(0)))) + 1.

conditional branch macro instructions of . . . 69

(39) Let I be a programmed finite partial state of SCMFSA and let l be an
instruction-location of SCMFSA. If I is halt-free, then Directed(I, l) = I.

(40) For every macro instruction I such that I is halt-free holds
Directed(I) = I.

(41) For all macro instructions I, J holds Directed(I);J = I;J.

(42) Let s be a state of SCMFSA and let I, J be macro instructions. Suppose
I is closed on s and halting on s. Then

(i) for every natural number k such that k ≤ LifeSpan(s+·(I+·Start-At
(insloc(0)))) holds IC(Computation(s+·(Directed(I)+· Start-At(insloc(0)))))(k) =
IC(Computation(s+·((I;J)+·Start-At(insloc(0)))))(k) and CurInstr((Computation
(s+·(Directed(I)+·Start-At(insloc(0)))))(k)) = CurInstr((Computation
(s+·((I;J)+·Start-At(insloc(0)))))(k)),

(ii) (Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·
(I+·Start-At(insloc(0)))) + 1) � (Int-Locations∪FinSeq-Locations) =
(Computation(s+·((I;J)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·
Start-At(insloc(0)))) + 1) � (Int-Locations∪FinSeq-Locations), and

(iii) IC(Computation(s+·(Directed(I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+· Start-At

(insloc(0))))+1) = IC(Computation(s+·((I;J)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·
Start-At(insloc(0))))+1) .

(43) Let s be a state of SCMFSA and let I, J be macro instructions. Suppose
I is closed on Initialize(s) and halting on Initialize(s). Then

(i) for every natural number k such that k ≤ LifeSpan(s+· Initialized(I))
holds IC(Computation(s+· Initialized(Directed(I))))(k) =
IC(Computation(s+· Initialized(I;J)))(k) and CurInstr((Computation(s+· Initialized
(Directed(I))))(k)) = CurInstr((Computation(s+· Initialized(I;J)))(k)),

(ii) (Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized
(I))+1) � (Int-Locations∪FinSeq-Locations) = (Computation(s+· Initialized
(I;J)))(LifeSpan(s+· Initialized(I))+1) � (Int-Locations∪FinSeq-Locations),
and

(iii) IC(Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) =
IC(Computation(s+· Initialized(I;J)))(LifeSpan(s+· Initialized(I))+1) .

(44) Let s be a state of SCMFSA and let I be a macro in-
struction. Suppose I is closed on Initialize(s) and halting on
Initialize(s). Let k be a natural number. Suppose k ≤
LifeSpan(s+· Initialized(I)). Then (Computation(s+· Initialized(I)))(k)
and (Computation(s+· Initialized(Directed(I))))(k) are equal outside the
instruction locations of SCMFSA and CurInstr((Computation(s+·
Initialized(Directed(I))))(k)) 6= haltSCMFSA

.

(45) Let s be a state of SCMFSA and let I be a macro instruc-
tion. Suppose I is closed on Initialize(s) and halting on Initialize(s).
Then IC(Computation(s+· Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) =
insloc(card I) and (Computation(s+· Initialized(I)))(LifeSpan(s+·
Initialized(I))) � (Int-Locations∪FinSeq-Locations) = (Computation(s+·
Initialized(Directed(I))))(LifeSpan(s+· Initialized(I))+1) � (Int-Locations

70 noriko asamoto

∪FinSeq-Locations).

(46) Let I be a macro instruction and let s be a state of SCMFSA. Suppose
I is closed on s and halting on s. Then I;StopSCMFSA

is closed on s and
I;StopSCMFSA

is halting on s.

(47) For every instruction-location l of SCMFSA holds insloc(0) ∈
dom Goto(l) and (Goto(l))(insloc(0)) = goto l.

(48) Let I be a programmed finite partial state of SCMFSA and let x be
arbitrary. If x ∈ dom I, then I(x) is an instruction of SCMFSA.

(49) Let I be a programmed finite partial state of SCMFSA, and
let x be arbitrary, and let k be a natural number. If x ∈
dom ProgramPart(Relocated(I, k)), then (ProgramPart(Relocated(I, k)))
(x) = (Relocated(I, k))(x).

(50) For every programmed finite partial state I of SCMFSA and for ev-
ery natural number k holds ProgramPart(Relocated(Directed(I), k)) =
Directed(ProgramPart(Relocated(I, k)), insloc(card I + k)).

(51) Let I, J be programmed finite partial states of SCMFSA and let
l be an instruction-location of SCMFSA. Then Directed(I+·J, l) =
Directed(I, l)+·Directed(J, l).

(52) For all macro instructions I, J holds Directed(I;J) = I; Directed(J).

(53) Let I be a macro instruction and let s be a state of
SCMFSA. If I is closed on Initialize(s) and halting on Initialize(s),
then IC(Computation(s+· Initialized(I;StopSCMFSA

)))(LifeSpan(s+· Initialized(I))+1) =

insloc(card I).

(54) Let I be a macro instruction and let s be a state of SCMFSA.
Suppose I is closed on Initialize(s) and halting on Initialize(s).
Then (Computation(s+· Initialized(I)))(LifeSpan(s+· Initialized(I))) �
(Int-Locations∪FinSeq-Locations) = (Computation(s+· Initialized(I;
StopSCMFSA

)))(LifeSpan(s+· Initialized(I)) + 1) � (Int-Locations∪
FinSeq-Locations).

(55) Let I be a macro instruction and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
s+· Initialized(I;StopSCMFSA

) is halting.

(56) Let I be a macro instruction and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
LifeSpan(s+· Initialized(I;StopSCMFSA

)) = LifeSpan(s+· Initialized(I)) +
1.

(57) Let s be a state of SCMFSA and let I be a macro instruc-
tion. If I is closed on Initialize(s) and halting on Initialize(s), then
IExec(I;StopSCMFSA

, s) = IExec(I, s)+·Start-At(insloc(card I)).

(58) Let I, J be macro instructions and let s be a state of
SCMFSA. Suppose I is closed on s and halting on s.
Then I; Goto(insloc(card J + 1));J ;StopSCMFSA

is closed on s and
I; Goto(insloc(card J + 1));J ;StopSCMFSA

is halting on s.

conditional branch macro instructions of . . . 71

(59) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on s and halting on s, then s+·((I; Goto(insloc(card J +
1));J ;StopSCMFSA

)+·Start-At(insloc(0))) is halting.

(60) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
s+· Initialized(I; Goto(insloc(card J + 1));J ;StopSCMFSA

) is halting.

(61) Let I, J be macro instructions and let s be a state of SCMFSA.
If I is closed on Initialize(s) and halting on Initialize(s), then
ICIExec(I; Goto(insloc(card J+1));J ;StopSCMFSA

,s) = insloc(card I + card J + 1).

(62) Let I, J be macro instructions and let s be a state of
SCMFSA. Suppose I is closed on Initialize(s) and halting on
Initialize(s). Then IExec(I; Goto(insloc(card J + 1));J ;StopSCMFSA

, s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 1)).

References

[1] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. For-
malized Mathematics, 6(1):59–63, 1997.

[2] Noriko Asamoto. Some multi instructions defined by sequence of instructions of
SCMFSA. Formalized Mathematics, 5(4):615–619, 1996.

[3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[5] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[9] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[10] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[11] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[12] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[14] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized

Mathematics, 6(1):29–36, 1997.
[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[18] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.

72 noriko asamoto

[20] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[21] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[22] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 27, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Conditional Branch Macro Instructions of

SCMFSA. Part II

Noriko Asamoto
Ochanomizu University

Tokyo

MML Identifier: SCMFSA8B.

The papers [22], [31], [16], [7], [29], [11], [32], [13], [14], [10], [6], [8], [12], [30],
[15], [21], [17], [18], [25], [20], [27], [28], [23], [24], [3], [9], [26], [19], [5], [4], [2],
and [1] provide the terminology and notation for this paper.

One can prove the following propositions:

(1) For every state s of SCMFSA holds ICSCMFSA
∈ dom s.

(2) For every state s of SCMFSA and for every instruction-location l of
SCMFSA holds l ∈ dom s.

(3) For every macro instruction I and for every state s of SCMFSA such
that I is closed on s holds insloc(0) ∈ dom I.

(4) For every state s of SCMFSA and for all instructions-locations l1, l2 of
SCMFSA holds s+· Start-At(l1)+· Start-At(l2) = s+· Start-At(l2).

(5) For every state s of SCMFSA and for every macro instruction I holds
Initialize(s) � (Int-Locations∪FinSeq-Locations) = (s+· Initialized(I)) �
(Int-Locations∪FinSeq-Locations).

(6) Let s1, s2 be states of SCMFSA and let I be a macro
instruction. If s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations), then if I is closed on s1, then I is
closed on s2.

(7) Let s1, s2 be states of SCMFSA and let I, J be macro in-
structions. Suppose s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations). Then s1+·(I+·Start-At(insloc(0)))
and s2+·(J+·Start-At(insloc(0))) are equal outside the instruction lo-
cations of SCMFSA.

(8) Let s1, s2 be states of SCMFSA and let I be a macro in-
struction. Suppose s1 � (Int-Locations∪FinSeq-Locations) = s2 �

73
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

74 noriko asamoto

(Int-Locations∪FinSeq-Locations). Suppose I is closed on s1 and halt-
ing on s1. Then I is closed on s2 and halting on s2.

(9) For every state s of SCMFSA and for all macro instructions I, J holds
I is closed on Initialize(s) iff I is closed on s+· Initialized(J).

(10) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let l be an instruction-location of SCMFSA. Then I is closed on s if and
only if I is closed on s+·(I+· Start-At(l)).

(11) Let s1, s2 be states of SCMFSA and let I be a macro instruction.
Suppose I+· Start-At(insloc(0)) ⊆ s1 and I is closed on s1. Let n
be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations). Let i be a natural num-
ber. Then IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
IncAddr(CurInstr((Computation(s1))(i)), n) = CurInstr((Computation

(s2))(i)) and (Computation(s1))(i) � (Int-Locations∪FinSeq-Locations)

= (Computation(s2))(i) � (Int-Locations∪FinSeq-Locations).

(12) Let s be a state of SCMFSA, and let i be a keeping 0 parahalt-
ing instruction of SCMFSA, and let J be a parahalting macro in-
struction, and let a be an integer location. Then (IExec(i;J, s))(a) =
(IExec(J,Exec(i, Initialize(s))))(a).

(13) Let s be a state of SCMFSA, and let i be a keeping 0 parahalt-
ing instruction of SCMFSA, and let J be a parahalting macro instruc-
tion, and let f be a finite sequence location. Then (IExec(i;J, s))(f) =
(IExec(J,Exec(i, Initialize(s))))(f).

Let a be an integer location and let I, J be macro instructions. The functor
if = 0(a, I, J) yields a macro instruction and is defined by:

(Def. 1) if = 0(a, I, J) = (if a = 0 goto insloc(card J+3));J ; Goto(insloc(card

I + 1));I;StopSCMFSA
.

The functor if > 0(a, I, J) yields a macro instruction and is defined by:

(Def. 2) if > 0(a, I, J) = (if a > 0 goto insloc(card J+3));J ; Goto(insloc(card

I + 1));I;StopSCMFSA
.

Let a be an integer location and let I, J be macro instructions. The functor
if < 0(a, I, J) yields a macro instruction and is defined as follows:

(Def. 3) if < 0(a, I, J) = if = 0(a, J, if > 0(a, J, I)).

The following propositions are true:

(14) For all macro instructions I, J and for every integer location a holds
card if = 0(a, I, J) = card I + card J + 4.

(15) For all macro instructions I, J and for every integer location a holds
card if > 0(a, I, J) = card I + card J + 4.

(16) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) = 0 and I is closed on

conditional branch macro instructions of . . . 75

s and halting on s. Then if = 0(a, I, J) is closed on s and if = 0(a, I, J)
is halting on s.

(17) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) = 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if = 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)).

(18) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) 6= 0 and J is closed on s
and halting on s. Then if = 0(a, I, J) is closed on s and if = 0(a, I, J)
is halting on s.

(19) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) 6= 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if = 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + 3)).

(20) Let s be a state of SCMFSA, and let I, J be parahalting macro
instructions, and let a be a read-write integer location. Then if =
0(a, I, J) is parahalting and if s(a) = 0, then IExec(if = 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)) and if s(a) 6= 0, then
IExec(if = 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc(card I + card J +
3)).

(21) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then

(i) ICIExec(if=0(a,I,J),s) = insloc(card I + card J + 3),

(ii) if s(a) = 0, then for every integer location d holds (IExec(if =
0(a, I, J), s))(d) = (IExec(I, s))(d) and for every finite sequence location
f holds (IExec(if = 0(a, I, J), s))(f) = (IExec(I, s))(f), and

(iii) if s(a) 6= 0, then for every integer location d holds (IExec(if =
0(a, I, J), s))(d) = (IExec(J, s))(d) and for every finite sequence location
f holds (IExec(if = 0(a, I, J), s))(f) = (IExec(J, s))(f).

(22) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) > 0 and I is closed on
s and halting on s. Then if > 0(a, I, J) is closed on s and if > 0(a, I, J)
is halting on s.

(23) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) > 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if > 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)).

(24) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) ≤ 0 and J is closed on s
and halting on s. Then if > 0(a, I, J) is closed on s and if > 0(a, I, J)
is halting on s.

(25) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) ≤ 0 and J is closed on

76 noriko asamoto

Initialize(s) and halting on Initialize(s). Then IExec(if > 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + 3)).

(26) Let s be a state of SCMFSA, and let I, J be parahalting macro
instructions, and let a be a read-write integer location. Then if >
0(a, I, J) is parahalting and if s(a) > 0, then IExec(if > 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)) and if s(a) ≤ 0, then
IExec(if > 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc(card I + card J +
3)).

(27) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then

(i) ICIExec(if>0(a,I,J),s) = insloc(card I + card J + 3),

(ii) if s(a) > 0, then for every integer location d holds (IExec(if >
0(a, I, J), s))(d) = (IExec(I, s))(d) and for every finite sequence location
f holds (IExec(if > 0(a, I, J), s))(f) = (IExec(I, s))(f), and

(iii) if s(a) ≤ 0, then for every integer location d holds (IExec(if >
0(a, I, J), s))(d) = (IExec(J, s))(d) and for every finite sequence location
f holds (IExec(if > 0(a, I, J), s))(f) = (IExec(J, s))(f).

(28) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) < 0 and I is closed on
s and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(29) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) < 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + card J + 7)).

(30) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) = 0 and J is closed on s
and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(31) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) = 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(32) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) > 0 and J is closed on s
and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(33) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) > 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(34) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then

conditional branch macro instructions of . . . 77

(i) if < 0(a, I, J) is parahalting,
(ii) if s(a) < 0, then IExec(if < 0(a, I, J), s) = IExec(I, s)+· Start-At(insloc

(card I + card J + card J + 7)), and
(iii) if s(a) ≥ 0, then IExec(if < 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc

(card I + card J + card J + 7)).

Let I, J be parahalting macro instructions and let a be a read-write integer
location. Observe that if = 0(a, I, J) is parahalting and if > 0(a, I, J) is
parahalting.

Let a, b be integer locations and let I, J be macro instructions. The functor
if = 0(a, b, I, J) yields a macro instruction and is defined as follows:

(Def. 4) if = 0(a, b, I, J) = SubFrom(a, b);if = 0(a, I, J).

The functor if > 0(a, b, I, J) yields a macro instruction and is defined by:

(Def. 5) if > 0(a, b, I, J) = SubFrom(a, b);if > 0(a, I, J).

We introduce if < 0(b, a, I, J) as a synonym of if > 0(a, b, I, J).
Let I, J be parahalting macro instructions and let a, b be read-write inte-

ger locations. One can check that if = 0(a, b, I, J) is parahalting and if >
0(a, b, I, J) is parahalting.

Next we state several propositions:

(35) For every state s of SCMFSA and for every macro instruction I
holds Result(s+· Initialized(I)) � (Int-Locations∪FinSeq-Locations) =
IExec(I, s) � (Int-Locations∪FinSeq-Locations).

(36) Let s be a state of SCMFSA, and let I be a macro instruction, and let
a be an integer location. Then Result(s+· Initialized(I)) and IExec(I, s)
are equal outside the instruction locations of SCMFSA.

(37) Let s1, s2 be states of SCMFSA, and let i be an instruction of SCMFSA,
and let a be an integer location. Suppose that

(i) for every integer location b such that a 6= b holds s1(b) = s2(b),
(ii) for every finite sequence location f holds s1(f) = s2(f),

(iii) i does not refer a, and
(iv) IC(s1) = IC(s2).

Then
(v) for every integer location b such that a 6= b holds (Exec(i, s1))(b) =

(Exec(i, s2))(b),
(vi) for every finite sequence location f holds (Exec(i, s1))(f) =

(Exec(i, s2))(f), and
(vii) ICExec(i,s1) = ICExec(i,s2).

(38) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) I does not refer a,
(ii) for every integer location b such that a 6= b holds s1(b) = s2(b),

(iii) for every finite sequence location f holds s1(f) = s2(f), and
(iv) I is closed on s1 and halting on s1.

Let k be a natural number. Then

78 noriko asamoto

(v) for every integer location b such that a 6= b holds (Computation(s1+·
(I+·Start-At(insloc(0)))))(k)(b) = (Computation(s2+·(I+·Start-At
(insloc(0)))))(k)(b),

(vi) for every finite sequence location f holds (Computation(s1+·(I+·
Start-At(insloc(0)))))(k)(f) = (Computation(s2+·(I+·Start-At
(insloc(0)))))(k)(f),

(vii) IC(Computation(s1+·(I+· Start-At(insloc(0)))))(k) =
IC(Computation(s2+·(I+· Start-At(insloc(0)))))(k) , and

(viii) CurInstr((Computation(s1+·(I+· Start-At(insloc(0)))))(k)) =
CurInstr((Computation(s2+·(I+·Start-At(insloc(0)))))(k)).

(39) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let l be an instruction-location of SCMFSA. Then I is closed on s and
halting on s if and only if I is closed on s+·(I+· Start-At(l)) and halting
on s+·(I+·Start-At(l)).

(40) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) I does not refer a,
(ii) for every integer location b such that a 6= b holds s1(b) = s2(b),
(iii) for every finite sequence location f holds s1(f) = s2(f), and
(iv) I is closed on s1 and halting on s1.

Then I is closed on s2 and halting on s2.

(41) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) for every read-write integer location d such that a 6= d holds s1(d) =
s2(d),

(ii) for every finite sequence location f holds s1(f) = s2(f),
(iii) I does not refer a, and
(iv) I is closed on Initialize(s1) and halting on Initialize(s1).

Then
(v) for every integer location d such that a 6= d holds (IExec(I, s1))(d) =

(IExec(I, s2))(d),
(vi) for every finite sequence location f holds (IExec(I, s1))(f) =

(IExec(I, s2))(f), and
(vii) ICIExec(I,s1) = ICIExec(I,s2).

(42) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a, b be read-write integer locations. Suppose I does not
refer a and J does not refer a. Then

(i) ICIExec(if=0(a,b,I,J),s) = insloc(card I + card J + 5),
(ii) if s(a) = s(b), then for every integer location d such that a 6= d

holds (IExec(if = 0(a, b, I, J), s))(d) = (IExec(I, s))(d) and for ev-
ery finite sequence location f holds (IExec(if = 0(a, b, I, J), s))(f) =
(IExec(I, s))(f), and

(iii) if s(a) 6= s(b), then for every integer location d such that a 6= d
holds (IExec(if = 0(a, b, I, J), s))(d) = (IExec(J, s))(d) and for ev-

conditional branch macro instructions of . . . 79

ery finite sequence location f holds (IExec(if = 0(a, b, I, J), s))(f) =
(IExec(J, s))(f).

(43) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a, b be read-write integer locations. Suppose I does not
refer a and J does not refer a. Then

(i) ICIExec(if>0(a,b,I,J),s) = insloc(card I + card J + 5),
(ii) if s(a) > s(b), then for every integer location d such that a 6= d

holds (IExec(if > 0(a, b, I, J), s))(d) = (IExec(I, s))(d) and for ev-
ery finite sequence location f holds (IExec(if > 0(a, b, I, J), s))(f) =
(IExec(I, s))(f), and

(iii) if s(a) ≤ s(b), then for every integer location d such that a 6= d
holds (IExec(if > 0(a, b, I, J), s))(d) = (IExec(J, s))(d) and for ev-
ery finite sequence location f holds (IExec(if > 0(a, b, I, J), s))(f) =
(IExec(J, s))(f).

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. For-
malized Mathematics, 6(1):59–63, 1997.

[3] Noriko Asamoto. Some multi instructions defined by sequence of instructions of
SCMFSA. Formalized Mathematics, 5(4):615–619, 1996.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[7] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[9] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[10] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[11] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[12] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[13] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[14] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[15] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[18] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.

80 noriko asamoto

[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized
Mathematics, 6(1):29–36, 1997.

[20] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of SCM.

Formalized Mathematics, 5(4):507–512, 1996.
[28] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[29] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[31] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 27, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Bounds in Posets and Relational

Substructures 1

Grzegorz Bancerek
Institute of Mathematics

Polish Academy of Sciences

Summary. Notation and facts necessary to start with the formal-
ization of continuous lattices according to [9] are introduced.

MML Identifier: YELLOW 0.

The notation and terminology used here are introduced in the following papers:
[12], [14], [7], [15], [17], [16], [8], [3], [10], [5], [6], [18], [4], [11], [13], [2], and [1].

1. Reexamination of poset concepts

The scheme RelStrEx deals with a non empty set A and a binary predicate
P, and states that:

There exists a non empty strict relational structure L such that the
carrier of L = A and for all elements a, b of L holds a ≤ b iff P[a, b]

for all values of the parameters.
Let A be a non empty relational structure. Let us observe that A is reflexive

if and only if:

(Def. 1) For every element x of A holds x ≤ x.
Let A be a relational structure. Let us observe that A is transitive if and

only if:

(Def. 2) For all elements x, y, z of A such that x ≤ y and y ≤ z holds x ≤ z.
Let us observe that A is antisymmetric if and only if:

(Def. 3) For all elements x, y of A such that x ≤ y and y ≤ x holds x = y.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

81
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

82 grzegorz bancerek

One can check that every non empty relational structure which is complete
has l.u.b.’s and g.l.b.’s and every non empty reflexive relational structure which
is trivial is also complete, transitive, and antisymmetric.

Let x be a set and let R be a binary relation on {x}. Observe that 〈{x}, R〉
is trivial.

Let us observe that there exists a relational structure which is strict, trivial,
non empty, and reflexive.

Let L be a non empty 1-sorted structure. Observe that there exists a subset
of L which is finite and non empty.

One can prove the following propositions:

(1) Let P1, P2 be relational structures. Suppose the relational structure of
P1 = the relational structure of P2. Let a1, b1 be elements of P1 and a2,
b2 be elements of P2 such that a1 = a2 and b1 = b2. Then

(i) if a1 ≤ b1, then a2 ≤ b2, and
(ii) if a1 < b1, then a2 < b2.

(2) Let P1, P2 be relational structures. Suppose the relational structure of
P1 = the relational structure of P2. Let X be a set, a1 be an element of
P1, and a2 be an element of P2 such that a1 = a2. Then

(i) if X ≤ a1, then X ≤ a2, and
(ii) if X ≥ a1, then X ≥ a2.

(3) Let P1, P2 be non empty relational structures. Suppose the relational
structure of P1 = the relational structure of P2 and P1 is complete. Then
P2 is complete.

(4) Let L be a transitive relational structure and x, y be elements of L.
Suppose x ≤ y. Let X be a set. Then

(i) if y ≤ X, then x ≤ X, and
(ii) if x ≥ X, then y ≥ X.

(5) Let L be a non empty relational structure, X be a set, and x be an
element of L. Then

(i) x ≥ X iff x ≥ X ∩ (the carrier of L), and
(ii) x ≤ X iff x ≤ X ∩ (the carrier of L).

(6) For every relational structure L and for every element a of L holds ∅ ≤ a
and ∅ ≥ a.

(7) Let L be a relational structure and a, b be elements of L. Then
(i) a ≤ {b} iff a ≤ b, and

(ii) a ≥ {b} iff b ≤ a.
(8) Let L be a relational structure and a, b, c be elements of L. Then

(i) a ≤ {b, c} iff a ≤ b and a ≤ c, and
(ii) a ≥ {b, c} iff b ≤ a and c ≤ a.

(9) Let L be a relational structure and X, Y be sets. Suppose X ⊆ Y. Let
x be an element of L. Then

(i) if x ≤ Y, then x ≤ X, and
(ii) if x ≥ Y, then x ≥ X.

bounds in posets and relational substructures 83

(10) Let L be a relational structure, X, Y be sets, and x be an element of
L. Then

(i) if x ≤ X and x ≤ Y, then x ≤ X ∪ Y, and
(ii) if x ≥ X and x ≥ Y, then x ≥ X ∪ Y.

(11) Let L be a non empty transitive relational structure, X be a set, and
x, y be elements of L. If X ≤ x and x ≤ y, then X ≤ y.

(12) Let L be a non empty transitive relational structure, X be a set, and
x, y be elements of L. If X ≥ x and x ≥ y, then X ≥ y.

Let L be a non empty relational structure. Note that ΩL is non empty.

2. Least upper and greatest lower bounds

Let L be a relational structure. We say that L is lower-bounded if and only
if:

(Def. 4) There exists an element x of L such that x ≤ the carrier of L

We say that L is upper-bounded if and only if:

(Def. 5) There exists an element x of L such that x ≥ the carrier of L

Let L be a relational structure. We say that L is bounded if and only if:

(Def. 6) L is lower-bounded upper-bounded.

The following proposition is true

(13) Let P1, P2 be relational structures such that the relational structure of
P1 = the relational structure of P2. Then

(i) if P1 is lower-bounded, then P2 is lower-bounded, and
(ii) if P1 is upper-bounded, then P2 is upper-bounded.

One can verify the following observations:

∗ every non empty relational structure which is complete is also bounded,

∗ every relational structure which is bounded is also lower-bounded and
upper-bounded, and

∗ every relational structure which is lower-bounded and upper-bounded
is also bounded.

One can verify that there exists a non empty poset which is complete.
Let L be a relational structure and let X be a set. We say that sup X exists

in L if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists an element a of L such that
(i) X ≤ a,
(ii) for every element b of L such that X ≤ b holds b ≥ a, and

(iii) for every element c of L such that X ≤ c and for every element b of L
such that X ≤ b holds b ≥ c holds c = a.

We say that inf X exists in L if and only if the condition (Def. 8) is satisfied.

84 grzegorz bancerek

(Def. 8) There exists an element a of L such that

(i) X ≥ a,
(ii) for every element b of L such that X ≥ b holds b ≤ a, and

(iii) for every element c of L such that X ≥ c and for every element b of L
such that X ≥ b holds b ≤ c holds c = a.

One can prove the following propositions:

(14) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X be a set. Then

(i) if sup X exists in L1, then sup X exists in L2, and

(ii) if inf X exists in L1, then inf X exists in L2.

(15) Let L be an antisymmetric relational structure and X be a set. Then
sup X exists in L if and only if there exists an element a of L such that
X ≤ a and for every element b of L such that X ≤ b holds a ≤ b.

(16) Let L be an antisymmetric relational structure and X be a set. Then
inf X exists in L if and only if there exists an element a of L such that
X ≥ a and for every element b of L such that X ≥ b holds a ≥ b.

(17) Let L be a complete antisymmetric non empty relational structure and
X be a set. Then sup X exists in L and inf X exists in L.

(18) Let L be a non empty antisymmetric relational structure and a, b, c be
elements of L. Then c = a t b and sup {a, b} exists in L if and only if
c ≥ a and c ≥ b and for every element d of L such that d ≥ a and d ≥ b
holds c ≤ d.

(19) Let L be a non empty antisymmetric relational structure and a, b, c be
elements of L. Then c = aub and inf {a, b} exists in L if and only if c ≤ a
and c ≤ b and for every element d of L such that d ≤ a and d ≤ b holds
c ≥ d.

(20) Let L be a non empty antisymmetric relational structure. Then L has
l.u.b.’s if and only if for all elements a, b of L holds sup {a, b} exists in L.

(21) Let L be a non empty antisymmetric relational structure. Then L has
g.l.b.’s if and only if for all elements a, b of L holds inf {a, b} exists in L.

(22) Let L be an antisymmetric relational structure with l.u.b.’s and a, b, c
be elements of L. Then c = a t b if and only if the following conditions
are satisfied:

(i) c ≥ a,
(ii) c ≥ b, and

(iii) for every element d of L such that d ≥ a and d ≥ b holds c ≤ d.
(23) Let L be an antisymmetric relational structure with g.l.b.’s and a, b, c

be elements of L. Then c = a u b if and only if the following conditions
are satisfied:

(i) c ≤ a,
(ii) c ≤ b, and

(iii) for every element d of L such that d ≤ a and d ≤ b holds c ≥ d.

bounds in posets and relational substructures 85

(24) Let L be an antisymmetric reflexive relational structure with l.u.b.’s
and a, b be elements of L. Then a = a t b if and only if a ≥ b.

(25) Let L be an antisymmetric reflexive relational structure with g.l.b.’s
and a, b be elements of L. Then a = a u b if and only if a ≤ b.

Let L be a non empty relational structure and let X be a set. The functor⊔
LX yielding an element of L is defined as follows:

(Def. 9) X ≤ ⊔LX and for every element a of L such thatX ≤ a holds
⊔
LX ≤ a

if sup X exists in L.

The functor d−eLX yielding an element of L is defined as follows:

(Def. 10) X ≥ d−eLX and for every element a of L such that X ≥ a holds a ≤ d−eLX
if inf X exists in L.

We now state a number of propositions:

(26) Let L1, L2 be non empty relational structures. Suppose the relational
structure of L1 = the relational structure of L2. Let X be a set. If sup
X exists in L1, then

⊔
L1
X =

⊔
L2
X.

(27) Let L1, L2 be non empty relational structures. Suppose the relational
structure of L1 = the relational structure of L2. Let X be a set. If inf X
exists in L1, then d−eL1X = d−eL2X.

(28) For every complete non empty poset L and for every setX holds
⊔
LX =⊔

(� L) X and d−eLX = d−e(� L)X.

(29) For every complete lattice L and for every set X holds
⊔
LX =⊔

Poset(L) X and d−eLX = d−ePoset(L)X.

(30) Let L be a non empty antisymmetric relational structure, a be an ele-
ment of L, and X be a set. Then a =

⊔
LX and sup X exists in L if and

only if a ≥ X and for every element b of L such that b ≥ X holds a ≤ b.
(31) Let L be a non empty antisymmetric relational structure, a be an ele-

ment of L, and X be a set. Then a = d−eLX and inf X exists in L if and
only if a ≤ X and for every element b of L such that b ≤ X holds a ≥ b.

(32) Let L be a complete antisymmetric non empty relational structure, a
be an element of L, and X be a set. Then a =

⊔
LX if and only if the

following conditions are satisfied:
(i) a ≥ X, and
(ii) for every element b of L such that b ≥ X holds a ≤ b.

(33) Let L be a complete antisymmetric non empty relational structure, a
be an element of L, and X be a set. Then a = d−eLX if and only if the
following conditions are satisfied:

(i) a ≤ X, and
(ii) for every element b of L such that b ≤ X holds a ≥ b.

(34) Let L be a non empty relational structure and X, Y be sets. Suppose
X ⊆ Y and sup X exists in L and sup Y exists in L. Then

⊔
LX ≤

⊔
L Y.

(35) Let L be a non empty relational structure and X, Y be sets. Suppose
X ⊆ Y and inf X exists in L and inf Y exists in L. Then d−eLX ≥ d−eLY.

86 grzegorz bancerek

(36) Let L be a non empty antisymmetric transitive relational structure and
X, Y be sets. Suppose sup X exists in L and sup Y exists in L and sup
X ∪ Y exists in L. Then

⊔
L(X ∪ Y) =

⊔
LX t

⊔
L Y.

(37) Let L be a non empty antisymmetric transitive relational structure and
X, Y be sets. Suppose inf X exists in L and inf Y exists in L and inf
X ∪ Y exists in L. Then d−eL(X ∪ Y) = d−eLX u d−eLY.

Let L be a non empty relational structure and let X be a subset of the
carrier of L. We introduce supX as a synonym of

⊔
LX. We introduce inf X as

a synonym of d−eLX.
We now state several propositions:

(38) Let L be a non empty reflexive antisymmetric relational structure and
a be an element of L. Then sup {a} exists in L and inf {a} exists in L.

(39) Let L be a non empty reflexive antisymmetric relational structure and
a be an element of L. Then sup{a} = a and inf{a} = a.

(40) For every poset L with g.l.b.’s and for all elements a, b of L holds
inf{a, b} = a u b.

(41) For every poset L with l.u.b.’s and for all elements a, b of L holds
sup{a, b} = a t b.

(42) Let L be a lower-bounded antisymmetric non empty relational struc-
ture. Then sup ∅ exists in L and inf the carrier of L exists in L.

(43) Let L be an upper-bounded antisymmetric non empty relational struc-
ture. Then inf ∅ exists in L and sup the carrier of L exists in L.

Let L be a non empty relational structure. The functor ⊥L yielding an
element of L is defined by:

(Def. 11) ⊥L =
⊔
L ∅.

The functor >L yields an element of L and is defined by:

(Def. 12) >L = d−eL∅.
The following propositions are true:

(44) For every lower-bounded antisymmetric non empty relational structure
L and for every element x of L holds ⊥L ≤ x.

(45) For every upper-bounded antisymmetric non empty relational structure
L and for every element x of L holds x ≤ >L.

(46) Let L be a non empty relational structure and X, Y be sets. Suppose
that for every element x of L holds x ≥ X iff x ≥ Y. If sup X exists in L,
then sup Y exists in L.

(47) Let L be a non empty relational structure and X, Y be sets. Suppose
sup X exists in L and for every element x of L holds x ≥ X iff x ≥ Y.
Then

⊔
LX =

⊔
L Y.

(48) Let L be a non empty relational structure and X, Y be sets. Suppose
that for every element x of L holds x ≤ X iff x ≤ Y. If inf X exists in L,
then inf Y exists in L.

bounds in posets and relational substructures 87

(49) Let L be a non empty relational structure and X, Y be sets. Suppose
inf X exists in L and for every element x of L holds x ≤ X iff x ≤ Y.
Then d−eLX = d−eLY.

(50) Let L be a non empty relational structure and X be a set. Then
(i) sup X exists in L iff sup X ∩ (the carrier of L) exists in L, and
(ii) inf X exists in L iff inf X ∩ (the carrier of L) exists in L.

(51) Let L be a non empty relational structure and X be a set. Suppose sup
X exists in L or sup X ∩ (the carrier of L) exists in L. Then

⊔
LX =⊔

L(X ∩ (the carrier of L)).

(52) Let L be a non empty relational structure and X be a set. Suppose
inf X exists in L or inf X ∩ (the carrier of L) exists in L. Then d−eLX =
d−eL(X ∩ (the carrier of L)).

(53) Let L be a non empty relational structure. If for every subset X of L
holds sup X exists in L, then L is complete.

(54) Let L be a non empty poset. Then L has l.u.b.’s if and only if for every
finite non empty subset X of L holds sup X exists in L.

(55) Let L be a non empty poset. Then L has g.l.b.’s if and only if for every
finite non empty subset X of L holds inf X exists in L.

3. Relational substructures

We now state the proposition

(56) For every set X and for every binary relation R on X holds R = R |2X.
Let L be a relational structure. A relational structure is said to be a relational

substructure of L if:

(Def. 13) The carrier of it ⊆ the carrier of L and the internal relation of it ⊆ the
internal relation of L.

Let L be a relational structure and let S be a relational substructure of L.
We say that S is full if and only if:

(Def. 14) The internal relation of S = (the internal relation of L) |2 (the carrier
of S).

Let L be a relational structure. Note that there exists a relational substruc-
ture of L which is strict and full.

Let L be a non empty relational structure. Observe that there exists a
relational substructure of L which is non empty, full, and strict.

One can prove the following two propositions:

(57) Let L be a relational structure and X be a subset of the carrier of L.
Then 〈X, (the internal relation of L)|2(X)〉 is a full relational substructure
of L.

(58) Let L be a relational structure and S1, S2 be full relational substructures
of L. Suppose the carrier of S1 = the carrier of S2. Then the relational
structure of S1 = the relational structure of S2.

88 grzegorz bancerek

Let L be a relational structure and let X be a subset of the carrier of L. The
functor sub(X) yields a full strict relational substructure of L and is defined by:

(Def. 15) The carrier of sub(X) = X.

The following propositions are true:

(59) Let L be a non empty relational structure and S be a non empty re-
lational substructure of L. Then every element of S is an element of
L.

(60) Let L be a relational structure, S be a relational substructure of L, a,
b be elements of L, and x, y be elements of S. If x = a and y = b and
x ≤ y, then a ≤ b.

(61) Let L be a relational structure, S be a full relational substructure of
L, a, b be elements of L, and x, y be elements of S. Suppose x = a and
y = b and a ≤ b and x ∈ the carrier of S and y ∈ the carrier of S. Then
x ≤ y.

(62) Let L be a non empty relational structure, S be a non empty full rela-
tional substructure of L, X be a set, a be an element of L, and x be an
element of S such that x = a. Then

(i) if a ≤ X, then x ≤ X, and
(ii) if a ≥ X, then x ≥ X.

(63) Let L be a non empty relational structure, S be a non empty relational
substructure of L, X be a subset of S, a be an element of L, and x be an
element of S such that x = a. Then

(i) if x ≤ X, then a ≤ X, and
(ii) if x ≥ X, then a ≥ X.
Let L be a reflexive relational structure. Note that every full relational

substructure of L is reflexive.
Let L be a transitive relational structure. Note that every full relational

substructure of L is transitive.
Let L be an antisymmetric relational structure. Note that every full relational

substructure of L is antisymmetric.
Let L be a non empty relational structure and let S be a relational substruc-

ture of L. We say that S is meet-inheriting if and only if the condition (Def. 16)
is satisfied.

(Def. 16) Let x, y be elements of L. Suppose x ∈ the carrier of S and y ∈ the
carrier of S and inf {x, y} exists in L. Then inf{x, y} ∈ the carrier of S.

We say that S is join-inheriting if and only if the condition (Def. 17) is satisfied.

(Def. 17) Let x, y be elements of L. Suppose x ∈ the carrier of S and y ∈ the
carrier of S and sup {x, y} exists in L. Then sup{x, y} ∈ the carrier of S.

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. We say that S is infs-inheriting if and only if:

(Def. 18) For every subset X of S such that inf X exists in L holds d−eLX ∈ the
carrier of S.

We say that S is sups-inheriting if and only if:

bounds in posets and relational substructures 89

(Def. 19) For every subset X of S such that sup X exists in L holds
⊔
LX ∈ the

carrier of S.

Let L be a non empty relational structure. One can check that every rela-
tional substructure of L which is infs-inheriting is also meet-inheriting and every
relational substructure of L which is sups-inheriting is also join-inheriting.

Let L be a non empty relational structure. Note that there exists a relational
substructure of L which is infs-inheriting, sups-inheriting, non empty, full, and
strict.

Now we present two schemes. The scheme InfsInheritingSch concerns a non
empty transitive relational structure A, a non empty full relational substructure
B of A, a subset C of B, and a unary predicate P, and states that:

Inf C exists in B and d−eBC = d−eAC
provided the following conditions are met:

• For every subset Y of B such that P[Y] and inf Y exists in A holds
d−eAY ∈ the carrier of B,

• P[C],
• Inf C exists in A.
The scheme SupsInheritingSch deals with a non empty transitive relational

structure A, a non empty full relational substructure B of A, a subset C of B,
and a unary predicate P, and states that:

Sup C exists in B and
⊔
B C =

⊔
A C

provided the following conditions are satisfied:

• For every subset Y of B such that P[Y] and sup Y exists in A holds⊔
A Y ∈ the carrier of B,

• P[C],
• Sup C exists in A.
One can prove the following propositions:

(64) Let L be a non empty transitive relational structure, S be an infs-
inheriting non empty full relational substructure of L, and X be a subset
of S. If inf X exists in L, then inf X exists in S and d−eSX = d−eLX.

(65) Let L be a non empty transitive relational structure, S be a sups-
inheriting non empty full relational substructure of L, and X be a subset
of S. If sup X exists in L, then sup X exists in S and

⊔
S X =

⊔
LX.

(66) Let L be a non empty transitive relational structure, S be a meet-
inheriting non empty full relational substructure of L, and x, y be elements
of S. Suppose inf {x, y} exists in L. Then inf {x, y} exists in S and
d−eS{x, y} = d−eL{x, y}.

(67) Let L be a non empty transitive relational structure, S be a join-
inheriting non empty full relational substructure of L, and x, y be el-
ements of S. Suppose sup {x, y} exists in L. Then sup {x, y} exists in S
and

⊔
S{x, y} =

⊔
L{x, y}.

Let L be an antisymmetric transitive relational structure with g.l.b.’s. Note
that every non empty meet-inheriting full relational substructure of L has g.l.b.’s.

90 grzegorz bancerek

Let L be an antisymmetric transitive relational structure with l.u.b.’s. Ob-
serve that every non empty join-inheriting full relational substructure of L has
l.u.b.’s.

The following four propositions are true:

(68) Let L be a complete non empty poset, S be an infs-inheriting non
empty full relational substructure of L, and X be a subset of S. Then
d−eSX = d−eLX.

(69) Let L be a complete non empty poset, S be a sups-inheriting non empty
full relational substructure of L, and X be a subset of S. Then

⊔
S X =⊔

LX.

(70) Let L be a poset with g.l.b.’s, S be a meet-inheriting non empty full
relational substructure of L, x, y be elements of S, and a, b be elements
of L. If a = x and b = y, then x u y = a u b.

(71) Let L be a poset with l.u.b.’s, S be a join-inheriting non empty full
relational substructure of L, x, y be elements of S, and a, b be elements
of L. If a = x and b = y, then x t y = a t b.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Filters - Part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[3] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[4] Józef Bia las. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[8] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[10] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[11] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[14] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[17] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

bounds in posets and relational substructures 91

[18] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received September 10, 1996

92

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Directed Sets, Nets, Ideals, Filters, and

Maps 1

Grzegorz Bancerek
Institute of Mathematics

Polish Academy of Sciences

Summary. Notation and facts necessary to start with the formal-
ization of continuous lattices according to [8] are introduced. The article
contains among other things, the definition of directed and filtered sub-
sets of a poset (see 1.1 in [8, p. 2]), the definition of nets on the poset
(see 1.2 in [8, p. 2]), the definition of ideals and filters and the definition
of maps preserving arbitrary and directed sups and arbitrary and filtered
infs (1.9 also in [8, p. 4]). The concepts of semilattices, sup-semiletices
and poset lattices (1.8 in [8, p. 4]) are also introduced. A number of
facts concerning the above notion and including remarks 1.4, 1.5, and
1.10 from [8, pp. 3–5] is presented.

MML Identifier: WAYBEL 0.

The notation and terminology used in this paper are introduced in the following
papers: [13], [15], [16], [18], [17], [7], [5], [6], [11], [4], [10], [19], [3], [2], [12], [1],
[14], and [9].

1. Directed subsets

Let L be a relational structure and let X be a subset of L. We say that X
is directed if and only if:

(Def. 1) For all elements x, y of L such that x ∈ X and y ∈ X there exists an
element z of L such that z ∈ X and x ≤ z and y ≤ z.

We say that X is filtered if and only if:

(Def. 2) For all elements x, y of L such that x ∈ X and y ∈ X there exists an
element z of L such that z ∈ X and z ≤ x and z ≤ y.

1This work has been partially supported by Office of Naval Research Grant N00014-95-1-
1336.

93
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

94 grzegorz bancerek

Next we state two propositions:

(1) Let L be a non empty transitive relational structure and X be a subset
of L. Then X is non empty directed if and only if for every finite subset
Y of X there exists an element x of L such that x ∈ X and x ≥ Y.

(2) Let L be a non empty transitive relational structure and X be a subset
of L. Then X is non empty filtered if and only if for every finite subset
Y of X there exists an element x of L such that x ∈ X and x ≤ Y.

Let L be a relational structure. One can verify that ∅L is directed and filtered.

Let L be a relational structure. Observe that there exists a subset of L which
is directed and filtered.

One can prove the following three propositions:

(3) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2. If X1 = X2 and X1 is directed, then X2 is directed.

(4) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2. If X1 = X2 and X1 is filtered, then X2 is filtered.

(5) For every non empty reflexive relational structure L and for every ele-
ment x of L holds {x} is directed and filtered.

Let L be a non empty reflexive relational structure. Note that there exists a
subset of L which is directed, filtered, non empty, and finite.

Let L be a relational structure with l.u.b.’s. Note that ΩL is directed.

Let L be an upper-bounded non empty relational structure. Observe that
ΩL is directed.

Let L be a relational structure with g.l.b.’s. One can check that ΩL is filtered.

Let L be a lower-bounded non empty relational structure. Note that ΩL is
filtered.

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. We say that S is filtered-infs-inheriting if and only if:

(Def. 3) For every filtered subset X of S such that X 6= ∅ and inf X exists in L
holds d−eLX ∈ the carrier of S.

We say that S is directed-sups-inheriting if and only if:

(Def. 4) For every directed subset X of S such that X 6= ∅ and sup X exists in
L holds

⊔
LX ∈ the carrier of S.

Let L be a non empty relational structure. Observe that every relational
substructure of L which is infs-inheriting is also filtered-infs-inheriting and ev-
ery relational substructure of L which is sups-inheriting is also directed-sups-
inheriting.

Let L be a non empty relational structure. Observe that there exists a
relational substructure of L which is infs-inheriting, sups-inheriting, non empty,
full, and strict.

We now state two propositions:

directed sets, nets, ideals, filters, and . . . 95

(6) Let L be a non empty transitive relational structure, S be a filtered-
infs-inheriting non empty full relational substructure of L, and X be a
filtered subset of S. Suppose X 6= ∅ and inf X exists in L. Then inf X
exists in S and d−eSX = d−eLX.

(7) Let L be a non empty transitive relational structure, S be a directed-
sups-inheriting non empty full relational substructure of L, and X be a
directed subset of S. Suppose X 6= ∅ and sup X exists in L. Then sup X
exists in S and

⊔
S X =

⊔
LX.

2. Nets

Let L1, L2 be non empty 1-sorted structures, let f be a map from L1 into
L2, and let x be an element of L1. Then f(x) is an element of L2.

Let L1, L2 be relational structures and let f be a map from L1 into L2. We
say that f is antitone if and only if:

(Def. 5) For all elements x, y of L1 such that x ≤ y and for all elements a, b of
L2 such that a = f(x) and b = f(y) holds a ≥ b.

Let L be a 1-sorted structure. We consider net structures over L as extensions
of relational structure as systems
〈 a carrier, a internal relation, a mapping 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,
and the mapping is a function from the carrier into the carrier of L.

Let L be a 1-sorted structure, let X be a non empty set, let O be a binary
relation on X, and let F be a function from X into the carrier of L. Note that
〈X,O,F 〉 is non empty.

Let N be a relational structure. We say that N is directed if and only if:

(Def. 6) ΩN is directed.

Let L be a 1-sorted structure. Note that there exists a strict net structure
over L which is non empty, reflexive, transitive, antisymmetric, and directed.

Let L be a 1-sorted structure. A prenet over L is a directed non empty net
structure over L.

Let L be a 1-sorted structure. A net in L is a transitive prenet over L.
Let L be a non empty 1-sorted structure and let N be a non empty net

structure over L. The functor netmap(N,L) yields a map from N into L and is
defined by:

(Def. 7) netmap(N,L) = the mapping of N .

Let i be an element of the carrier of N . The functor N(i) yielding an element
of L is defined by:

(Def. 8) N(i) = (the mapping of N)(i).

Let L be a non empty relational structure and let N be a non empty net
structure over L. We say that N is monotone if and only if:

(Def. 9) netmap(N,L) is monotone.

96 grzegorz bancerek

We say that N is antitone if and only if:

(Def. 10) netmap(N,L) is antitone.

Let L be a non empty 1-sorted structure, let N be a non empty net structure
over L, and let X be a set. We say that N is eventually in X if and only if:

(Def. 11) There exists an element i of N such that for every element j of N such
that i ≤ j holds N(j) ∈ X.

We say that N is often in X if and only if:

(Def. 12) For every element i of N there exists an element j of N such that i ≤ j
and N(j) ∈ X.

Next we state three propositions:

(8) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X, Y be sets such that X ⊆ Y. Then

(i) if N is eventually in X, then N is eventually in Y , and
(ii) if N is often in X, then N is often in Y .

(9) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X be a set. Then N is eventually in X if and only if N
is not often in (the carrier of L) \ (X).

(10) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X be a set. Then N is often in X if and only if N is not
eventually in (the carrier of L) \ (X).

Let L be a non empty relational structure and let N be a non empty net
structure over L. We say that N is eventually-directed if and only if:

(Def. 13) For every element i of N holds N is eventually in {N(j) : j ranges over
elements of N , N(i) ≤ N(j)}.

We say that N is eventually-filtered if and only if:

(Def. 14) For every element i of N holds N is eventually in {N(j) : j ranges over
elements of N , N(i) ≥ N(j)}.

One can prove the following propositions:

(11) Let L be a non empty relational structure and N be a non empty net
structure over L. Then N is eventually-directed if and only if for every
element i of N there exists an element j of N such that for every element
k of N such that j ≤ k holds N(i) ≤ N(k).

(12) Let L be a non empty relational structure and N be a non empty net
structure over L. Then N is eventually-filtered if and only if for every
element i of N there exists an element j of N such that for every element
k of N such that j ≤ k holds N(i) ≥ N(k).

Let L be a non empty relational structure. Observe that every prenet over
L which is monotone is also eventually-directed and every prenet over L which
is antitone is also eventually-filtered.

Let L be a non empty reflexive relational structure. Observe that there exists
a prenet over L which is monotone, antitone, and strict.

directed sets, nets, ideals, filters, and . . . 97

3. Lower and upper subsets

Let L be a relational structure and let X be a subset of the carrier of L. The
functor ↓X yielding a subset of L is defined by:

(Def. 15) For every element x of L holds x ∈ ↓X iff there exists an element y of
L such that y ≥ x and y ∈ X.

The functor ↑X yielding a subset of L is defined as follows:

(Def. 16) For every element x of L holds x ∈ ↑X iff there exists an element y of
L such that y ≤ x and y ∈ X.

One can prove the following three propositions:

(13) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X be a subset of the carrier of
L1 and Y be a subset of the carrier of L2. If X = Y, then ↓X = ↓Y and
↑X = ↑Y.

(14) Let L be a non empty relational structure and X be a subset of L. Then
↓X = {x : x ranges over elements of L,

∨
y : element of L x ≤ y ∧ y ∈ X}.

(15) Let L be a non empty relational structure and X be a subset of L. Then
↑X = {x : x ranges over elements of L,

∨
y : element of L x ≥ y ∧ y ∈ X}.

Let L be a non empty reflexive relational structure and let X be a non empty
subset of the carrier of L. Note that ↓X is non empty and ↑X is non empty.

We now state the proposition

(16) For every reflexive relational structure L and for every subset X of the
carrier of L holds X ⊆ ↓X and X ⊆ ↑X.

Let L be a non empty relational structure and let x be an element of the
carrier of L. The functor ↓x yields a subset of L and is defined by:

(Def. 17) ↓x = ↓{x}.
The functor ↑x yields a subset of L and is defined by:

(Def. 18) ↑x = ↑{x}.
Next we state several propositions:

(17) For every non empty relational structure L and for all elements x, y of
L holds y ∈ ↓x iff y ≤ x.

(18) For every non empty relational structure L and for all elements x, y of
L holds y ∈ ↑x iff x ≤ y.

(19) Let L be a non empty reflexive antisymmetric relational structure and
x, y be elements of the carrier of L. If ↓x = ↓y, then x = y.

(20) Let L be a non empty reflexive antisymmetric relational structure and
x, y be elements of the carrier of L. If ↑x = ↑y, then x = y.

(21) For every non empty transitive relational structure L and for all ele-
ments x, y of L such that x ≤ y holds ↓x ⊆ ↓y.

(22) For every non empty transitive relational structure L and for all ele-
ments x, y of L such that x ≤ y holds ↑y ⊆ ↑x.

98 grzegorz bancerek

Let L be a non empty reflexive relational structure and let x be an element
of the carrier of L. Note that ↓x is non empty and directed and ↑x is non empty
and filtered.

Let L be a relational structure and let X be a subset of L. We say that X
is lower if and only if:

(Def. 19) For all elements x, y of L such that x ∈ X and y ≤ x holds y ∈ X.
We say that X is upper if and only if:

(Def. 20) For all elements x, y of L such that x ∈ X and x ≤ y holds y ∈ X.
Let L be a relational structure. One can check that there exists a subset of

L which is lower and upper.
Next we state several propositions:

(23) For every relational structure L and for every subset X of L holds X is
lower iff ↓X ⊆ X.

(24) For every relational structure L and for every subset X of L holds X is
upper iff ↑X ⊆ X.

(25) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2 such that X1 = X2. Then

(i) if X1 is lower, then X2 is lower, and
(ii) if X1 is upper, then X2 is upper.

(26) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ A holds X is lower.
Then

⋃
A is a lower subset of L.

(27) Let L be a relational structure and X, Y be subsets of L. If X is lower
and Y is lower, then X ∩ Y is lower and X ∪ Y is lower.

(28) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ A holds X is upper.
Then

⋃
A is an upper subset of L.

(29) Let L be a relational structure and X, Y be subsets of L. If X is upper
and Y is upper, then X ∩ Y is upper and X ∪ Y is upper.

Let L be a non empty transitive relational structure and let X be a subset
of L. One can verify that ↓X is lower and ↑X is upper.

Let L be a non empty transitive relational structure and let x be an element
of L. Observe that ↓x is lower and ↑x is upper.

Let L be a non empty relational structure. Observe that ΩL is lower and
upper.

Let L be a non empty relational structure. Note that there exists a subset
of L which is non empty, lower, and upper.

Let L be a non empty reflexive transitive relational structure. Observe that
there exists a subset of L which is non empty, lower, and directed and there
exists a subset of L which is non empty, upper, and filtered.

Let L be a poset with g.l.b.’s and l.u.b.’s. One can verify that there exists a
subset of L which is non empty, directed, filtered, lower, and upper.

directed sets, nets, ideals, filters, and . . . 99

Next we state the proposition

(30) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then X is directed if and only if ↓X is directed.

Let L be a non empty transitive reflexive relational structure and let X be
a directed subset of L. Note that ↓X is directed.

We now state several propositions:

(31) Let L be a non empty transitive reflexive relational structure, X be a
subset of L, and x be an element of L. Then x ≥ X if and only if x ≥ ↓X.

(32) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then sup X exists in L if and only if sup ↓X exists in L.

(33) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. If sup X exists in L, then supX = sup↓X.

(34) For every non empty poset L and for every element x of L holds sup ↓x
exists in L and sup↓x = x.

(35) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then X is filtered if and only if ↑X is filtered.

Let L be a non empty transitive reflexive relational structure and let X be
a filtered subset of L. Note that ↑X is filtered.

One can prove the following four propositions:

(36) Let L be a non empty transitive reflexive relational structure, X be a
subset of L, and x be an element of L. Then x ≤ X if and only if x ≤ ↑X.

(37) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then inf X exists in L if and only if inf ↑X exists in L.

(38) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. If inf X exists in L, then inf X = inf↑X.

(39) For every non empty poset L and for every element x of L holds inf ↑x
exists in L and inf↑x = x.

4. Ideals and filters

Let L be a non empty reflexive transitive relational structure. An ideal of L
is a directed lower non empty subset of L. A filter of L is a filtered upper non
empty subset of L.

Next we state several propositions:

(40) Let L be an antisymmetric relational structure with l.u.b.’s and X be
a lower subset of L. Then X is directed if and only if for all elements x,
y of L such that x ∈ X and y ∈ X holds x t y ∈ X.

(41) Let L be an antisymmetric relational structure with g.l.b.’s and X be
an upper subset of L. Then X is filtered if and only if for all elements x,
y of L such that x ∈ X and y ∈ X holds x u y ∈ X.

100 grzegorz bancerek

(42) Let L be a poset with l.u.b.’s and X be a non empty lower subset of L.
Then X is directed if and only if for every finite subset Y of X such that
Y 6= ∅ holds

⊔
L Y ∈ X.

(43) Let L be a poset with g.l.b.’s and X be a non empty upper subset of L.
Then X is filtered if and only if for every finite subset Y of X such that
Y 6= ∅ holds d−eLY ∈ X.

(44) Let L be a non empty antisymmetric relational structure. Suppose L
has l.u.b.’s or g.l.b.’s. Let X, Y be subsets of L. Suppose X is lower
directed and Y is lower directed. Then X ∩ Y is directed.

(45) Let L be a non empty antisymmetric relational structure. Suppose L
has l.u.b.’s or g.l.b.’s. Let X, Y be subsets of L. Suppose X is upper
filtered and Y is upper filtered. Then X ∩ Y is filtered.

(46) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that

(i) for every subset X of L such that X ∈ A holds X is directed, and
(ii) for all subsets X, Y of L such that X ∈ A and Y ∈ A there exists a

subset Z of L such that Z ∈ A and X ∪ Y ⊆ Z.
Let X be a subset of L. If X =

⋃
A, then X is directed.

(47) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that

(i) for every subset X of L such that X ∈ A holds X is filtered, and
(ii) for all subsets X, Y of L such that X ∈ A and Y ∈ A there exists a

subset Z of L such that Z ∈ A and X ∪ Y ⊆ Z.
Let X be a subset of L. If X =

⋃
A, then X is filtered.

Let L be a non empty reflexive transitive relational structure and let I be an
ideal of L. We say that I is principal if and only if:

(Def. 21) There exists an element x of L such that x ∈ I and x ≥ I.
Let L be a non empty reflexive transitive relational structure and let F be a

filter of L. We say that F is principal if and only if:

(Def. 22) There exists an element x of L such that x ∈ F and x ≤ F.
Next we state two propositions:

(48) Let L be a non empty reflexive transitive relational structure and I be
an ideal of L. Then I is principal if and only if there exists an element x
of L such that I = ↓x.

(49) Let L be a non empty reflexive transitive relational structure and F be
a filter of L. Then F is principal if and only if there exists an element x
of L such that F = ↑x.

Let L be a non empty reflexive transitive relational structure. The functor
Ids(L) yields a set and is defined by:

(Def. 23) Ids(L) = {X : X ranges over ideals of L}.
The functor Filt(L) yields a set and is defined as follows:

(Def. 24) Filt(L) = {X : X ranges over filters of L}.

directed sets, nets, ideals, filters, and . . . 101

Let L be a non empty reflexive transitive relational structure. The functor
Ids0(L) yielding a set is defined by:

(Def. 25) Ids0(L) = Ids(L) ∪ {∅}.
The functor Filt0(L) yielding a set is defined as follows:

(Def. 26) Filt0(L) = Filt(L) ∪ {∅}.
Let L be a non empty relational structure and let X be a subset of the carrier

of L. The functor finsups(X) yielding a subset of L is defined as follows:

(Def. 27) finsups(X) = {⊔L Y : Y ranges over finite subsets of X, sup Y exists
in L}.

The functor fininfs(X) yielding a subset of L is defined as follows:

(Def. 28) fininfs(X) = {d−eLY : Y ranges over finite subsets of X, inf Y exists in
L}.

Let L be a non empty antisymmetric lower-bounded relational structure and
let X be a subset of the carrier of L. Note that finsups(X) is non empty.

Let L be a non empty antisymmetric upper-bounded relational structure and
let X be a subset of the carrier of L. Note that fininfs(X) is non empty.

Let L be a non empty reflexive antisymmetric relational structure and let X
be a non empty subset of the carrier of L. Note that finsups(X) is non empty
and fininfs(X) is non empty.

One can prove the following two propositions:

(50) Let L be a non empty reflexive antisymmetric relational structure andX
be a subset of the carrier of L. Then X ⊆ finsups(X) and X ⊆ fininfs(X).

(51) Let L be a non empty transitive relational structure andX, F be subsets
of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that sup Y exists in L and x =

⊔
L Y, and

(iii) for every finite subset Y of X such that Y 6= ∅ holds
⊔
L Y ∈ F.

Then F is directed.

Let L be a poset with l.u.b.’s and let X be a subset of the carrier of L. Note
that finsups(X) is directed.

The following propositions are true:

(52) Let L be a non empty transitive reflexive relational structure and X, F
be subsets of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that sup Y exists in L and x =

⊔
L Y, and

(iii) for every finite subset Y of X such that Y 6= ∅ holds
⊔
L Y ∈ F.

Let x be an element of L. Then x ≥ X if and only if x ≥ F.
(53) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that

102 grzegorz bancerek

(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that sup Y exists in L and x =

⊔
L Y, and

(iii) for every finite subset Y of X such that Y 6= ∅ holds
⊔
L Y ∈ F.

Then sup X exists in L if and only if sup F exists in L.

(54) Let L be a non empty transitive reflexive relational structure and X, F
be subsets of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that sup Y exists in L and x =

⊔
L Y,

(iii) for every finite subset Y of X such that Y 6= ∅ holds
⊔
L Y ∈ F, and

(iv) sup X exists in L.
Then supF = supX.

(55) Let L be a poset with l.u.b.’s and X be a subset of L. If sup X exists
in L or L is complete, then supX = sup finsups(X).

(56) Let L be a non empty transitive relational structure andX, F be subsets
of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = d−eLY, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds d−eLY ∈ F.

Then F is filtered.

Let L be a poset with g.l.b.’s and let X be a subset of the carrier of L. One
can check that fininfs(X) is filtered.

The following propositions are true:

(57) Let L be a non empty transitive reflexive relational structure and X, F
be subsets of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = d−eLY, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds d−eLY ∈ F.

Let x be an element of L. Then x ≤ X if and only if x ≤ F.
(58) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that inf Y exists in L and x = d−eLY, and

(iii) for every finite subset Y of X such that Y 6= ∅ holds d−eLY ∈ F.
Then inf X exists in L if and only if inf F exists in L.

(59) Let L be a non empty transitive reflexive relational structure and X, F
be subsets of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,

directed sets, nets, ideals, filters, and . . . 103

(ii) for every element x of L such that x ∈ F there exists a finite subset Y
of X such that inf Y exists in L and x = d−eLY,

(iii) for every finite subset Y of X such that Y 6= ∅ holds d−eLY ∈ F, and

(iv) inf X exists in L.

Then inf F = inf X.

(60) Let L be a poset with g.l.b.’s and X be a subset of L. If inf X exists
in L or L is complete, then inf X = inf fininfs(X).

(61) Let L be a poset with l.u.b.’s and X be a subset of the carrier of L.
Then X ⊆ ↓finsups(X) and for every ideal I of L such that X ⊆ I holds
↓finsups(X) ⊆ I.

(62) Let L be a poset with g.l.b.’s and X be a subset of the carrier of L.
Then X ⊆ ↑fininfs(X) and for every filter F of L such that X ⊆ F holds
↑fininfs(X) ⊆ F.

5. Chains

Let L be a non empty relational structure. We say that L is connected if
and only if:

(Def. 29) For all elements x, y of L holds x ≤ y or y ≤ x.
Let us observe that every non empty reflexive relational structure which is

trivial is also connected.

Let us observe that there exists a non empty poset which is connected.

A chain is a connected non empty poset.

Let L be a chain. Observe that L � is connected.

6. Semilattices

A semilattice is a poset with g.l.b.’s. A sup-semilattice is a poset with l.u.b.’s.
A lattice is a poset with g.l.b.’s and l.u.b.’s.

The following two propositions are true:

(63) Let L be a semilattice and X be an upper non empty subset of L. Then
X is a filter of L if and only if sub(X) is meet-inheriting.

(64) Let L be a sup-semilattice and X be a lower non empty subset of L.
Then X is an ideal of L if and only if sub(X) is join-inheriting.

104 grzegorz bancerek

7. Maps

Let S, T be non empty relational structures, let f be a map from S into T ,
and let X be a subset of S. We say that f preserves inf of X if and only if:

(Def. 30) If inf X exists in S, then inf f ◦X exists in T and inf(f ◦X) = f(infX).

We say that f preserves sup of X if and only if:

(Def. 31) If sup X exists in S, then sup f ◦X exists in T and sup(f ◦X) =
f(supX).

We now state the proposition

(65) Let S1, S2, T1, T2 be non empty relational structures. Suppose that
(i) the relational structure of S1 = the relational structure of T1, and

(ii) the relational structure of S2 = the relational structure of T2.
Let f be a map from S1 into S2 and g be a map from T1 into T2. Suppose
f = g. Let X be a subset of S1 and Y be a subset of T1 such that X = Y.
Then

(iii) if f preserves sup of X, then g preserves sup of Y , and
(iv) if f preserves inf of X, then g preserves inf of Y .

Let L1, L2 be non empty relational structures and let f be a map from L1

into L2. We say that f is infs-preserving if and only if:

(Def. 32) For every subset X of L1 holds f preserves inf of X.

We say that f is sups-preserving if and only if:

(Def. 33) For every subset X of L1 holds f preserves sup of X.

We say that f is meet-preserving if and only if:

(Def. 34) For all elements x, y of L1 holds f preserves inf of {x, y}.
We say that f is join-preserving if and only if:

(Def. 35) For all elements x, y of L1 holds f preserves sup of {x, y}.
We say that f is filtered-infs-preserving if and only if:

(Def. 36) For every subset X of L1 such that X is non empty filtered holds f
preserves inf of X.

We say that f is directed-sups-preserving if and only if:

(Def. 37) For every subset X of L1 such that X is non empty directed holds f
preserves sup of X.

Let L1, L2 be non empty relational structures. Note that every map from
L1 into L2 which is infs-preserving is also filtered-infs-preserving and meet-
preserving and every map from L1 into L2 which is sups-preserving is also
directed-sups-preserving and join-preserving.

Let S, T be relational structures and let f be a map from S into T . We say
that f is isomorphic if and only if:

(Def. 38) (i) f is one-to-one monotone and there exists a map g from T into S
such that g = f−1 and g is monotone if S is non empty and T is non
empty,

directed sets, nets, ideals, filters, and . . . 105

(ii) S is empty and T is empty, otherwise.

The following proposition is true

(66) Let S, T be non empty relational structures and f be a map from S
into T . Then f is isomorphic if and only if the following conditions are
satisfied:

(i) f is one-to-one,

(ii) rng f = the carrier of T , and

(iii) for all elements x, y of S holds x ≤ y iff f(x) ≤ f(y).

Let S, T be non empty relational structures. Note that every map from S
into T which is isomorphic is also one-to-one and monotone.

We now state several propositions:

(67) Let S, T be non empty relational structures and f be a map from S
into T . Suppose f is isomorphic. Then f−1 is a map from T into S and
rng(f−1) = the carrier of S.

(68) Let S, T be non empty relational structures and f be a map from S into
T . Suppose f is isomorphic. Let g be a map from T into S. If g = f−1,
then g is isomorphic.

(69) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every filterX of S holds f preserves inf of X. Then f is monotone.

(70) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every filter X of S holds f preserves inf of X. Then f is filtered-
infs-preserving.

(71) Let S be a semilattice, T be a non empty poset, and f be a map from
S into T . Suppose that

(i) for every finite subset X of S holds f preserves inf of X, and

(ii) for every non empty filtered subset X of S holds f preserves inf of X.

Then f is infs-preserving.

(72) Let S, T be non empty posets and f be a map from S into T . Sup-
pose that for every ideal X of S holds f preserves sup of X. Then f is
monotone.

(73) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every ideal X of S holds f preserves sup of X. Then f is directed-
sups-preserving.

(74) Let S be a sup-semilattice, T be a non empty poset, and f be a map
from S into T . Suppose that

(i) for every finite subset X of S holds f preserves sup of X, and

(ii) for every non empty directed subset X of S holds f preserves sup of
X.

Then f is sups-preserving.

106 grzegorz bancerek

8. Completeness wrt directed sets

Let L be a non empty reflexive relational structure. We say that L is up-
complete if and only if the condition (Def. 39) is satisfied.

(Def. 39) Let X be a non empty directed subset of L. Then there exists an
element x of L such that x ≥ X and for every element y of L such that
y ≥ X holds x ≤ y.

One can verify that every reflexive relational structure with l.u.b.’s which is
up-complete is also upper-bounded.

The following proposition is true

(75) Let L be a non empty reflexive antisymmetric relational structure. Then
L is up-complete if and only if for every non empty directed subset X of
L holds sup X exists in L.

Let L be a non empty reflexive relational structure. We say that L is inf-
complete if and only if the condition (Def. 40) is satisfied.

(Def. 40) Let X be a non empty subset of L. Then there exists an element x of
L such that x ≤ X and for every element y of L such that y ≤ X holds
x ≥ y.

Next we state the proposition

(76) Let L be a non empty reflexive antisymmetric relational structure. Then
L is inf-complete if and only if for every non empty subset X of L holds
inf X exists in L.

One can check the following observations:

∗ every non empty reflexive relational structure which is complete is also
up-complete and inf-complete,

∗ every non empty reflexive relational structure which is inf-complete is
also lower-bounded, and

∗ every non empty poset which is up-complete and lower-bounded and
has l.u.b.’s is also complete.

Let us note that every non empty reflexive antisymmetric relational structure
which is inf-complete has g.l.b.’s.

Let us note that every non empty reflexive antisymmetric upper-bounded
relational structure which is inf-complete has l.u.b.’s.

One can check that there exists a lattice which is complete and strict.

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Filters - Part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[4] Józef Bia las. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.

directed sets, nets, ideals, filters, and . . . 107

[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[8] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[9] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[10] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[12] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[14] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[15] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

[19] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received September 12, 1996

108

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Fixpoints in Complete Lattices 1

Piotr Rudnicki
University of Alberta

Edmonton

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. Theorem (5) states that if an iterate of a function
has a unique fixpoint then it is also the fixpoint of the function. It has
been included here in response to P. Andrews claim that such a proof
in set theory takes thousands of lines when one starts with the axioms.
While probably true, such a claim is misleading about the usefulness of
proof-checking systems based on set theory.

Next, we prove the existence of the least and the greatest fixpoints
for ⊆-monotone functions from a powerset to a powerset of a set. Scheme
Knaster is the Knaster theorem about the existence of fixpoints, cf. [14].
Theorem (11) is the Banach decomposition theorem which is then used
to prove the Schröder-Bernstein theorem (12) (we followed Paulson’s de-
velopment of these theorems in Isabelle [16]). It is interesting to note
that the last theorem when stated in Mizar in terms of cardinals becomes
trivial to prove as in the Mizar development of cardinals the ≤ relation
is synonymous with ⊆.

Section 3 introduces the notion of the lattice of a lattice subset pro-
vided the subset has lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every
monotone function f over a complete lattice L has a complete lattice of
fixpoints. As the consequence of this theorem we get the existence of the
least fixpoint equal to fβ(⊥L) for some ordinal β with cardinality not
bigger than the cardinality of the carrier of L, cf. [14], and analogously

the existence of the greatest fixpoint equal to fβ(>L).
Section 5 connects the fixpoint properties of monotone functions over

complete lattices with the fixpoints of ⊆-monotone functions over the
lattice of subsets of a set (Boolean lattice).

MML Identifier: KNASTER.

The papers [19], [21], [13], [4], [22], [24], [23], [10], [11], [9], [18], [15], [12], [17],
[8], [5], [7], [1], [3], [25], [2], [6], and [20] provide the notation and terminology
for this paper.

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

109
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

110 piotr rudnicki and andrzej trybulec

1. Preliminaries

In this paper f , g, h will be functions.
The following three propositions are true:

(1) If f is one-to-one and g is one-to-one and rng f misses rng g, then f+·g
is one-to-one.

(2) If dom f misses dom g, then f ∪ g is a function.

(3) Suppose h = f ∪ g and dom f misses dom g. Then h is one-to-one if and
only if the following conditions are satisfied:

(i) f is one-to-one,
(ii) g is one-to-one, and
(iii) rng f misses rng g.

2. Fixpoints in general

Let x be a set and let f be a function. We say that x is a fixpoint of f if and
only if:

(Def. 1) x ∈ dom f and x = f(x).

Let A be a non empty set, let a be an element of A, and let f be a function
from A into A. Let us observe that a is a fixpoint of f if and only if:

(Def. 2) a = f(a).

For simplicity we follow a convention: x, y, X will be sets, A will be a non
empty set, n will be a natural number, and f will be a function from X into X.

Next we state two propositions:

(4) If x is a fixpoint of fn, then f(x) is a fixpoint of fn.

(5) If there exists n such that x is a fixpoint of f n and for every y such that
y is a fixpoint of fn holds x = y, then x is a fixpoint of f .

Let A, B be non empty sets and let f be a function from A into B. Let us
observe that f is ⊆-monotone if and only if:

(Def. 3) For all elements x, y of A such that x ⊆ y holds f(x) ⊆ f(y).

Let A be a set and let B be a non empty set. Observe that there exists a
function from A into B which is ⊆-monotone.

Let X be a set and let f be a ⊆-monotone function from 2X into 2X . The
functor lfp(X, f) yields a subset of X and is defined by:

(Def. 4) lfp(X, f) =
⋂{h : h ranges over subsets of X, f(h) ⊆ h}.

The functor gfp(X, f) yielding a subset of X is defined by:

(Def. 5) gfp(X, f) =
⋃{h : h ranges over subsets of X, h ⊆ f(h)}.

In the sequel f will be a ⊆-monotone function from 2X into 2X and S will
be a subset of X.

One can prove the following propositions:

fixpoints in complete lattices 111

(6) lfp(X, f) is a fixpoint of f .

(7) gfp(X, f) is a fixpoint of f .

(8) If f(S) ⊆ S, then lfp(X, f) ⊆ S.
(9) If S ⊆ f(S), then S ⊆ gfp(X, f).

(10) If S is a fixpoint of f , then lfp(X, f) ⊆ S and S ⊆ gfp(X, f).

The scheme Knaster deals with a set A and a unary functor F yielding a set,
and states that:

There exists a set D such that F(D) = D and D ⊆ A
provided the parameters meet the following requirements:
• For all sets X, Y such that X ⊆ Y holds F(X) ⊆ F(Y),
• F(A) ⊆ A.
In the sequel X, Y are non empty sets, f is a function from X into Y , and

g is a function from Y into X.
We now state several propositions:

(11) There exist sets X1, X2, Y1, Y2 such that X1 misses X2 and Y1 misses
Y2 and X1 ∪X2 = X and Y1 ∪ Y2 = Y and f ◦X1 = Y1 and g◦Y2 = X2.

(12) If f is one-to-one and g is one-to-one, then there exists function from
X into Y which is bijective.

(13) If there exists f which is bijective, then X ≈ Y.
(14) If f is one-to-one and g is one-to-one, then X ≈ Y.
(15) For all cardinal numbers N , M such that N ≤ M and M ≤ N holds

N = M.

3. The lattice of lattice subset

Let L be a non empty lattice structure, let f be a unary operation on L, and
let x be an element of L. Then f(x) is an element of L.

Let L be a lattice, let f be a function from the carrier of L into the carrier
of L, let x be an element of the carrier of L, and let O be an ordinal number.
The functor fOt (x) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequence L0 such that
(i) fOt (x) = lastL0,
(ii) domL0 = succO,

(iii) L0(∅) = x,
(iv) for every ordinal number C and for arbitrary y such that succC ∈

succO and y = L0(C) holds L0(succC) = f(y), and
(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 =
L0 � C holds L0(C) =

⊔
L rngL1.

The functor fOu (x) is defined by the condition (Def. 7).

112 piotr rudnicki and andrzej trybulec

(Def. 7) There exists a transfinite sequence L0 such that
(i) fOu (x) = lastL0,

(ii) domL0 = succO,
(iii) L0(∅) = x,
(iv) for every ordinal number C and for arbitrary y such that succC ∈

succO and y = L0(C) holds L0(succC) = f(y), and
(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 =
L0 � C holds L0(C) = d−eL rngL1.

For simplicity we adopt the following rules: L will denote a lattice, f will
denote a function from the carrier of L into the carrier of L, x will denote an
element of the carrier of L, O, O1, O2 will denote ordinal numbers, and T will
denote a transfinite sequence.

One can prove the following propositions:

(16) f∅t(x) = x.

(17) f∅u(x) = x.

(18) f succO
t (x) = f(fOt (x)).

(19) f succO
u (x) = f(fOu (x)).

(20) Suppose O 6= ∅ and O is a limit ordinal number and domT = O and
for every ordinal number A such that A ∈ O holds T (A) = fAt (x). Then
fOt (x) =

⊔
L rng T.

(21) Suppose O 6= ∅ and O is a limit ordinal number and domT = O and
for every ordinal number A such that A ∈ O holds T (A) = fAu (x). Then
fOu (x) = d−eL rng T.

(22) fn(x) = fnt(x).

(23) fn(x) = fnu(x).

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then fOt (a) is an
element of L.

Let L be a lattice, let f be a unary operation on the carrier of L, let a be an
element of the carrier of L, and let O be an ordinal number. Then fOu (a) is an
element of L.

Let L be a non empty lattice structure and let P be a subset of L. We say
that P has l.u.b.’s if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let x, y be elements of L. Suppose x ∈ P and y ∈ P. Then there exists
an element z of L such that z ∈ P and x v z and y v z and for every
element z′ of L such that z′ ∈ P and x v z′ and y v z′ holds z v z′.

We say that P has g.l.b.’s if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y be elements of L. Suppose x ∈ P and y ∈ P. Then there exists
an element z of L such that z ∈ P and z v x and z v y and for every
element z′ of L such that z′ ∈ P and z′ v x and z′ v y holds z′ v z.

Let L be a lattice. One can verify that there exists a subset of L which is
non empty and has l.u.b.’s and g.l.b.’s.

fixpoints in complete lattices 113

Let L be a lattice and let P be a non empty subset of L with l.u.b.’s and
g.l.b.’s. The functor � P yields a strict lattice and is defined by the conditions
(Def. 10).

(Def. 10) (i) The carrier of � P = P, and

(ii) for all elements x, y of � P there exist elements x′, y′ of L such that
x = x′ and y = y′ and x v y iff x′ v y′.

4. Complete lattices

Let us mention that every lattice which is complete is also bounded.

In the sequel L will be a complete lattice, f will be a monotone unary oper-
ation on L, and a, b will be elements of L.

The following propositions are true:

(24) There exists a which is a fixpoint of f .

(25) For every a such that a v f(a) and for every O holds a v fOt (a).

(26) For every a such that f(a) v a and for every O holds fOu (a) v a.
(27) For every a such that a v f(a) and for all O1, O2 such that O1 ⊆ O2

holds fO1t (a) v fO2t (a).

(28) For every a such that f(a) v a and for all O1, O2 such that O1 ⊆ O2

holds fO2u (a) v fO1u (a).

(29) For every a such that a v f(a) and for all O1, O2 such that O1 ⊆ O2

and O1 6= O2 and fO2t (a) is not a fixpoint of f holds fO1t (a) 6= fO2t (a).

(30) For every a such that f(a) v a and for all O1, O2 such that O1 ⊆ O2

and O1 6= O2 and fO2u (a) is not a fixpoint of f holds fO1u (a) 6= fO2u (a).

(31) If a v f(a) and fO1t (a) is a fixpoint of f , then for every O2 such that

O1 ⊆ O2 holds fO1t (a) = fO2t (a).

(32) If f(a) v a and fO1u (a) is a fixpoint of f , then for every O2 such that

O1 ⊆ O2 holds fO1u (a) = fO2u (a).

(33) For every a such that a v f(a) there exists O such that O ≤
the carrier of L and fOt (a) is a fixpoint of f .

(34) For every a such that f(a) v a there exists O such that O ≤
the carrier of L and fOu (a) is a fixpoint of f .

(35) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f . Then

there exists O such that O ≤ the carrier of L and fOt (a t b) is a fixpoint
of f and a v fOt (a t b) and b v fOt (a t b).

(36) Given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f . Then

there exists O such that O ≤ the carrier of L and fOu (a u b) is a fixpoint
of f and fOu (a u b) v a and fOu (a u b) v b.

114 piotr rudnicki and andrzej trybulec

(37) If a v f(a) and a v b and b is a fixpoint of f , then for every O2 holds

fO2t (a) v b.
(38) If f(a) v a and b v a and b is a fixpoint of f , then for every O2 holds

b v fO2u (a).

Let L be a complete lattice and let f be a unary operation on L. Let us
assume that f is monotone. The functor FixPoints(f) yielding a strict lattice is
defined by:

(Def. 11) There exists a non empty subset P of L with l.u.b.’s and g.l.b.’s such
that P = {x : x ranges over elements of L, x is a fixpoint of f} and
FixPoints(f) = � P .

One can prove the following propositions:

(39) The carrier of FixPoints(f) = {x : x ranges over elements of L, x is a
fixpoint of f}.

(40) The carrier of FixPoints(f) ⊆ the carrier of L.

(41) a ∈ the carrier of FixPoints(f) iff a is a fixpoint of f .

(42) For all elements x, y of FixPoints(f) and for all a, b such that x = a
and y = b holds x v y iff a v b.

(43) FixPoints(f) is complete.

Let us consider L, f . The functor lfp(f) yields an element of L and is defined
as follows:

(Def. 12) lfp(f) = f
(the carrier of L)+

t (⊥L).

The functor gfp(f) yielding an element of L is defined as follows:

(Def. 13) gfp(f) = f
(the carrier of L)+

u (>L).

Next we state several propositions:

(44) lfp(f) is a fixpoint of f and there exists O such that O ≤
the carrier of L and fOt (⊥L) = lfp(f).

(45) gfp(f) is a fixpoint of f and there exists O such that O ≤
the carrier of L and fOu (>L) = gfp(f).

(46) If a is a fixpoint of f , then lfp(f) v a and a v gfp(f).

(47) If f(a) v a, then lfp(f) v a.
(48) If a v f(a), then a v gfp(f).

5. Boolean lattices

In the sequel f is a monotone unary operation on the lattice of subsets of A.
Let A be a set. One can verify that the lattice of subsets of A is complete.
One can prove the following propositions:

(49) Let f be a unary operation on the lattice of subsets of A. Then f is
monotone if and only if f is ⊆-monotone.

fixpoints in complete lattices 115

(50) There exists a ⊆-monotone function g from 2A into 2A such that
lfp(A, g) = lfp(f).

(51) There exists a ⊆-monotone function g from 2A into 2A such that
gfp(A, g) = gfp(f).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Formalized

Mathematics, 5(3):381–393, 1996.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[6] Grzegorz Bancerek. Quantales. Formalized Mathematics, 5(1):85–91, 1996.
[7] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[8] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[9] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.

[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[11] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[12] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[13] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[14] J.-L. Lassez, V. L. Nguyen, and E. A Sonenberg. Fixed point theorems and semantics:
a folk tale. Information Processing Letters, 14(3):112–116, 1982.

[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[16] Lawrence C. Paulson. Set theory for verification: II, induction and recursion. Journal

of Automated Reasoning, 15(2):167–215, 1995.
[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[21] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

[25] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received September 16, 1996

116

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Boolean Posets, Posets under Inclusion and

Products of Relational Structures 1

Adam Grabowski
Warsaw University

Bia lystok

Robert Milewski
Warsaw University

Bia lystok

Summary. In the paper some notions useful in formalization of
[11] are introduced, e.g. the definition of the poset of subsets of a set
with inclusion as an ordering relation. Using the theory of many sorted
sets authors formulate the definition of product of relational structures.

MML Identifier: YELLOW 1.

The terminology and notation used in this paper are introduced in the following
articles: [19], [21], [9], [22], [24], [23], [16], [6], [7], [5], [10], [4], [13], [20], [25],
[12], [2], [17], [15], [18], [3], [14], [1], and [8].

1. Boolean Posets and Posets under Inclusion

In this paper X will be a set.
Let L be a lattice. Observe that Poset(L) has l.u.b.’s and g.l.b.’s.
Let L be an upper-bounded lattice. Note that Poset(L) is upper-bounded.
Let L be a lower-bounded lattice. One can check that Poset(L) is lower-

bounded.
Let L be a complete lattice. One can verify that Poset(L) is complete.
Let X be a set. Then ⊆X is an order in X.
Let X be a set. The functor 〈X,⊆〉 yielding a strict relational structure is

defined as follows:

(Def. 1) 〈X,⊆〉 = 〈X,⊆X〉.
Let X be a set. Observe that 〈X,⊆〉 is reflexive antisymmetric and transitive.
Let X be a non empty set. Observe that 〈X,⊆〉 is non empty.
We now state the proposition

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

117
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

118 adam grabowski and robert milewski

(1) The carrier of 〈X,⊆〉 = X and the internal relation of 〈X,⊆〉 = ⊆
X .

Let X be a set. The functor 2X⊆ yielding a strict relational structure is defined
by:

(Def. 2) 2X⊆ = Poset(the lattice of subsets of X).

Let X be a set. Note that 2X⊆ is non empty reflexive antisymmetric and
transitive.

Let X be a set. Note that 2X⊆ is complete.

Next we state a number of propositions:

(2) For all elements x, y of 2X⊆ holds x ≤ y iff x ⊆ y.
(3) For every non empty set X and for all elements x, y of 〈X,⊆〉 holds

x ≤ y iff x ⊆ y.
(4) 2X⊆ = 〈2X ,⊆〉.
(5) For every subset Y of 2X holds 〈Y,⊆〉 is a full relational substructure

of 2X⊆ .

(6) For every non empty set X such that 〈X,⊆〉 has l.u.b.’s and for all
elements x, y of 〈X,⊆〉 holds x ∪ y ⊆ x t y.

(7) For every non empty set X such that 〈X,⊆〉 has g.l.b.’s and for all
elements x, y of 〈X,⊆〉 holds x u y ⊆ x ∩ y.

(8) For every non empty set X and for all elements x, y of 〈X,⊆〉 such that
x ∪ y ∈ X holds x t y = x ∪ y.

(9) For every non empty set X and for all elements x, y of 〈X,⊆〉 such that
x ∩ y ∈ X holds x u y = x ∩ y.

(10) Let L be a relational structure. Suppose that for all elements x, y of L
holds x ≤ y iff x ⊆ y. Then the internal relation of L = ⊆

the carrier of L.

(11) For every non empty set X such that for all sets x, y such that x ∈ X
and y ∈ X holds x ∪ y ∈ X holds 〈X,⊆〉 has l.u.b.’s.

(12) For every non empty set X such that for all sets x, y such that x ∈ X
and y ∈ X holds x ∩ y ∈ X holds 〈X,⊆〉 has g.l.b.’s.

(13) For every non empty set X such that ∅ ∈ X holds ⊥〈X,⊆〉 = ∅.
(14) For every non empty set X such that

⋃
X ∈ X holds >〈X,⊆〉 =

⋃
X.

(15) For every non empty set X such that 〈X,⊆〉 is upper-bounded holds⋃
X ∈ X.

(16) For every non empty set X such that 〈X,⊆〉 is lower-bounded holds⋂
X ∈ X.

(17) For all elements x, y of 2X⊆ holds x t y = x ∪ y and x u y = x ∩ y.
(18) ⊥2X⊆

= ∅.
(19) >2X⊆

= X.

(20) For every non empty subset Y of 2X⊆ holds inf Y =
⋂
Y.

(21) For every subset Y of 2X⊆ holds supY =
⋃
Y.

boolean posets, posets under inclusion and . . . 119

(22) For every non empty topological space T and for every subset X of 〈the
topology of T , ⊆〉 holds supX =

⋃
X.

(23) For every non empty topological space T holds ⊥〈the topology of T , ⊆〉 = ∅.
(24) For every non empty topological space T holds >〈the topology of T , ⊆〉 =

the carrier of T .

Let T be a non empty topological space. Observe that 〈the topology of T ,
⊆〉 is complete and non trivial.

We now state the proposition

(25) Let T be a topological space and let F be a family of subsets of T . Then
F is open if and only if F is a subset of 〈the topology of T , ⊆〉.

2. Products of Relational Structures

Let R be a binary relation. We say that R is relational structure yielding if
and only if:

(Def. 3) For every set v such that v ∈ rngR holds v is a relational structure.

One can check that every function which is relational structure yielding is
also 1-sorted yielding.

Let I be a set. One can verify that there exists a many sorted set indexed
by I which is relational structure yielding.

Let J be a non empty set, let A be a relational structure yielding many
sorted set indexed by J , and let j be an element of J . Then A(j) is a relational
structure.

Let I be a set and let J be a relational structure yielding many sorted set
indexed by I. The functor

∏
J yields a strict relational structure and is defined

by the conditions (Def. 4).

(Def. 4) (i) The carrier of
∏
J =

∏
supportJ, and

(ii) for all elements x, y of the carrier of
∏
J such that x ∈ ∏ supportJ

holds x ≤ y iff there exist functions f , g such that f = x and g = y and
for every set i such that i ∈ I there exists a relational structure R and
there exist elements x1, y1 of R such that R = J(i) and x1 = f(i) and
y1 = g(i) and x1 ≤ y1.

Let X be a set and let L be a relational structure. One can verify that
X 7−→ L is relational structure yielding.

Let I be a set and let T be a relational structure. The functor T I yielding a
strict relational structure is defined by:

(Def. 5) T I =
∏

(I 7−→ T).

Next we state three propositions:

(26) For every relational structure yielding many sorted set J indexed by ∅
holds

∏
J = 〈{∅},4{∅}〉.

(27) For every relational structure Y holds Y ∅ = 〈{∅},4{∅}〉.

120 adam grabowski and robert milewski

(28) For every set X and for every relational structure Y holds (the carrier
of Y)X = the carrier of Y X .

Let X be a set and let Y be a non empty relational structure. Note that Y X

is non empty.
Let X be a set and let Y be a reflexive non empty relational structure.

Observe that Y X is reflexive.
Let Y be a non empty relational structure. Observe that Y ∅ is trivial.
Let Y be a non empty reflexive relational structure. Note that Y ∅ is anti-

symmetric and has g.l.b.’s and l.u.b.’s.
Let X be a set and let Y be a transitive non empty relational structure. Note

that Y X is transitive.
Let X be a set and let Y be an antisymmetric non empty relational structure.

Note that Y X is antisymmetric.
Let X be a non empty set and let Y be a non empty antisymmetric relational

structure with g.l.b.’s. Observe that Y X has g.l.b.’s.
Let X be a non empty set and let Y be a non empty antisymmetric relational

structure with l.u.b.’s. Observe that Y X has l.u.b.’s.
Let S, T be relational structures. The functor MonMaps(S, T) yielding a

strict full relational substructure of T the carrier of S is defined by the condition
(Def. 6).

(Def. 6) Let f be a map from S into T . Then f ∈ the carrier of MonMaps(S, T)
if and only if f ∈ (the carrier of T)the carrier of S and f is monotone.

Acknowledgments

The authors would like to express their gratitude to Professor Andrzej Try-
bulec for his help in formulating mizared definition of the product.

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics,

1(2):265–267, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Józef Bia las. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[10] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

boolean posets, posets under inclusion and . . . 121

[12] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[13] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[14] Beata Madras. Product of family of universal algebras. Formalized Mathematics,
4(1):103–108, 1993.

[15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-
liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.

[16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[17] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[21] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.

[25] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received September 20, 1996

122

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Properties of Relational Structures, Posets,

Lattices and Maps 1

Mariusz Żynel
Warsaw University

Bia lystok

Czes law Byliński
Warsaw University

Bia lystok

Summary. In the paper we present some auxiliary facts concern-
ing posets and maps between them. Our main purpose, however is to
give an account on complete lattices and lattices of ideals. A sufficient
condition that a lattice might be complete, the fixed-point theorem and
two remarks upon images of complete lattices in monotone maps, intro-
duced in [10, pp. 8–9], can be found in Section 7. Section 8 deals with
lattices of ideals. We examine the meet and join of two ideals. In order
to show that the lattice of ideals is complete, the infinite intersection of
ideals is investigated.

MML Identifier: YELLOW 2.

The terminology and notation used in this paper have been introduced in the
following articles: [18], [20], [21], [7], [8], [2], [17], [15], [19], [3], [6], [13], [16], [9],
[14], [5], [11], [1], [12], and [4].

1. Basic Facts

In this paper x will be arbitrary and X, Y will denote sets.
The scheme RelStrSubset deals with a non empty relational structure A and

a unary predicate P, and states that:
{x : x ranges over elements of A, P[x]} is a subset of A

for all values of the parameters.
Let S be a non empty 1-sorted structure and let X be a non empty subset

of the carrier of S. We see that the element of X is an element of S.
One can prove the following four propositions:

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

123
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

124 mariusz żynel et al.

(1) Let L be a non empty relational structure, and let x be an element of
L, and let X be a subset of L. Then X ⊆ ↓x if and only if X ≤ x.

(2) Let L be a non empty relational structure, and let x be an element of
L, and let X be a subset of L. Then X ⊆ ↑x if and only if x ≤ X.

(3) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and let X, Y be sets. Suppose sup X exists in L and sup Y exists in L.
Then sup X ∪ Y exists in L and

⊔
L(X ∪ Y) =

⊔
LX t

⊔
L Y.

(4) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and let X, Y be sets. Suppose inf X exists in L and inf Y exists in L.
Then inf X ∪ Y exists in L and d−eL(X ∪ Y) = d−eLX u d−eLY.

2. Relational Substructures

The following propositions are true:

(5) For every binary relation R and for all sets X, Y such that X ⊆ Y
holds R |2 X ⊆ R |2 Y.

(6) Let L be a relational structure and let S, T be full relational substruc-
tures of L. Suppose the carrier of S ⊆ the carrier of T . Then the internal
relation of S ⊆ the internal relation of T .

(7) Let L be a non empty relational structure and let S be a non empty
relational substructure of L. Then

(i) if X is a directed subset of S, then X is a directed subset of L, and
(ii) if X is a filtered subset of S, then X is a filtered subset of L.

(8) Let L be a non empty relational structure and let S, T be non empty
full relational substructures of L. Suppose the carrier of S ⊆ the carrier
of T . Let X be a subset of S. Then

(i) X is a subset of T , and
(ii) for every subset Y of T such that X = Y holds if X is filtered, then Y

is filtered and if X is directed, then Y is directed.

3. Maps

Now we present three schemes. The scheme LambdaMD deals with non empty
relational structures A, B and a unary functor F yielding an element of B, and
states that:

There exists a map f from A into B such that for every element x
of A holds f(x) = F(x)

for all values of the parameters.
The scheme KappaMD concerns non empty relational structures A, B and a

unary functor F yielding arbitrary, and states that:

properties of relational structures, posets, . . . 125

There exists a map f from A into B such that for every element x
of A holds f(x) = F(x)

provided the parameters satisfy the following condition:
• For every element x of A holds F(x) is an element of B.
The scheme NonUniqExMD deals with non empty relational structures A, B

and a binary predicate P, and states that:
There exists a map f from A into B such that for every element x
of A holds P[x, f(x)]

provided the following requirement is met:
• For every element x of A there exists an element y of B such that
P[x, y].

Let S, T be 1-sorted structures and let f be a map from S into T . Then
rng f is a subset of T .

One can prove the following proposition

(9) Let S, T be non empty 1-sorted structures and let f , g be maps from
S into T . If for every element s of S holds f(s) = g(s), then f = g.

Let J be a set, let L be a relational structure, and let f , g be functions from
J into the carrier of L. The predicate f ≤ g is defined by:

(Def. 1) For arbitrary j such that j ∈ J there exist elements a, b of L such that
a = f(j) and b = g(j) and a ≤ b.

We introduce g ≥ f as a synonym of f ≤ g.
Next we state the proposition

(10) Let L, M be non empty relational structures and let f , g be maps from
L into M . Then f ≤ g if and only if for every element x of L holds
f(x) ≤ g(x).

4. The Image of a Map

Let L, M be non empty relational structures and let f be a map from L
into M . The functor Im f yields a strict full relational substructure of M and
is defined as follows:

(Def. 2) Im f = sub(rng f).

The following two propositions are true:

(11) For all non empty relational structures L, M and for every map f from
L into M holds rng f = the carrier of Im f.

(12) Let L, M be non empty relational structures, and let f be a map from
L into M , and let y be an element of Im f. Then there exists an element
x of L such that f(x) = y.

Let L be a non empty relational structure and let X be a non empty subset
of L. One can verify that sub(X) is non empty.

Let L, M be non empty relational structures and let f be a map from L into
M . Observe that Im f is non empty.

126 mariusz żynel et al.

5. Monotone Maps

One can prove the following propositions:

(13) For every non empty relational structure L holds idL is monotone.

(14) Let L, M , N be non empty relational structures, and let f be a map
from L into M , and let g be a map from M into N . If f is monotone and
g is monotone, then g · f is monotone.

(15) Let L, M be non empty relational structures, and let f be a map from
L into M , and let X be a subset of L, and let x be an element of L. If f
is monotone and x ≤ X, then f(x) ≤ f ◦X.

(16) Let L, M be non empty relational structures, and let f be a map from
L into M , and let X be a subset of L, and let x be an element of L. If f
is monotone and X ≤ x, then f ◦X ≤ f(x).

(17) Let S, T be non empty relational structures, and let f be a map from S
into T , and let X be a directed subset of S. If f is monotone, then f ◦X
is directed.

(18) Let L be a poset with l.u.b.’s and let f be a map from L into L. If f is
directed-sups-preserving, then f is monotone.

(19) Let L be a poset with g.l.b.’s and let f be a map from L into L. If f is
filtered-infs-preserving, then f is monotone.

6. Idempotent Maps

One can prove the following propositions:

(20) Let S be a non empty 1-sorted structure and let f be a map from S into
S. If f is idempotent, then for every element x of S holds f(f(x)) = f(x).

(21) Let S be a non empty 1-sorted structure and let f be a map from S
into S. If f is idempotent, then rng f = {x : x ranges over elements of S,
x = f(x)}.

(22) Let S be a non empty 1-sorted structure and let f be a map from S
into S. If f is idempotent, then if X ⊆ rng f, then f ◦X = X.

(23) For every non empty relational structure L holds idL is idempotent.

7. Complete Lattices

In the sequel L denotes a complete lattice and a denotes an element of L.
The following propositions are true:

(24) If a ∈ X, then a ≤ ⊔LX and d−eLX ≤ a.

properties of relational structures, posets, . . . 127

(25) Let L be a non empty relational structure. Then for every X holds sup
X exists in L if and only if for every Y holds inf Y exists in L.

(26) For every non empty relational structure L such that for every X holds
sup X exists in L holds L is complete.

(27) For every non empty relational structure L such that for every X holds
inf X exists in L holds L is complete.

(28) Let L be a non empty relational structure. Suppose that for every
subset A of L holds inf A exists in L. Given X. Then inf X exists in L
and d−eLX = d−eL(X ∩ (the carrier of L)).

(29) Let L be a non empty relational structure. Suppose that for every
subset A of L holds sup A exists in L. Given X. Then sup X exists in L
and

⊔
LX =

⊔
L(X ∩ (the carrier of L)).

(30) Let L be a non empty relational structure. If for every subset A of L
holds inf A exists in L, then L is complete.

One can check that every non empty poset which is up-complete, inf-complete,
and upper-bounded is also complete.

Next we state several propositions:

(31) Let f be a map from L into L. Suppose f is monotone. Let M be a
subset of L. If M = {x : x ranges over elements of L, x = f(x)}, then
sub(M) is a complete lattice.

(32) Every infs-inheriting non empty full relational substructure of L is a
complete lattice.

(33) Every sups-inheriting non empty full relational substructure of L is a
complete lattice.

(34) Let M be a non empty relational structure and let f be a map from L
into M . If f is sups-preserving, then Im f is sups-inheriting.

(35) Let M be a non empty relational structure and let f be a map from L
into M . If f is infs-preserving, then Im f is infs-inheriting.

(36) Let L, M be complete lattices and let f be a map from L into M .
Suppose f is sups-preserving or infs-preserving. Then Im f is a complete
lattice.

(37) Let f be a map from L into L. Suppose f is idempotent and directed-
sups-preserving. Then Im f is directed-sups-inheriting and Im f is a com-
plete lattice.

8. Lattices of Ideals

Next we state several propositions:

(38) Let L be a relational structure and let F be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ F holds X is lower.
Then

⋂
F is a lower subset of L.

128 mariusz żynel et al.

(39) Let L be a relational structure and let F be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ F holds X is upper.
Then

⋂
F is an upper subset of L.

(40) Let L be an antisymmetric relational structure with l.u.b.’s and let F
be a subset of 2the carrier of L. Suppose that for every subset X of L such
that X ∈ F holds X is lower and directed. Then

⋂
F is a directed subset

of L.

(41) Let L be an antisymmetric relational structure with g.l.b.’s and let F
be a subset of 2the carrier of L. Suppose that for every subset X of L such
that X ∈ F holds X is upper and filtered. Then

⋂
F is a filtered subset

of L.

(42) For every poset L with g.l.b.’s and for all ideals I, J of L holds I ∩ J is
an ideal of L.

Let L be a non empty reflexive transitive relational structure. One can check
that Ids(L) is non empty.

We now state three propositions:

(43) Let L be a non empty reflexive transitive relational structure. Then x
is an element of 〈Ids(L),⊆〉 if and only if x is an ideal of L.

(44) Let L be a non empty reflexive transitive relational structure and let I
be an element of 〈Ids(L),⊆〉. If x ∈ I, then x is an element of L.

(45) For every poset L with g.l.b.’s and for all elements x, y of 〈Ids(L),⊆〉
holds x u y = x ∩ y.

Let L be a poset with g.l.b.’s. One can verify that 〈Ids(L),⊆〉 has g.l.b.’s.
We now state the proposition

(46) Let L be a poset with l.u.b.’s and let x, y be elements of 〈Ids(L),⊆〉.
Then there exists a subset Z of L such that

(i) Z = {z : z ranges over elements of L, z ∈ x ∨ z ∈ y ∨∨
a,b : element of L a ∈ x ∧ b ∈ y ∧ z = a t b},

(ii) sup {x, y} exists in 〈Ids(L),⊆〉, and
(iii) x t y = ↓Z.
Let L be a poset with l.u.b.’s. One can check that 〈Ids(L),⊆〉 has l.u.b.’s.
One can prove the following four propositions:

(47) For every lower-bounded sup-semilattice L and for every non empty
subset X of Ids(L) holds

⋂
X is an ideal of L.

(48) Let L be a lower-bounded sup-semilattice and let A be a non empty
subset of 〈Ids(L),⊆〉. Then inf A exists in 〈Ids(L),⊆〉 and inf A =

⋂
A.

(49) For every poset L with l.u.b.’s holds inf ∅ exists in 〈Ids(L),⊆〉 and
d−e(〈Ids(L),⊆〉)∅ = ΩL.

(50) For every lower-bounded sup-semilattice L holds 〈Ids(L),⊆〉 is com-
plete.

Let L be a lower-bounded sup-semilattice. Note that 〈Ids(L),⊆〉 is complete.

properties of relational structures, posets, . . . 129

9. Special Maps

Let L be a non empty poset. The functor SupMap(L) yielding a map from
〈Ids(L),⊆〉 into L is defined as follows:

(Def. 3) For every ideal I of L holds (SupMap(L))(I) = sup I.

We now state three propositions:

(51) For every non empty poset L holds dom SupMap(L) = Ids(L) and
rng SupMap(L) is a subset of L.

(52) For every non empty poset L holds x ∈ dom SupMap(L) iff x is an ideal
of L.

(53) For every up-complete non empty poset L holds SupMap(L) is mono-
tone.

Let L be an up-complete non empty poset. Observe that SupMap(L) is
monotone.

Let L be a non empty poset. The functor IdsMap(L) yielding a map from L
into 〈Ids(L),⊆〉 is defined by:

(Def. 4) For every element x of L holds (IdsMap(L))(x) = ↓x.
The following proposition is true

(54) For every non empty poset L holds IdsMap(L) is monotone.

Let L be a non empty poset. Observe that IdsMap(L) is monotone.

10. The Family of Elements in a Lattice

Let L be a non empty relational structure and let F be a binary relation.
The functor

⊔
L F yielding an element of L is defined as follows:

(Def. 5)
⊔
L F =

⊔
L rngF.

The functor d−eLF yields an element of L and is defined by:

(Def. 6) d−eLF = d−eL rngF.

Let J be a set, let L be a non empty relational structure, and let F be a
function from J into the carrier of L. We introduce Sup(F) as a synonym of⊔
L F. We introduce Inf(F) as a synonym of d−eLF.

Let J be a non empty set, let S be a non empty 1-sorted structure, let F be
a function from J into the carrier of S, and let j be an element of J . Then F (j)
is an element of S.

Let J be a set, let S be a non empty 1-sorted structure, and let F be a
function from J into the carrier of S. Then rngF is a subset of S.

In the sequel J is a non empty set and j is an element of J .
We now state three propositions:

(55) For every function F from J into the carrier of L holds F (j) ≤ Sup(F)
and Inf(F) ≤ F (j).

130 mariusz żynel et al.

(56) For every function F from J into the carrier of L such that for every j
holds F (j) ≤ a holds Sup(F) ≤ a.

(57) For every function F from J into the carrier of L such that for every j
holds a ≤ F (j) holds a ≤ Inf(F).

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–
552, 1991.

[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[5] Grzegorz Bancerek. Quantales. Formalized Mathematics, 5(1):85–91, 1996.
[6] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[11] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[12] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[13] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[14] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Math-
ematics, 3(1):1–16, 1992.

[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[16] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[20] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received September 20, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Galois Connections 1

Czes law Byliński
Warsaw University

Bia lystok

Summary. The paper is the Mizar encoding of the chapter 0
section 3 of [12] In the paper the following concept are defined: Galois
connections, Heyting algebras, and Boolean algebras.

MML Identifier: WAYBEL 1.

The articles [19], [21], [10], [22], [23], [8], [9], [17], [11], [7], [6], [20], [15], [18], [4],
[2], [16], [5], [13], [1], [14], [3], and [24] provide the terminology and notation for
this paper.

1. Preliminaries

Let A, B be non empty sets. One can check that every function from A into
B is non empty.

Let L1, L2 be non empty 1-sorted structures and let f be a map from L1

into L2. Let us observe that f is one-to-one if and only if:

(Def. 1) For all elements x, y of L1 such that f(x) = f(y) holds x = y.

One can prove the following proposition

(1) Let L be a non empty 1-sorted structure and let f be a map from L
into L. If for every element x of L holds f(x) = x, then f = idL.

Let L1, L2 be non empty relational structures and let f be a map from L1

into L2. Let us observe that f is monotone if and only if:

(Def. 2) For all elements x, y of L1 such that x ≤ y holds f(x) ≤ f(y).

We now state four propositions:

(2) Let L be a non empty antisymmetric transitive relational structure with
g.l.b.’s and let x, y, z be elements of L. If x ≤ y, then x u z ≤ y u z.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

131
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

132 czes law byliński

(3) Let L be a non empty antisymmetric transitive relational structure with
l.u.b.’s and let x, y, z be elements of L. If x ≤ y, then x t z ≤ y t z.

(4) Let L be a non empty lower-bounded antisymmetric relational structure
and let x be an element of L. Then if L has g.l.b.’s, then ⊥L u x = ⊥L
and if L is reflexive and transitive and has l.u.b.’s, then ⊥L t x = x.

(5) Let L be a non empty upper-bounded antisymmetric relational struc-
ture and let x be an element of L. Then if L is transitive and reflexive
and has g.l.b.’s, then >L u x = x and if L has l.u.b.’s, then >L t x = >L.

Let L be a non empty relational structure. We say that L is distributive if
and only if:

(Def. 3) For all elements x, y, z of L holds x u (y t z) = x u y t x u z.
We now state the proposition

(6) For every lattice L holds L is distributive iff for all elements x, y, z of
L holds x t y u z = (x t y) u (x t z).

Let X be a set. One can verify that 2X⊆ is distributive.

Let S be a non empty relational structure and let X be a set. We say that
min X exists in S if and only if:

(Def. 4) Inf X exists in S and d−eSX ∈ X.
We introduce X has the minimum in S as a synonym of min X exists in S. We
say that max X exists in S if and only if:

(Def. 5) Sup X exists in S and
⊔
SX ∈ X.

We introduce X has the maximum in S as a synonym of max X exists in S.

Let S be a non empty relational structure, let s be an element of S, and let
X be a set. We say that s is a minimum of X if and only if:

(Def. 6) Inf X exists in S and s = d−eSX and d−eSX ∈ X.
We say that s is a maximum of X if and only if:

(Def. 7) Sup X exists in S and s =
⊔
S X and

⊔
S X ∈ X.

Let L be a relational structure. Note that idL is isomorphic.

Let L1, L2 be relational structures. We say that L1 and L2 are isomorphic
if and only if:

(Def. 8) There exists map from L1 into L2 which is isomorphic.

Let us notice that the predicate defined above is reflexive.

We now state two propositions:

(7) For all non empty relational structures L1, L2 such that L1 and L2 are
isomorphic holds L2 and L1 are isomorphic.

(8) Let L1, L2, L3 be relational structures. Suppose L1 and L2 are isomor-
phic and L2 and L3 are isomorphic. Then L1 and L3 are isomorphic.

galois connections 133

2. Galois Connections

Let S, T be relational structures. A set is said to be a connection between
S and T if:

(Def. 9) There exists a map g from S into T and there exists a map d from T
into S such that it = 〈〈g, d〉〉.

Let S, T be relational structures, let g be a map from S into T , and let d be
a map from T into S. Then 〈〈g, d〉〉 is a connection between S and T .

Let S, T be non empty relational structures and let g1 be a connection
between S and T . We say that g1 is Galois if and only if the condition (Def. 10)
is satisfied.

(Def. 10) There exists a map g from S into T and there exists a map d from T
into S such that

(i) g1 = 〈〈g, d〉〉,
(ii) g is monotone,

(iii) d is monotone, and
(iv) for every element t of T and for every element s of S holds t ≤ g(s) iff

d(t) ≤ s.
Next we state the proposition

(9) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) g is monotone,
(ii) d is monotone, and

(iii) for every element t of T and for every element s of S holds t ≤ g(s) iff
d(t) ≤ s.

Let S, T be non empty relational structures and let g be a map from S into
T . We say that g is upper adjoint if and only if:

(Def. 11) There exists a map d from T into S such that 〈〈g, d〉〉 is Galois.

We introduce g has a lower adjoint as a synonym of g is upper adjoint.
Let S, T be non empty relational structures and let d be a map from T into

S. We say that d is lower adjoint if and only if:

(Def. 12) There exists a map g from S into T such that 〈〈g, d〉〉 is Galois.

We introduce d has an upper adjoint as a synonym of d is lower adjoint.
One can prove the following four propositions:

(10) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is upper adjoint
and d is lower adjoint.

(11) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) g is monotone, and

134 czes law byliński

(ii) for every element t of T holds d(t) is a minimum of g −1 ↑t.
(12) Let S, T be non empty posets, and let g be a map from S into T , and

let d be a map from T into S. Then 〈〈g, d〉〉 is Galois if and only if the
following conditions are satisfied:

(i) d is monotone, and

(ii) for every element s of S holds g(s) is a maximum of d −1 ↓s.
(13) Let S, T be non empty posets and let g be a map from S into T . If g

is upper adjoint, then g is infs-preserving.

Let S, T be non empty posets. Observe that every map from S into T which
is upper adjoint is also infs-preserving.

We now state the proposition

(14) Let S, T be non empty posets and let d be a map from T into S. If d
is lower adjoint, then d is sups-preserving.

Let S, T be non empty posets. Note that every map from S into T which is
lower adjoint is also sups-preserving.

Next we state a number of propositions:

(15) Let S, T be non empty posets and let g be a map from S into T .
Suppose S is complete and g is infs-preserving. Then there exists a map
d from T into S such that 〈〈g, d〉〉 is Galois and for every element t of T
holds d(t) is a minimum of g −1 ↑t.

(16) Let S, T be non empty posets and let d be a map from T into S.
Suppose T is complete and d is sups-preserving. Then there exists a map
g from S into T such that 〈〈g, d〉〉 is Galois and for every element s of S
holds g(s) is a maximum of d −1 ↓s.

(17) Let S, T be non empty posets and let g be a map from S into T . Suppose
S is complete. Then g is infs-preserving if and only if g is monotone and
g has a lower adjoint.

(18) Let S, T be non empty posets and let d be a map from T into S. Suppose
T is complete. Then d is sups-preserving if and only if d is monotone and
d has an upper adjoint.

(19) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then d · g ≤ idS and
idT ≤ g · d.

(20) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose g is monotone and d is monotone
and d · g ≤ idS and idT ≤ g · d. Then 〈〈g, d〉〉 is Galois.

(21) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose g is monotone and d is monotone
and d · g ≤ idS and idT ≤ g · d. Then d = d · g · d and g = g · d · g.

(22) Let S, T be non empty relational structures, and let g be a map from
S into T , and let d be a map from T into S. If d = d · g ·d and g = g ·d · g,
then g · d is idempotent and d · g is idempotent.

galois connections 135

(23) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose 〈〈g, d〉〉 is Galois and g is onto. Let
t be an element of T . Then d(t) is a minimum of g −1 {t}.

(24) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If for every element t of T holds d(t) is a
minimum of g −1 {t}, then g · d = idT .

(25) Let L1, L2 be non empty 1-sorted structures, and let g3 be a map from
L1 into L2, and let g2 be a map from L2 into L1. If g2 · g3 = id(L1), then
g3 is one-to-one and g2 is onto.

(26) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is onto iff d is
one-to-one.

(27) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. Suppose 〈〈g, d〉〉 is Galois and d is onto. Let
s be an element of S. Then g(s) is a maximum of d −1 {s}.

(28) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If for every element s of S holds g(s) is a
maximum of d −1 {s}, then d · g = idS .

(29) Let S, T be non empty posets, and let g be a map from S into T , and
let d be a map from T into S. If 〈〈g, d〉〉 is Galois, then g is one-to-one iff
d is onto.

Let L be a non empty relational structure and let p be a map from L into L.
We say that p is projection if and only if:

(Def. 13) p is idempotent and monotone.

We introduce p is a projection operator as a synonym of p is projection.
Let L be a non empty relational structure. Note that idL is projection.
Let L be a non empty relational structure. Observe that there exists a map

from L into L which is projection.
Let L be a non empty relational structure and let c be a map from L into L.

We say that c is closure if and only if:

(Def. 14) c is projection and idL ≤ c.
We introduce c is a closure operator as a synonym of c is closure.

Let L be a non empty relational structure. Note that every map from L into
L which is closure is also projection.

Let L be a non empty reflexive relational structure. Note that there exists a
map from L into L which is closure.

Let L be a non empty reflexive relational structure. Note that idL is closure.
Let L be a non empty relational structure and let k be a map from L into

L. We say that k is kernel if and only if:

(Def. 15) k is projection and k ≤ idL.

We introduce k is a kernel operator as a synonym of k is kernel.
Let L be a non empty relational structure. One can check that every map

from L into L which is kernel is also projection.

136 czes law byliński

Let L be a non empty reflexive relational structure. Note that there exists a
map from L into L which is kernel.

Let L be a non empty reflexive relational structure. One can check that idL
is kernel.

One can prove the following two propositions:

(30) Let L be a non empty poset, and let c be a map from L into L, and let
X be a subset of L. Suppose c is a closure operator and inf X exists in L
and X ⊆ rng c. Then inf X = c(inf X).

(31) Let L be a non empty poset, and let k be a map from L into L, and let
X be a subset of L. Suppose k is a kernel operator and sup X exists in
L and X ⊆ rng k. Then supX = k(supX).

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. The functor g◦ yields a map from L1 into Im g and is defined as follows:

(Def. 16) g◦ = (the carrier of Im g) � (g).
One can prove the following proposition

(32) For all non empty relational structures L1, L2 and for every map g from
L1 into L2 holds g◦ = g.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. Observe that g◦ is onto.
The following proposition is true

(33) Let L1, L2 be non empty relational structures and let g be a map from
L1 into L2. If g is monotone, then g◦ is monotone.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. The functor g◦ yields a map from Im g into L2 and is defined by:

(Def. 17) g◦ = idIm g.

Next we state the proposition

(34) Let L1, L2 be non empty relational structures, and let g be a map from
L1 into L2, and let s be an element of Im g. Then g◦(s) = s.

Let L1, L2 be non empty relational structures and let g be a map from L1

into L2. One can check that g◦ is one-to-one and monotone.
We now state a number of propositions:

(35) For every non empty relational structure L and for every map f from
L into L holds f◦ · f◦ = f.

(36) For every non empty poset L and for every map f from L into L such
that f is idempotent holds f ◦ · f◦ = idIm f .

(37) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a projection operator. Then there exists a non empty poset T and
there exists a map q from L into T and there exists a map i from T into
L such that q is monotone and onto and i is monotone and one-to-one
and f = i · q and idT = q · i.

(38) Let L be a non empty poset and let f be a map from L into L. Given a
non empty poset T and a map q from L into T and a map i from T into

galois connections 137

L such that q is monotone and i is monotone and f = i · q and idT = q · i.
Then f is a projection operator.

(39) For every non empty poset L and for every map f from L into L such
that f is a closure operator holds 〈〈f◦, f◦〉〉 is Galois.

(40) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a closure operator. Then there exists a non empty poset S and there
exists a map g from S into L and there exists a map d from L into S such
that 〈〈g, d〉〉 is Galois and f = g · d.

(41) Let L be a non empty poset and let f be a map from L into L. Suppose
that

(i) f is monotone, and
(ii) there exists a non empty poset S and there exists a map g from S into

L and there exists a map d from L into S such that 〈〈g, d〉〉 is Galois and
f = g · d.
Then f is a closure operator.

(42) For every non empty poset L and for every map f from L into L such
that f is a kernel operator holds 〈〈f ◦, f◦〉〉 is Galois.

(43) Let L be a non empty poset and let f be a map from L into L. Suppose
f is a kernel operator. Then there exists a non empty poset T and there
exists a map g from L into T and there exists a map d from T into L such
that 〈〈g, d〉〉 is Galois and f = d · g.

(44) Let L be a non empty poset and let f be a map from L into L. Suppose
that

(i) f is monotone, and
(ii) there exists a non empty poset T and there exists a map g from L into

T and there exists a map d from T into L such that 〈〈g, d〉〉 is Galois and
f = d · g.
Then f is a kernel operator.

(45) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then rng p = {c : c ranges over elements of L,
c ≤ p(c)} ∩ {k : k ranges over elements of L, p(k) ≤ k}.

(46) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then

(i) {c : c ranges over elements of L, c ≤ p(c)} is a non empty subset of L,
and

(ii) {k : k ranges over elements of L, p(k) ≤ k} is a non empty subset of
L.

(47) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Then rng(p � {c : c ranges over elements of
L, c ≤ p(c)}) = rng p and rng(p � {k : k ranges over elements of L,
p(k) ≤ k}) = rng p.

(48) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L and let L5

138 czes law byliński

be a non empty subset of L. Suppose L4 = {c : c ranges over elements of
L, c ≤ p(c)}. Then p � L4 is a map from sub(L4) into sub(L4).

(49) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Then p � L5 is a map
from sub(L5) into sub(L5).

(50) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L. Suppose
L4 = {c : c ranges over elements of L, c ≤ p(c)}. Let p1 be a map from
sub(L4) into sub(L4). If p1 = p � L4, then p1 is a closure operator.

(51) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Let p2 be a map from
sub(L5) into sub(L5). If p2 = p � L5, then p2 is a kernel operator.

(52) Let L be a non empty poset and let p be a map from L into L. Suppose
p is monotone. Let L4 be a subset of L. If L4 = {c : c ranges over elements
of L, c ≤ p(c)}, then sub(L4) is sups-inheriting.

(53) Let L be a non empty poset and let p be a map from L into L. Suppose
p is monotone. Let L5 be a subset of L. If L5 = {k : k ranges over
elements of L, p(k) ≤ k}, then sub(L5) is infs-inheriting.

(54) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L4 be a non empty subset of L. Suppose
L4 = {c : c ranges over elements of L, c ≤ p(c)}. Then

(i) if p is infs-preserving, then sub(L4) is infs-inheriting and Im p is infs-
inheriting, and

(ii) if p is filtered-infs-preserving, then sub(L4) is filtered-infs-inheriting
and Im p is filtered-infs-inheriting.

(55) Let L be a non empty poset and let p be a map from L into L. Suppose
p is a projection operator. Let L5 be a non empty subset of L. Suppose
L5 = {k : k ranges over elements of L, p(k) ≤ k}. Then

(i) if p is sups-preserving, then sub(L5) is sups-inheriting and Im p is sups-
inheriting, and

(ii) if p is directed-sups-preserving, then sub(L5) is directed-sups-inheriting
and Im p is directed-sups-inheriting.

(56) Let L be a non empty poset and let p be a map from L into L. Then
if p is a closure operator, then Im p is infs-inheriting and if p is a kernel
operator, then Im p is sups-inheriting.

(57) Let L be a complete non empty poset and let p be a map from L into
L. If p is a projection operator, then Im p is complete.

(58) Let L be a non empty poset and let c be a map from L into L. Suppose
c is a closure operator. Then

(i) c◦ is sups-preserving, and

galois connections 139

(ii) for every subset X of L such that X ⊆ the carrier of Im c and sup X
exists in L holds sup X exists in Im c and

⊔
Im cX = c(

⊔
LX).

(59) Let L be a non empty poset and let k be a map from L into L. Suppose
k is a kernel operator. Then

(i) k◦ is infs-preserving, and
(ii) for every subset X of L such that X ⊆ the carrier of Im k and inf X

exists in L holds inf X exists in Imk and d−eIm kX = k(d−eLX).

3. Heyting Algebra

Next we state two propositions:

(60) For every complete non empty poset L holds 〈〈 IdsMap(L), SupMap(L)〉〉
is Galois and SupMap(L) is sups-preserving.

(61) For every complete non empty poset L holds IdsMap(L) ·SupMap(L) is
a closure operator and Im(IdsMap(L) ·SupMap(L)) and L are isomorphic.

Let S be a non empty relational structure and let x be an element of S. The
functor x u � yields a map from S into S and is defined as follows:

(Def. 18) For every element s of S holds (x u �)(s) = x u s.
Next we state two propositions:

(62) For every non empty relational structure S and for all elements x, t of
S holds {s : s ranges over elements of S, x u s ≤ t} = (x u �) −1 ↓t.

(63) For every non empty semilattice S and for every element x of S holds
x u � is monotone.

Let S be a non empty semilattice and let x be an element of S. Note that
x u � is monotone.

The following propositions are true:

(64) Let S be a non empty relational structure, and let x be an element of
S, and let X be a subset of S. Then (x u �)◦X = {x u y : y ranges over
elements of S, y ∈ X}.

(65) Let S be a non empty semilattice. Then for every element x of S holds
x u � has an upper adjoint if and only if for all elements x, t of S holds
max {s : s ranges over elements of S, x u s ≤ t} exists in S.

(66) Let S be a non empty semilattice. Suppose that for every element x of
S holds xu � has an upper adjoint. Let X be a subset of S. Suppose sup
X exists in S. Let x be an element of S. Then x u ⊔S X =

⊔
S{x u y : y

ranges over elements of S, y ∈ X}.
(67) Let S be a complete non empty poset. Then for every element x of S

holds x u � has an upper adjoint if and only if for every subset X of S
and for every element x of S holds x u ⊔S X =

⊔
S{x u y : y ranges over

elements of S, y ∈ X}.

140 czes law byliński

(68) Let S be a non empty lattice. Suppose that for every subset X of S
such that sup X exists in S and for every element x of S holds xu⊔S X =⊔
S{x u y : y ranges over elements of S, y ∈ X}. Then S is distributive.

Let H be a non empty relational structure. We say that H is Heyting if and
only if:

(Def. 19) H is a lattice and for every element x of H holds x u � has an upper
adjoint.

We introduce H is a Heyting algebra as a synonym of H is Heyting.

Let us observe that every non empty relational structure which is Heyting is
also reflexive, transitive, and antisymmetric and has g.l.b.’s and l.u.b.’s.

Let H be a non empty relational structure and let a be an element of H. Let
us assume that H is Heyting. The functor a ⇒ � yielding a map from H into
H is defined as follows:

(Def. 20) 〈〈a⇒ � , a u � 〉〉 is Galois.

We now state the proposition

(69) For every non empty relational structure H such that H is a Heyting
algebra holds H is distributive.

Let us observe that every non empty relational structure which is Heyting is
also distributive.

Let H be a non empty relational structure and let a, y be elements of H.
The functor a⇒ y yields an element of H and is defined by:

(Def. 21) a⇒ y = (a⇒ �)(y).

One can prove the following two propositions:

(70) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let x, a, y be elements of H. Then x ≥ a u y if and only if
a⇒ x ≥ y.

(71) For every non empty relational structure H such that H is a Heyting
algebra holds H is upper-bounded.

Let us mention that every non empty relational structure which is Heyting
is also upper-bounded.

Next we state a number of propositions:

(72) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. Then >H = a ⇒ b if and only if
a ≤ b.

(73) For every non empty relational structure H such that H is a Heyting
algebra and for every element a of H holds >H = a⇒ a.

(74) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. If >H = a ⇒ b and >H = b ⇒ a,
then a = b.

(75) Let H be a non empty relational structure. If H is a Heyting algebra,
then for all elements a, b of H holds b ≤ a⇒ b.

galois connections 141

(76) Let H be a non empty relational structure. If H is a Heyting algebra,
then for every element a of H holds >H = a⇒ >H .

(77) For every non empty relational structure H such that H is a Heyting
algebra and for every element b of H holds b = >H ⇒ b.

(78) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. If a ≤ b, then b⇒ c ≤ a⇒ c.

(79) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. If b ≤ c, then a⇒ b ≤ a⇒ c.

(80) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b be elements of H. Then a u (a⇒ b) = a u b.

(81) Let H be a non empty relational structure. Suppose H is a Heyting
algebra. Let a, b, c be elements of H. Then atb⇒ c = (a⇒ c)u(b⇒ c).

Let H be a non empty relational structure and let a be an element of H.
The functor ¬a yields an element of H and is defined as follows:

(Def. 22) ¬a = a⇒ ⊥H .
The following propositions are true:

(82) Let H be a non empty relational structure. Suppose H is a Heyting
algebra and lower-bounded. Let a be an element of H. Then ¬a is a
maximum of {x : x ranges over elements of H, a u x = ⊥H}.

(83) Let H be a non empty relational structure. If H is a Heyting algebra
and lower-bounded, then ¬(⊥H) = >H and ¬(>H) = ⊥H .

(84) Let H be a non empty lower-bounded relational structure. Suppose H
is a Heyting algebra. Let a, b be elements of H. Then ¬a ≥ b if and only
if ¬b ≥ a.

(85) Let H be a non empty lower-bounded relational structure. Suppose H
is a Heyting algebra. Let a, b be elements of H. Then ¬a ≥ b if and only
if a u b = ⊥H .

(86) Let H be a non empty lower-bounded relational structure. Suppose H
is a Heyting algebra. Let a, b be elements of H. If a ≤ b, then ¬b ≤ ¬a.

(87) Let H be a non empty lower-bounded relational structure. Suppose H
is a Heyting algebra. Let a, b be elements of H. Then ¬(at b) = ¬au¬b.

(88) Let H be a non empty lower-bounded relational structure. Suppose H
is a Heyting algebra. Let a, b be elements of H. Then ¬(au b) ≥ ¬at¬b.

Let L be a non empty relational structure and let x, y be elements of L. We
say that y is a complement of x if and only if:

(Def. 23) x t y = >L and x u y = ⊥L.
Let L be a non empty relational structure. We say that L is complemented

if and only if:

(Def. 24) For every element x of L holds there exists element of L which is a
complement of x.

Let X be a set. Observe that 2X⊆ is complemented.
Next we state two propositions:

142 czes law byliński

(89) Let L be a non empty bounded lattice. Suppose L is a Heyting algebra
and for every element x of L holds ¬¬x = x. Let x be an element of L.
Then ¬x is a complement of x.

(90) Let L be a non empty bounded lattice. Then L is distributive and
complemented if and only if L is a Heyting algebra and for every element
x of L holds ¬¬x = x.

Let B be a non empty relational structure. We say that B is Boolean if and
only if:

(Def. 25) B is a lattice bounded distributive and complemented.

We introduce B is a Boolean algebra and B is a Boolean lattice as synonyms of
B is Boolean.

Let us note that every non empty relational structure which is Boolean is also
reflexive, transitive, antisymmetric, bounded, distributive, and complemented
and has g.l.b.’s and l.u.b.’s.

Let us observe that every non empty relational structure which is reflexive,
transitive, antisymmetric, bounded, distributive, and complemented and has
g.l.b.’s and l.u.b.’s is also Boolean.

Let us note that every non empty relational structure which is Boolean is
also Heyting.

One can verify that there exists a lattice which is strict, Boolean, and non
empty.

Let us observe that there exists a lattice which is strict, Heyting, and non
empty.

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[4] Grzegorz Bancerek. Filters - Part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[5] Grzegorz Bancerek. Quantales. Formalized Mathematics, 5(1):85–91, 1996.
[6] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[7] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[8] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[9] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[10] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[11] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

galois connections 143

[13] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[15] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[16] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Math-
ematics, 3(1):1–16, 1992.

[17] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[18] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,
1996.

[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[21] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[24] Mariusz Żynel and Czes law Byliński. Properties of relational structures, posets, lattices

and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received September 25, 1996

144

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Cartesian Products of Relations and

Relational Structures 1

Artur Korni lowicz
Warsaw University

Bia lystok

Summary. In this paper the definitions of cartesian products of
relations and relational structures are introduced. Facts about these no-
tions are proved. This work is the continuation of formalization of [8].

MML Identifier: YELLOW 3.

The articles [11], [7], [14], [16], [15], [5], [12], [10], [6], [9], [3], [13], [2], [1], [17],
and [4] provide the terminology and notation for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme FraenkelA2
concerns a non empty set A, a binary functor F yielding a set, and two binary
predicates P, Q, and states that:

{F(s, t) : s ranges over elements of A, t ranges over elements of A,
P[s, t]} is a subset of A

provided the following condition is met:
• For every element s of A and for every element t of A holds F(s, t) ∈
A.

The scheme ExtensionalityR deals with binary relations A, B and a binary
predicate P, and states that:

A = B
provided the following requirements are met:
• For all sets a, b holds 〈〈a, b〉〉 ∈ A iff P[a, b],
• For all sets a, b holds 〈〈a, b〉〉 ∈ B iff P[a, b].

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

145
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

146 artur korni lowicz

Let X be an empty set. Observe that π1(X) is empty and π2(X) is empty.
Let X, Y be non empty sets and let D be a non empty subset of [:X, Y :].

Observe that π1(D) is non empty and π2(D) is non empty.
Let L be a non empty relational structure and let X be an empty subset of

L. Observe that ↓X is empty.
Let L be a non empty relational structure and let X be an empty subset of

L. Observe that ↑X is empty.
The following propositions are true:

(1) For all sets X, Y and for every subset D of [:X, Y :] holds D ⊆ [:π1(D),
π2(D) :].

(2) Let L be a transitive antisymmetric relational structure with g.l.b.’s
and let a, b, c, d be elements of L. If a ≤ c and b ≤ d, then a u b ≤ c u d.

(3) Let L be a transitive antisymmetric relational structure with l.u.b.’s
and let a, b, c, d be elements of L. If a ≤ c and b ≤ d, then a t b ≤ c t d.

(4) Let L be a complete reflexive antisymmetric non empty relational struc-
ture, and let D be a subset of L, and let x be an element of L. If x ∈ D,
then supD u x = x.

(5) Let L be a complete reflexive antisymmetric non empty relational struc-
ture, and let D be a subset of L, and let x be an element of L. If x ∈ D,
then infD t x = x.

(6) For every non empty relational structure L and for all subsets X, Y of
L such that X ⊆ Y holds ↓X ⊆ ↓Y.

(7) For every non empty relational structure L and for all subsets X, Y of
L such that X ⊆ Y holds ↑X ⊆ ↑Y.

(8) Let S, T be posets with g.l.b.’s, and let f be a map from S into T , and
let x, y be elements of S. Then f preserves inf of {x, y} if and only if
f(x u y) = f(x) u f(y).

(9) Let S, T be posets with l.u.b.’s, and let f be a map from S into T , and
let x, y be elements of S. Then f preserves sup of {x, y} if and only if
f(x t y) = f(x) t f(y).

Now we present four schemes. The scheme Inf Union concerns a complete
antisymmetric non empty relational structure A and a unary predicate P, and
states that:

d−eA{d−eAX : X ranges over subsets of A, P[X]} ≥ d−eA
⋃{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Inf of Infs deals with a complete lattice A and a unary predicate
P, and states that:

d−eA{d−eAX : X ranges over subsets of A, P[X]} = d−eA
⋃{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Sup Union concerns a complete antisymmetric non empty rela-
tional structure A and a unary predicate P, and states that:

cartesian products of relations and . . . 147

⊔
A{
⊔
AX : X ranges over subsets of A, P[X]} ≤ ⊔

A
⋃{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

The scheme Sup of Sups concerns a complete lattice A and a unary predicate
P, and states that:⊔

A{
⊔
AX : X ranges over subsets of A, P[X]} =

⊔
A
⋃{X : X

ranges over subsets of A, P[X]}
for all values of the parameters.

2. Properties of Cartesian Products of Relational Structures

Let P , R be binary relations. The functor P × R yielding a binary relation
is defined by:

(Def. 1) For all sets x, y holds 〈〈x, y〉〉 ∈ P × R iff there exist sets p, q, s, t such
that x = 〈〈p, q〉〉 and y = 〈〈s, t〉〉 and 〈〈p, s〉〉 ∈ P and 〈〈q, t〉〉 ∈ R.

One can prove the following proposition

(10) Let P , R be binary relations and let x be a set. Then x ∈ P ×R if and
only if the following conditions are satisfied:

(i) 〈〈(x1)1, (x2)1〉〉 ∈ P,
(ii) 〈〈(x1)2, (x2)2〉〉 ∈ R,

(iii) there exist sets a, b such that x = 〈〈a, b〉〉,
(iv) there exist sets c, d such that x1 = 〈〈c, d〉〉, and
(v) there exist sets e, f such that x2 = 〈〈e, f〉〉.
Let A, B, X, Y be sets, let P be a relation between A and B, and let R be a

relation between X and Y . Then P ×R is a relation between [:A, X :] and [:B,
Y :].

Let X, Y be relational structures. The functor [:X, Y :] yielding a strict
relational structure is defined by the conditions (Def. 2).

(Def. 2) (i) The carrier of [:X, Y :] = [: the carrier of X, the carrier of Y :], and
(ii) the internal relation of [:X, Y :] = (the internal relation of X)×(the

internal relation of Y).

Let L1, L2 be relational structures and let D be a subset of the carrier of
[:L1, L2 :]. Then π1(D) is a subset of L1. Then π2(D) is a subset of L2.

Let S1, S2 be relational structures, let D1 be a subset of the carrier of S1,
and let D2 be a subset of the carrier of S2. Then [:D1, D2 :] is a subset of [:S1,
S2 :].

Let S1, S2 be non empty relational structures, let x be an element of the
carrier of S1, and let y be an element of the carrier of S2. Then 〈〈x, y〉〉 is an
element of [:S1, S2 :].

Let L1, L2 be non empty relational structures and let x be an element of the
carrier of [:L1, L2 :]. Then x1 is an element of L1. Then x2 is an element of L2.

The following three propositions are true:

148 artur korni lowicz

(11) Let S1, S2 be non empty relational structures, and let a, c be elements
of S1, and let b, d be elements of S2. Then a ≤ c and b ≤ d if and only if
〈〈a, b〉〉 ≤ 〈〈c, d〉〉.

(12) Let S1, S2 be non empty relational structures and let x, y be elements of
[:S1, S2 :]. Then x ≤ y if and only if the following conditions are satisfied:

(i) x1 ≤ y1, and
(ii) x2 ≤ y2.

(13) Let A, B be relational structures, and let C be a non empty relational
structure, and let f , g be maps from [:A, B :] into C. Suppose that for
every element x of A and for every element y of B holds f(〈〈x, y〉〉) = g(〈〈x,
y〉〉). Then f = g.

Let X, Y be non empty relational structures. Note that [:X, Y :] is non
empty.

Let X, Y be reflexive relational structures. Note that [:X, Y :] is reflexive.
Let X, Y be antisymmetric relational structures. Note that [:X, Y :] is anti-

symmetric.
Let X, Y be transitive relational structures. One can verify that [:X, Y :] is

transitive.
Let X, Y be relational structures with l.u.b.’s. One can verify that [:X, Y :]

has l.u.b.’s.
Let X, Y be relational structures with g.l.b.’s. One can verify that [:X, Y :]

has g.l.b.’s.
The following propositions are true:

(14) For all relational structures X, Y such that [:X, Y :] is non empty holds
X is non empty and Y is non empty.

(15) For all non empty relational structures X, Y such that [:X, Y :] is re-
flexive holds X is reflexive and Y is reflexive.

(16) Let X, Y be non empty reflexive relational structures. If [:X, Y :] is
antisymmetric, then X is antisymmetric and Y is antisymmetric.

(17) Let X, Y be non empty reflexive relational structures. If [:X, Y :] is
transitive, then X is transitive and Y is transitive.

(18) For all non empty reflexive relational structures X, Y such that [:X,
Y :] has l.u.b.’s holds X has l.u.b.’s and Y has l.u.b.’s.

(19) For all non empty reflexive relational structures X, Y such that [:X,
Y :] has g.l.b.’s holds X has g.l.b.’s and Y has g.l.b.’s.

Let S1, S2 be relational structures, let D1 be a directed subset of S1, and let
D2 be a directed subset of S2. Then [:D1, D2 :] is a directed subset of [:S1, S2 :].

We now state three propositions:

(20) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2. If [:D1, D2 :]
is directed, then D1 is directed and D2 is directed.

(21) For all non empty relational structures S1, S2 and for every non empty
subset D of [:S1, S2 :] holds π1(D) is non empty and π2(D) is non empty.

cartesian products of relations and . . . 149

(22) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty directed subset of [:S1, S2 :]. Then π1(D) is directed and π2(D)
is directed.

Let S1, S2 be relational structures, let D1 be a filtered subset of S1, and let
D2 be a filtered subset of S2. Then [:D1, D2 :] is a filtered subset of [:S1, S2 :].

Next we state two propositions:

(23) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2. If [:D1, D2 :]
is filtered, then D1 is filtered and D2 is filtered.

(24) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty filtered subset of [:S1, S2 :]. Then π1(D) is filtered and π2(D)
is filtered.

Let S1, S2 be relational structures, let D1 be an upper subset of S1, and let
D2 be an upper subset of S2. Then [:D1, D2 :] is an upper subset of [:S1, S2 :].

We now state two propositions:

(25) Let S1, S2 be non empty reflexive relational structures, and let D1 be a
non empty subset of S1, and let D2 be a non empty subset of S2. If [:D1,
D2 :] is upper, then D1 is upper and D2 is upper.

(26) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty upper subset of [:S1, S2 :]. Then π1(D) is upper and π2(D) is
upper.

Let S1, S2 be relational structures, let D1 be a lower subset of S1, and let
D2 be a lower subset of S2. Then [:D1, D2 :] is a lower subset of [:S1, S2 :].

Next we state two propositions:

(27) Let S1, S2 be non empty reflexive relational structures, and let D1 be a
non empty subset of S1, and let D2 be a non empty subset of S2. If [:D1,
D2 :] is lower, then D1 is lower and D2 is lower.

(28) Let S1, S2 be non empty reflexive relational structures and let D be a
non empty lower subset of [:S1, S2 :]. Then π1(D) is lower and π2(D) is
lower.

Let R be a relational structure. We say that R is void if and only if:

(Def. 3) The internal relation of R is empty.

Let us observe that every relational structure which is empty is also void.
Let us note that there exists a poset which is non void, non empty, and strict.
One can check that every relational structure which is non void is also non

empty.
Let us observe that every relational structure which is non empty and reflex-

ive is also non void.
Let R be a non void relational structure. One can check that the internal

relation of R is non empty.
Next we state a number of propositions:

(29) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2, and let x be

150 artur korni lowicz

an element of S1, and let y be an element of S2. If 〈〈x, y〉〉 ≥ [:D1, D2 :],
then x ≥ D1 and y ≥ D2.

(30) Let S1, S2 be non empty relational structures, and let D1 be a subset
of S1, and let D2 be a subset of S2, and let x be an element of S1, and let
y be an element of S2. If x ≥ D1 and y ≥ D2, then 〈〈x, y〉〉 ≥ [:D1, D2 :].

(31) Let S1, S2 be non empty relational structures, and let D be a subset of
[:S1, S2 :], and let x be an element of S1, and let y be an element of S2.
Then 〈〈x, y〉〉 ≥ D if and only if x ≥ π1(D) and y ≥ π2(D).

(32) Let S1, S2 be non empty relational structures, and let D1 be a non
empty subset of S1, and let D2 be a non empty subset of S2, and let x be
an element of S1, and let y be an element of S2. If 〈〈x, y〉〉 ≤ [:D1, D2 :],
then x ≤ D1 and y ≤ D2.

(33) Let S1, S2 be non empty relational structures, and let D1 be a subset
of S1, and let D2 be a subset of S2, and let x be an element of S1, and let
y be an element of S2. If x ≤ D1 and y ≤ D2, then 〈〈x, y〉〉 ≤ [:D1, D2 :].

(34) Let S1, S2 be non empty relational structures, and let D be a subset of
[:S1, S2 :], and let x be an element of S1, and let y be an element of S2.
Then 〈〈x, y〉〉 ≤ D if and only if x ≤ π1(D) and y ≤ π2(D).

(35) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a subset of S1, and let D2 be a subset of S2, and let x be an element
of S1, and let y be an element of S2. Suppose sup D1 exists in S1 and sup
D2 exists in S2 and for every element b of [:S1, S2 :] such that b ≥ [:D1,
D2 :] holds 〈〈x, y〉〉 ≤ b. Then for every element c of S1 such that c ≥ D1

holds x ≤ c and for every element d of S2 such that d ≥ D2 holds y ≤ d.
(36) Let S1, S2 be antisymmetric non empty relational structures, and let

D1 be a subset of S1, and let D2 be a subset of S2, and let x be an element
of S1, and let y be an element of S2. Suppose inf D1 exists in S1 and inf
D2 exists in S2 and for every element b of [:S1, S2 :] such that b ≤ [:D1,
D2 :] holds 〈〈x, y〉〉 ≥ b. Then for every element c of S1 such that c ≤ D1

holds x ≥ c and for every element d of S2 such that d ≤ D2 holds y ≥ d.
(37) Let S1, S2 be antisymmetric non empty relational structures, and let

D1 be a non empty subset of S1, and let D2 be a non empty subset of S2,
and let x be an element of S1, and let y be an element of S2. Suppose for
every element c of S1 such that c ≥ D1 holds x ≤ c and for every element
d of S2 such that d ≥ D2 holds y ≤ d. Let b be an element of [:S1, S2 :]. If
b ≥ [:D1, D2 :], then 〈〈x, y〉〉 ≤ b.

(38) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2,
and let x be an element of S1, and let y be an element of S2. Suppose for
every element c of S1 such that c ≥ D1 holds x ≥ c and for every element
d of S2 such that d ≥ D2 holds y ≥ d. Let b be an element of [:S1, S2 :]. If
b ≥ [:D1, D2 :], then 〈〈x, y〉〉 ≥ b.

(39) Let S1, S2 be antisymmetric non empty relational structures, and let

cartesian products of relations and . . . 151

D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
Then sup D1 exists in S1 and sup D2 exists in S2 if and only if sup [:D1,
D2 :] exists in [:S1, S2 :].

(40) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
Then inf D1 exists in S1 and inf D2 exists in S2 if and only if inf [:D1,
D2 :] exists in [:S1, S2 :].

(41) Let S1, S2 be antisymmetric non empty relational structures and let
D be a subset of [:S1, S2 :]. Then sup π1(D) exists in S1 and sup π2(D)
exists in S2 if and only if sup D exists in [:S1, S2 :].

(42) Let S1, S2 be antisymmetric non empty relational structures and let D
be a subset of [:S1, S2 :]. Then inf π1(D) exists in S1 and inf π2(D) exists
in S2 if and only if inf D exists in [:S1, S2 :].

(43) Let S1, S2 be antisymmetric non empty relational structures, and let D1

be a non empty subset of S1, and let D2 be a non empty subset of S2. If
supD1 exists in S1 and supD2 exists in S2, then sup[:D1, D2 :] = 〈〈 supD1,
supD2〉〉.

(44) Let S1, S2 be antisymmetric non empty relational structures, and let
D1 be a non empty subset of S1, and let D2 be a non empty subset of S2.
If inf D1 exists in S1 and inf D2 exists in S2, then inf[:D1, D2 :] = 〈〈 inf D1,
inf D2〉〉.

Let X, Y be complete antisymmetric non empty relational structures. Ob-
serve that [:X, Y :] is complete.

We now state several propositions:

(45) Let X, Y be non empty lower-bounded antisymmetric relational struc-
tures. If [:X, Y :] is complete, then X is complete and Y is complete.

(46) Let L1, L2 be antisymmetric non empty relational structures and let
D be a non empty subset of [:L1, L2 :]. If [:L1, L2 :] is complete or sup D
exists in [:L1, L2 :], then supD = 〈〈 supπ1(D), supπ2(D)〉〉.

(47) Let L1, L2 be antisymmetric non empty relational structures and let
D be a non empty subset of [:L1, L2 :]. If [:L1, L2 :] is complete or inf D
exists in [:L1, L2 :], then infD = 〈〈 inf π1(D), inf π2(D)〉〉.

(48) For all non empty reflexive relational structures S1, S2 and for every
non empty directed subset D of [:S1, S2 :] holds [:π1(D), π2(D) :] ⊆ ↓D.

(49) For all non empty reflexive relational structures S1, S2 and for every
non empty filtered subset D of [:S1, S2 :] holds [: π1(D), π2(D) :] ⊆ ↑D.

The scheme Kappa2DS concerns non empty relational structures A, B, C and
a binary functor F yielding a set, and states that:

There exists a map f from [:A, B :] into C such that for every element
x of A and for every element y of B holds f(〈〈x, y〉〉) = F(x, y)

provided the following requirement is met:
• For every element x of A and for every element y of B holds F(x, y)

is an element of C.

152 artur korni lowicz

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,

1(3):537–541, 1990.
[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[8] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[9] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[16] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

[17] Mariusz Żynel and Czes law Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received September 25, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Definitions and Properties of the Join and

Meet of Subsets 1

Artur Korni lowicz
Warsaw University

Bia lystok

Summary. This paper is the continuation of formalization of [6].
The definitions of meet and join of subsets of relational structures are
introduced. The properties of these notions are proved.

MML Identifier: YELLOW 4.

The terminology and notation used here are introduced in the following articles:
[10], [12], [5], [3], [9], [11], [2], [1], [7], [13], [4], and [8].

1. Preliminaries

The following propositions are true:

(1) Let L be a non empty relational structure, X be a set, and a be an
element of L. If a ∈ X and sup X exists in L, then a ≤ ⊔LX.

(2) Let L be a non empty relational structure, X be a set, and a be an
element of L. If a ∈ X and inf X exists in L, then d−eLX ≤ a.

Let L be a relational structure and let A, B be subsets of the carrier of L.
We say that A is finer than B if and only if:

(Def. 1) For every element a of L such that a ∈ A there exists an element b of
L such that b ∈ B and a ≤ b.

We say that B is coarser than A if and only if:

(Def. 2) For every element b of L such that b ∈ B there exists an element a of
L such that a ∈ A and a ≤ b.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

153
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

154 artur korni lowicz

Let us note that in the case when the relational structure L is reflexive and
non empty, both predicates defined above are reflexive.

Next we state several propositions:

(3) For every relational structure L and for every subset B of L holds ∅L is
finer than B.

(4) Let L be a transitive relational structure and A, B, C be subsets of L.
If A is finer than B and B is finer than C, then A is finer than C.

(5) For every relational structure L and for all subsets A, B of L such that
B is finer than A and A is lower holds B ⊆ A.

(6) For every relational structure L and for every subset A of L holds ∅L is
coarser than A.

(7) Let L be a transitive relational structure and A, B, C be subsets of L.
If C is coarser than B and B is coarser than A, then C is coarser than A.

(8) Let L be a relational structure and A, B be subsets of L. If A is coarser
than B and B is upper, then A ⊆ B.

2. The Join of Subsets

Let L be a non empty relational structure and let D1, D2 be subsets of the
carrier of L. The functor D1 tD2 yielding a subset of L is defined by:

(Def. 3) D1 tD2 = {x t y : x ranges over elements of L, y ranges over elements
of L, x ∈ D1 ∧ y ∈ D2}.

Let L be an antisymmetric relational structure with l.u.b.’s and let D1, D2 be
subsets of the carrier of L. Let us note that the functor D1tD2 is commutative.

One can prove the following propositions:

(9) For every non empty relational structure L and for every subset X of
L holds X t ∅L = ∅.

(10) Let L be a non empty relational structure, X, Y be subsets of L, and
x, y be elements of L. If x ∈ X and y ∈ Y, then x t y ∈ X t Y.

(11) Let L be an antisymmetric relational structure with l.u.b.’s, A be a
subset of L, and B be a non empty subset of L. Then A is finer than
A tB.

(12) For every antisymmetric relational structure L with l.u.b.’s and for all
subsets A, B of L holds A tB is coarser than A.

(13) For every antisymmetric reflexive relational structure L with l.u.b.’s
and for every subset A of L holds A ⊆ A tA.

(14) Let L be an antisymmetric transitive relational structure with l.u.b.’s
and D1, D2, D3 be subsets of L. Then (D1 tD2)tD3 = D1 t (D2 tD3).

Let L be a non empty relational structure and let D1, D2 be non empty
subsets of the carrier of L. Note that D1 tD2 is non empty.

definitions and properties of the join and . . . 155

Let L be a transitive antisymmetric relational structure with l.u.b.’s and let
D1, D2 be directed subsets of L. Note that D1 tD2 is directed.

Let L be a transitive antisymmetric relational structure with l.u.b.’s and let
D1, D2 be filtered subsets of L. Note that D1 tD2 is filtered.

Let L be a poset with l.u.b.’s and let D1, D2 be upper subsets of L. Observe
that D1 tD2 is upper.

We now state a number of propositions:

(15) Let L be a non empty relational structure, Y be a subset of L, and x
be an element of L. Then {x} tY = {xt y : y ranges over elements of L,
y ∈ Y }.

(16) For every non empty relational structure L and for all subsets A, B, C
of L holds A t (B ∪C) = (A tB) ∪ (A tC).

(17) Let L be an antisymmetric reflexive relational structure with l.u.b.’s
and A, B, C be subsets of L. Then A ∪ (B t C) ⊆ (A ∪B) t (A ∪ C).

(18) Let L be an antisymmetric relational structure with l.u.b.’s, A be an
upper subset of L, and B, C be subsets of L. Then (A ∪B) t (A ∪ C) ⊆
A ∪ (B t C).

(19) For every non empty relational structure L and for all elements x, y of
L holds {x} t {y} = {x t y}.

(20) For every non empty relational structure L and for all elements x, y, z
of L holds {x} t {y, z} = {x t y, x t z}.

(21) For every non empty relational structure L and for all subsets X1, X2,
Y1, Y2 of L such that X1 ⊆ Y1 and X2 ⊆ Y2 holds X1 tX2 ⊆ Y1 t Y2.

(22) Let L be a reflexive antisymmetric relational structure with l.u.b.’s, D
be a subset of L, and x be an element of L. If x ≤ D, then {x} tD = D.

(23) Let L be an antisymmetric relational structure with l.u.b.’s, D be a
subset of L, and x be an element of L. Then x ≤ {x} tD.

(24) Let L be a poset with l.u.b.’s, X be a subset of L, and x be an element
of L. If inf {x} tX exists in L and inf X exists in L, then x t inf X ≤
inf({x} tX).

(25) Let L be a complete transitive antisymmetric non empty relational
structure, A be a subset of L, and B be a non empty subset of L. Then
A ≤ sup(A tB).

(26) Let L be a transitive antisymmetric relational structure with l.u.b.’s, a,
b be elements of L, and A, B be subsets of L. If a ≤ A and b ≤ B, then
a t b ≤ A tB.

(27) Let L be a transitive antisymmetric relational structure with l.u.b.’s, a,
b be elements of L, and A, B be subsets of L. If a ≥ A and b ≥ B, then
a t b ≥ A tB.

(28) For every complete non empty poset L and for all non empty subsets
A, B of L holds sup(A tB) = supA t supB.

(29) Let L be an antisymmetric relational structure with l.u.b.’s, X be a

156 artur korni lowicz

subset of L, and Y be a non empty subset of L. Then X ⊆ ↓(X t Y).

(30) Let L be a poset with l.u.b.’s, x, y be elements of 〈Ids(L),⊆〉, and X,
Y be subsets of L. If x = X and y = Y, then x t y = ↓(X t Y).

(31) Let L be a non empty relational structure and D be a subset of [:L,
L :]. Then

⋃{X : X ranges over subsets of L,
∨
x : element of L X = {x} t

π2(D) ∧ x ∈ π1(D)} = π1(D) t π2(D).

(32) Let L be a transitive antisymmetric relational structure with l.u.b.’s
and D1, D2 be subsets of L. Then ↓(↓D1 t ↓D2) ⊆ ↓(D1 tD2).

(33) For every poset L with l.u.b.’s and for all subsets D1, D2 of L holds
↓(↓D1 t ↓D2) = ↓(D1 tD2).

(34) Let L be a transitive antisymmetric relational structure with l.u.b.’s
and D1, D2 be subsets of L. Then ↑(↑D1 t ↑D2) ⊆ ↑(D1 tD2).

(35) For every poset L with l.u.b.’s and for all subsets D1, D2 of L holds
↑(↑D1 t ↑D2) = ↑(D1 tD2).

3. The Meet of Subsets

Let L be a non empty relational structure and let D1, D2 be subsets of the
carrier of L. The functor D1 uD2 yields a subset of L and is defined by:

(Def. 4) D1 uD2 = {x u y : x ranges over elements of L, y ranges over elements
of L, x ∈ D1 ∧ y ∈ D2}.

Let L be an antisymmetric relational structure with g.l.b.’s and let D1, D2 be
subsets of the carrier of L. Let us notice that the functorD1uD2 is commutative.

Next we state several propositions:

(36) For every non empty relational structure L and for every subset X of
L holds X u ∅L = ∅.

(37) Let L be a non empty relational structure, X, Y be subsets of L, and
x, y be elements of L. If x ∈ X and y ∈ Y, then x u y ∈ X u Y.

(38) Let L be an antisymmetric relational structure with g.l.b.’s, A be a
subset of L, and B be a non empty subset of L. Then A is coarser than
A uB.

(39) For every antisymmetric relational structure L with g.l.b.’s and for all
subsets A, B of L holds A uB is finer than A.

(40) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for every subset A of L holds A ⊆ A uA.

(41) Let L be an antisymmetric transitive relational structure with g.l.b.’s
and D1, D2, D3 be subsets of L. Then (D1 uD2)uD3 = D1 u (D2 uD3).

Let L be a non empty relational structure and let D1, D2 be non empty
subsets of the carrier of L. Observe that D1 uD2 is non empty.

Let L be a transitive antisymmetric relational structure with g.l.b.’s and let
D1, D2 be directed subsets of L. One can check that D1 uD2 is directed.

definitions and properties of the join and . . . 157

Let L be a transitive antisymmetric relational structure with g.l.b.’s and let
D1, D2 be filtered subsets of L. One can check that D1 uD2 is filtered.

Let L be a semilattice and let D1, D2 be lower subsets of L. One can verify
that D1 uD2 is lower.

One can prove the following propositions:

(42) Let L be a non empty relational structure, Y be a subset of L, and x
be an element of L. Then {x} uY = {xu y : y ranges over elements of L,
y ∈ Y }.

(43) For every non empty relational structure L and for all subsets A, B, C
of L holds A u (B ∪C) = A uB ∪A uC.

(44) Let L be an antisymmetric reflexive relational structure with g.l.b.’s
and A, B, C be subsets of L. Then A ∪B u C ⊆ (A ∪B) u (A ∪C).

(45) Let L be an antisymmetric relational structure with g.l.b.’s, A be a lower
subset of L, and B, C be subsets of L. Then (A∪B)u(A∪C) ⊆ A∪BuC.

(46) For every non empty relational structure L and for all elements x, y of
L holds {x} u {y} = {x u y}.

(47) For every non empty relational structure L and for all elements x, y, z
of L holds {x} u {y, z} = {x u y, x u z}.

(48) For every non empty relational structure L and for all subsets X1, X2,
Y1, Y2 of L such that X1 ⊆ Y1 and X2 ⊆ Y2 holds X1 uX2 ⊆ Y1 u Y2.

(49) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for all subsets A, B of L holds A ∩B ⊆ A uB.

(50) Let L be an antisymmetric reflexive relational structure with g.l.b.’s
and A, B be lower subsets of L. Then A uB = A ∩B.

(51) Let L be a reflexive antisymmetric relational structure with g.l.b.’s, D
be a subset of L, and x be an element of L. If x ≥ D, then {x} uD = D.

(52) Let L be an antisymmetric relational structure with g.l.b.’s, D be a
subset of L, and x be an element of L. Then {x} uD ≤ x.

(53) Let L be a semilattice, X be a subset of L, and x be an element of L.
If sup {x} uX exists in L and sup X exists in L, then sup({x} uX) ≤
x u supX.

(54) Let L be a complete transitive antisymmetric non empty relational
structure, A be a subset of L, and B be a non empty subset of L. Then
A ≥ inf(A uB).

(55) Let L be a transitive antisymmetric relational structure with g.l.b.’s, a,
b be elements of L, and A, B be subsets of L. If a ≤ A and b ≤ B, then
a u b ≤ A uB.

(56) Let L be a transitive antisymmetric relational structure with g.l.b.’s, a,
b be elements of L, and A, B be subsets of L. If a ≥ A and b ≥ B, then
a u b ≥ A uB.

(57) For every complete non empty poset L and for all non empty subsets
A, B of L holds inf(A uB) = inf A u inf B.

158 artur korni lowicz

(58) Let L be a semilattice, x, y be elements of 〈Ids(L),⊆〉, and x1, y1 be
subsets of L. If x = x1 and y = y1, then x u y = x1 u y1.

(59) Let L be an antisymmetric relational structure with g.l.b.’s, X be a
subset of L, and Y be a non empty subset of L. Then X ⊆ ↑(X u Y).

(60) Let L be a non empty relational structure and D be a subset of [:L,
L :]. Then

⋃{X : X ranges over subsets of L,
∨
x : element of L X = {x} u

π2(D) ∧ x ∈ π1(D)} = π1(D) u π2(D).

(61) Let L be a transitive antisymmetric relational structure with g.l.b.’s
and D1, D2 be subsets of L. Then ↓(↓D1 u ↓D2) ⊆ ↓(D1 uD2).

(62) For every semilattice L and for all subsets D1, D2 of L holds ↓(↓D1 u
↓D2) = ↓(D1 uD2).

(63) Let L be a transitive antisymmetric relational structure with g.l.b.’s
and D1, D2 be subsets of L. Then ↑(↑D1 u ↑D2) ⊆ ↑(D1 uD2).

(64) For every semilattice L and for all subsets D1, D2 of L holds ↑(↑D1 u
↑D2) = ↑(D1 uD2).

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,

1(3):537–541, 1990.
[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[5] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[6] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[7] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[8] Artur Korni lowicz. Cartesian products of relations and relational structures. Formalized
Mathematics, 6(1):145–152, 1997.

[9] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[11] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[12] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.

[13] Mariusz Żynel and Czes law Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received September 25, 1996

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Meet – Continuous Lattices 1

Artur Korni lowicz
Warsaw University

Bia lystok

Summary. The aim of this work is the formalization of Chapter 0
Section 4 of [11]. In this paper the definition of meet-continuous lattices
is introduced. Theorem 4.2 and Remark 4.3 are proved.

MML Identifier: WAYBEL 2.

The terminology and notation used in this paper are introduced in the following
papers: [18], [21], [9], [22], [24], [23], [19], [6], [4], [14], [10], [7], [17], [5], [20], [2],
[12], [1], [3], [13], [25], [8], [15], and [16].

1. Preliminaries

Let X, Y be non empty sets, let f be a function from X into Y , and let Z
be a non empty subset of X. One can verify that f ◦Z is non empty.

One can check that every non empty relational structure which is reflexive
and connected has g.l.b.’s and l.u.b.’s.

Let C be a chain. One can verify that ΩC is directed.
Let X be a set. Note that every binary relation on X which is ordering is

also reflexive, antisymmetric, and transitive.
Let X be a non empty set. One can verify that there exists a binary relation

on X which is ordering.
The following propositions are true:

(1) Let L be an up-complete semilattice, and let D be a non empty directed
subset of L, and let x be an element of L. Then sup {x} uD exists in L.

(2) Let L be an up-complete sup-semilattice, and let D be a non empty
directed subset of L, and let x be an element of L. Then sup {x} t D
exists in L.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

159
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

160 artur korni lowicz

(3) For every up-complete sup-semilattice L and for all non empty directed
subsets A, B of L holds A ≤ sup(A tB).

(4) For every up-complete sup-semilattice L and for all non empty directed
subsets A, B of L holds sup(A tB) = supA t supB.

(5) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then {sup({x} u π2(D)) : x ranges over elements of L,
x ∈ π1(D)} = {supX : X ranges over non empty directed subsets of L,∨
x : element of L X = {x} u π2(D) ∧ x ∈ π1(D)}.

(6) Let L be a semilattice and let D be a non empty directed subset of
[:L, L :]. Then

⋃{X : X ranges over non empty directed subsets of L,∨
x : element of L X = {x} u π2(D) ∧ x ∈ π1(D)} = π1(D) u π2(D).

(7) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then sup

⋃{X : X ranges over non empty directed
subsets of L,

∨
x : element of L X = {x} u π2(D) ∧ x ∈ π1(D)} exists in L.

(8) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then sup {supX : X ranges over non empty directed
subsets of L,

∨
x : element of L X = {x} u π2(D) ∧ x ∈ π1(D)} exists in L.

(9) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then

⊔
L{supX : X ranges over non empty directed

subsets of L,
∨
x : element of L X = {x} uπ2(D) ∧ x ∈ π1(D)} ≤ ⊔L

⋃{X :
X ranges over non empty directed subsets of L,

∨
x : element of L X = {x}u

π2(D) ∧ x ∈ π1(D)}.
(10) Let L be an up-complete semilattice and let D be a non empty directed

subset of [:L, L :]. Then
⊔
L{supX : X ranges over non empty directed

subsets of L,
∨
x : element of L X = {x} uπ2(D) ∧ x ∈ π1(D)} =

⊔
L

⋃{X :
X ranges over non empty directed subsets of L,

∨
x : element of L X = {x}u

π2(D) ∧ x ∈ π1(D)}.
Let S, T be up-complete non empty reflexive relational structures. One can

verify that [:S, T :] is up-complete.
The following four propositions are true:

(11) Let S, T be non empty reflexive antisymmetric relational structures. If
[:S, T :] is up-complete, then S is up-complete and T is up-complete.

(12) Let L be an up-complete antisymmetric non empty reflexive relational
structure and let D be a non empty directed subset of [:L, L :]. Then
supD = 〈〈 supπ1(D), supπ2(D)〉〉.

(13) Let S1, S2 be non empty relational structures, and let D be a subset
of S1, and let f be a map from S1 into S2. If f is monotone, then
f◦↓D ⊆ ↓(f ◦D).

(14) Let S1, S2 be non empty relational structures, and let D be a subset
of S1, and let f be a map from S1 into S2. If f is monotone, then
f◦↑D ⊆ ↑(f ◦D).

Let us observe that every non empty reflexive relational structure which is
trivial is also distributive and complemented.

meet – continuous lattices 161

Let us note that there exists a lattice which is strict, non empty, and trivial.

One can prove the following three propositions:

(15) Let H be a distributive complete lattice, and let a be an element of H,
and let X be a finite subset of H. Then sup({a} uX) = a u supX.

(16) Let H be a distributive complete lattice, and let a be an element of H,
and let X be a finite subset of H. Then inf({a} tX) = a t inf X.

(17) Let H be a complete distributive lattice, and let a be an element of H,
and let X be a finite subset of H. Then a u � preserves sup of X.

2. The properties of nets

The scheme ExNet concerns a non empty relational structure A, a prenet
B over A, and a unary functor F yielding an element of the carrier of A, and
states that:

There exists a prenet M over A such that
(i) the relational structure of M = the relational structure of B,

and

(ii) for every element i of the carrier of M holds (the mapping of
M)(i) = F((the mapping of B)(i))

for all values of the parameters.

The following three propositions are true:

(18) Let L be a non empty relational structure and let N be a prenet over
L. If N is eventually-directed, then rng netmap(N,L) is directed.

(19) Let L be a non empty reflexive relational structure, and let D be a non
empty directed subset of L, and let n be a function from D into the carrier
of L. Then 〈D, (the internal relation of L) |2(D), n〉 is a prenet over L.

(20) Let L be a non empty reflexive relational structure, and let D be a non
empty directed subset of L, and let n be a function from D into the carrier
of L, and let N be a prenet over L. Suppose n = idD and N = 〈D, (the
internal relation of L) |2(D), n〉. Then N is eventually-directed.

Let L be a non empty relational structure and let N be a net structure over
L. The functor supN yielding an element of L is defined by:

(Def. 1) supN = Sup(the mapping of N).

Let L be a non empty relational structure, let J be a set, and let f be a
function from J into the carrier of L. The functor FinSups(f) yields a prenet
over L and is defined by the condition (Def. 2).

(Def. 2) There exists a function g from Fin J into the carrier of L such that
for every element x of Fin J holds g(x) = sup(f ◦x) and FinSups(f) =
〈Fin J,⊆Fin J , g〉.

The following proposition is true

162 artur korni lowicz

(21) Let L be a non empty relational structure, and let J , x be sets, and
let f be a function from J into the carrier of L. Then x is an element of
FinSups(f) if and only if x is an element of Fin J.

Let L be a complete antisymmetric non empty reflexive relational structure,
let J be a set, and let f be a function from J into the carrier of L. Note that
FinSups(f) is monotone.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty net structure over L. The functor xuN yielding a strict net
structure over L is defined by the conditions (Def. 3).

(Def. 3) (i) The relational structure of x u N = the relational structure of N ,
and

(ii) for every element i of the carrier of xuN there exists an element y of L
such that y = (the mapping ofN)(i) and (the mapping of xuN)(i) = xuy.

We now state the proposition

(22) Let L be a non empty relational structure, and let N be a non empty
net structure over L, and let x be an element of L, and let y be a set.
Then y is an element of N if and only if y is an element of x uN.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty net structure over L. Observe that x uN is non empty.

Let L be a non empty relational structure, let x be an element of L, and let
N be a prenet over L. Note that x uN is directed.

Next we state several propositions:

(23) Let L be a non empty relational structure, and let x be an element of L,
and let F be a non empty net structure over L. Then rng (the mapping
of x u F) = {x} u rng (the mapping of F).

(24) Let L be a non empty relational structure, and let J be a set, and let
f be a function from J into the carrier of L. If for every set x holds sup
f◦x exists in L, then rng netmap(FinSups(f), L) ⊆ finsups(rng f).

(25) Let L be a non empty reflexive antisymmetric relational structure, and
let J be a set, and let f be a function from J into the carrier of L. Then
rng f ⊆ rng netmap(FinSups(f), L).

(26) Let L be a non empty reflexive antisymmetric relational structure, and
let J be a set, and let f be a function from J into the carrier of L.
Suppose sup rng f exists in L and sup rng netmap(FinSups(f), L) exists
in L and for every element x of Fin J holds sup f ◦x exists in L. Then
Sup(f) = sup FinSups(f).

(27) Let L be an antisymmetric transitive relational structure with g.l.b.’s,
and let N be a prenet over L, and let x be an element of L. If N is
eventually-directed, then x uN is eventually-directed.

(28) Let L be an up-complete semilattice. Suppose that for every element x
of L and for every non empty directed subset E of L such that x ≤ supE
holds x ≤ sup({x} uE). Let D be a non empty directed subset of L and
let x be an element of L. Then x u supD = sup({x} uD).

meet – continuous lattices 163

(29) Let L be a poset with l.u.b.’s. Suppose that for every directed subset
X of L and for every element x of L holds xu supX = sup({x}uX). Let
X be a subset of L and let x be an element of L. If sup X exists in L,
then x u supX = sup({x} u finsups(X)).

(30) Let L be an up-complete lattice. Suppose that for every subset X of L
and for every element x of L holds x u supX = sup({x} u finsups(X)).
Let X be a non empty directed subset of L and let x be an element of L.
Then x u supX = sup({x} uX).

3. On the inf and sup operation

Let L be a non empty relational structure. The functor inf op(L) yields a
map from [:L, L :] into L and is defined as follows:

(Def. 4) For all elements x, y of L holds (inf op(L))(〈〈x, y〉〉) = x u y.
One can prove the following proposition

(31) For every non empty relational structure L and for every element x of
[:L, L :] holds (inf op(L))(x) = x1 u x2.

Let L be a transitive antisymmetric relational structure with g.l.b.’s. Note
that inf op(L) is monotone.

The following two propositions are true:

(32) For every non empty relational structure S and for all subsets D1, D2

of S holds (inf op(S))◦[:D1, D2 :] = D1 uD2.

(33) For every up-complete semilattice L and for every non empty directed
subset D of [:L, L :] holds sup((inf op(L))◦D) = sup(π1(D) u π2(D)).

Let L be a non empty relational structure. The functor sup op(L) yielding
a map from [:L, L :] into L is defined by:

(Def. 5) For all elements x, y of L holds (sup op(L))(〈〈x, y〉〉) = x t y.
We now state the proposition

(34) For every non empty relational structure L and for every element x of
[:L, L :] holds (sup op(L))(x) = x1 t x2.

Let L be a transitive antisymmetric relational structure with l.u.b.’s. Observe
that sup op(L) is monotone.

The following two propositions are true:

(35) For every non empty relational structure S and for all subsets D1, D2

of S holds (sup op(S))◦[:D1, D2 :] = D1 tD2.

(36) For every complete non empty poset L and for every non empty filtered
subset D of [:L, L :] holds inf((sup op(L))◦D) = inf(π1(D) t π2(D)).

164 artur korni lowicz

4. Meet-continuous lattices

Let R be a non empty reflexive relational structure. We say that R satisfies
MC if and only if:

(Def. 6) For every element x of R and for every non empty directed subset D of
R holds x u supD = sup({x} uD).

Let R be a non empty reflexive relational structure. We say that R is meet-
continuous if and only if:

(Def. 7) R is up-complete and satisfies MC.

One can check that every non empty reflexive relational structure which is
trivial satisfies MC.

Let us observe that every non empty reflexive relational structure which
is meet-continuous is also up-complete and satisfies MC and every non empty
reflexive relational structure which is up-complete and satisfies MC is also meet-
continuous.

Let us observe that there exists a lattice which is strict, non empty, and
trivial.

Next we state two propositions:

(37) Let S be a non empty reflexive relational structure. Suppose that for
every subset X of S and for every element x of S holds x u supX =⊔
S{x u y : y ranges over elements of S, y ∈ X}. Then S satisfies MC.

(38) Let L be an up-complete semilattice. If SupMap(L) is meet-preserving,
then for all ideals I1, I2 of L holds sup I1 u sup I2 = sup(I1 u I2).

Let L be an up-complete sup-semilattice. Note that SupMap(L) is join-
preserving.

One can prove the following propositions:

(39) Let L be an up-complete semilattice. If for all ideals I1, I2 of L holds
sup I1 u sup I2 = sup(I1 u I2), then SupMap(L) is meet-preserving.

(40) Let L be an up-complete semilattice. Suppose that for all ideals I1,
I2 of L holds sup I1 u sup I2 = sup(I1 u I2). Let D1, D2 be directed non
empty subsets of L. Then supD1 u supD2 = sup(D1 uD2).

(41) Let L be a non empty reflexive relational structure. Suppose L satisfies
MC. Let x be an element of L and let N be a non empty prenet over L. If
N is eventually-directed, then x u supN = sup({x} u rng netmap(N,L)).

(42) Let L be a non empty reflexive relational structure. Suppose that for
every element x of L and for every prenet N over L such that N is
eventually-directed holds xu supN = sup({x}u rng netmap(N,L)). Then
L satisfies MC.

(43) Let L be an up-complete antisymmetric non empty reflexive relational
structure. Suppose inf op(L) is directed-sups-preserving. Let D1, D2 be
non empty directed subsets of L. Then supD1 u supD2 = sup(D1 uD2).

meet – continuous lattices 165

(44) Let L be a non empty reflexive antisymmetric relational structure. If
for all non empty directed subsets D1, D2 of L holds supD1 u supD2 =
sup(D1 uD2), then L satisfies MC.

(45) Let L be an antisymmetric non empty reflexive relational structure with
g.l.b.’s, satisfying MC, and let x be an element of L, and let D be a non
empty directed subset of L. If x ≤ supD, then x = sup({x} uD).

(46) Let L be an up-complete semilattice. Suppose that for every element x
of L and for every non empty directed subset E of L such that x ≤ supE
holds x ≤ sup({x} uE). Then inf op(L) is directed-sups-preserving.

(47) Let L be a complete antisymmetric non empty reflexive relational struc-
ture. Suppose that for every element x of L and for every prenet N
over L such that N is eventually-directed holds x u supN = sup({x} u
rng netmap(N,L)). Let x be an element of L, and let J be a set, and
let f be a function from J into the carrier of L. Then x u Sup(f) =
sup(x u FinSups(f)).

(48) Let L be a complete semilattice. Suppose that for every element x of
L and for every set J and for every function f from J into the carrier of
L holds xu Sup(f) = sup(xuFinSups(f)). Let x be an element of L and
let N be a prenet over L. If N is eventually-directed, then x u supN =
sup({x} u rng netmap(N,L)).

(49) For every up-complete lattice L holds L is meet-continuous iff
SupMap(L) is meet-preserving and join-preserving.

Let L be a meet-continuous lattice. One can verify that SupMap(L) is meet-
preserving and join-preserving.

We now state four propositions:

(50) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for all ideals I1, I2 of L holds sup I1 u sup I2 = sup(I1 u I2).

(51) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for all non empty directed subsets D1, D2 of L holds supD1u supD2 =
sup(D1 uD2).

(52) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for every element x of L and for every non empty directed subset D of
L such that x ≤ supD holds x = sup({x} uD).

(53) For every up-complete semilattice L holds L is meet-continuous iff
inf op(L) is directed-sups-preserving.

Let L be a meet-continuous semilattice. Observe that inf op(L) is directed-
sups-preserving.

The following two propositions are true:

(54) Let L be an up-complete semilattice. Then L is meet-continuous if
and only if for every element x of L and for every non empty prenet N
over L such that N is eventually-directed holds x u supN = sup({x} u
rng netmap(N,L)).

166 artur korni lowicz

(55) Let L be a complete semilattice. Then L is meet-continuous if and only
if for every element x of L and for every set J and for every function f
from J into the carrier of L holds x u Sup(f) = sup(x u FinSups(f)).

Let L be a meet-continuous semilattice and let x be an element of L. One
can verify that x u � is directed-sups-preserving.

The following proposition is true

(56) For every complete non empty poset H holds H is Heyting iff H is
meet-continuous and distributive.

Let us mention that every non empty poset which is complete and Heyting
is also meet-continuous and distributive and every non empty poset which is
complete, meet-continuous, and distributive is also Heyting.

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[4] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[5] Józef Bia las. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[12] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[13] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[14] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109,
1991.

[15] Artur Korni lowicz. Cartesian products of relations and relational structures. Formalized
Mathematics, 6(1):145–152, 1997.

[16] Artur Korni lowicz. Definitions and properties of the join and meet of subsets. Formalized
Mathematics, 6(1):153–158, 1997.

[17] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[19] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,
1(1):187–190, 1990.

[20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[21] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.

meet – continuous lattices 167

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

[25] Mariusz Żynel and Czes law Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received October 10, 1996

168

FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

The “Way-Below” Relation 1

Grzegorz Bancerek
Warsaw University

Bia lystok

Summary. In the paper the “way-below” relation, in symbols
x� y, is introduced. Some authors prefer the term “relatively compact”
or “way inside”, since in the poset of open sets of a topology it is natural
to read U � V as “U is relatively compact in V ”. A compact element of
a poset (or an element isolated from below) is defined to be way below
itself. So, the compactness in the poset of open sets of a topology is
equivalent to the compactness in that topology.

The article includes definitions, facts and examples 1.1–1.8 presented
in [15, pp. 38–42].

MML Identifier: WAYBEL 3.

The terminology and notation used in this paper have been introduced in the
following articles: [5], [25], [29], [30], [31], [20], [14], [23], [8], [28], [10], [11], [22],
[24], [6], [19], [7], [26], [33], [27], [21], [32], [13], [12], [9], [4], [2], [1], [16], [3], [17],
and [18].

1. The “Way-Below” Relation

Let L be a non empty reflexive relational structure and let x, y be elements
of L. We say that x is way below y if and only if:

(Def. 1) For every non empty directed subset D of L such that y ≤ supD there
exists an element d of L such that d ∈ D and x ≤ d.

We introduce x� y and y � x as synonyms of x is way below y.
Let L be a non empty reflexive relational structure and let x be an element

of L. We say that x is compact if and only if:

(Def. 2) x is way below x.

1This work has been partially supported by Office of Naval Research Grant N00014-95-1-
1336.

169
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630

170 grzegorz bancerek

We introduce x is isolated from below as a synonym of x is compact.

Next we state several propositions:

(1) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x� y, then x ≤ y.

(2) Let L be a non empty reflexive transitive relational structure and let u,
x, y, z be elements of L. If u ≤ x and x� y and y ≤ z, then u� z.

(3) Let L be a non empty poset. Suppose L is inf-complete or has l.u.b.’s.
Let x, y, z be elements of L. If x� z and y � z, then sup {x, y} exists
in L and x t y � z.

(4) Let L be a lower-bounded antisymmetric reflexive non empty relational
structure and let x be an element of L. Then ⊥L � x.

(5) For every non empty poset L and for all elements x, y, z of L such that
x� y and y � z holds x� z.

(6) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x� y and x� y, then x = y.

Let L be a non empty reflexive relational structure and let x be an element
of L. The functor ↓↓x yields a subset of L and is defined as follows:

(Def. 3) ↓↓x = {y : y ranges over elements of L, y � x}.
The functor ↑↑x yielding a subset of L is defined by:

(Def. 4) ↑↑x = {y : y ranges over elements of L, y � x}.
We now state several propositions:

(7) For every non empty reflexive relational structure L and for all elements
x, y of L holds x ∈ ↓↓y iff x� y.

(8) For every non empty reflexive relational structure L and for all elements
x, y of L holds x ∈ ↑↑y iff x� y.

(9) For every non empty reflexive antisymmetric relational structure L and
for every element x of L holds x ≥ ↓↓x.

(10) For every non empty reflexive antisymmetric relational structure L and
for every element x of L holds x ≤ ↑↑x.

(11) Let L be a non empty reflexive antisymmetric relational structure and
let x be an element of L. Then ↓↓x ⊆ ↓x and ↑↑x ⊆ ↑x.

(12) Let L be a non empty reflexive transitive relational structure and let x,
y be elements of L. If x ≤ y, then ↓↓x ⊆ ↓↓y and ↑↑y ⊆ ↑↑x.

Let L be a lower-bounded non empty reflexive antisymmetric relational struc-
ture and let x be an element of L. Note that ↓↓x is non empty.

Let L be a non empty reflexive transitive relational structure and let x be
an element of L. Note that ↓↓x is lower and ↑↑x is upper.

Let L be a sup-semilattice and let x be an element of L. One can verify that
↓↓x is directed.

Let L be an inf-complete non empty poset and let x be an element of L.
Note that ↓↓x is directed.

the “way-below” relation 171

Let L be a connected non empty relational structure. One can check that
every subset of L is directed and filtered.

Let us note that every non empty chain which is up-complete and lower-
bounded is also complete.

One can verify that there exists a non empty chain which is complete.
We now state several propositions:

(13) For every up-complete non empty chain L and for all elements x, y of
L such that x < y holds x� y.

(14) Let L be a non empty reflexive antisymmetric relational structure and
let x, y be elements of L. If x is not compact and x� y, then x < y.

(15) For every non empty lower-bounded reflexive antisymmetric relational
structure L holds ⊥L is compact.

(16) For every up-complete non empty poset L and for every non empty
finite directed subset D of L holds supD ∈ D.

(17) For every up-complete non empty poset L such that L is finite holds
every element of L is isolated from below.

2. The Way-Below Relation in Other Terms

The scheme SSubsetEx deals with a non empty relational structure A and a
unary predicate P, and states that:

There exists a subset X of A such that for every element x of A
holds x ∈ X iff P[x]

for all values of the parameters.
We now state several propositions:

(18) Let L be a complete lattice and let x, y be elements of L. Suppose
x � y. Let X be a subset of L. If y ≤ supX, then there exists a finite
subset A of L such that A ⊆ X and x ≤ supA.

(19) Let L be a complete lattice and let x, y be elements of L. Suppose that
for every subset X of L such that y ≤ supX there exists a finite subset
A of L such that A ⊆ X and x ≤ supA. Then x� y.

(20) Let L be a non empty reflexive transitive relational structure and let
x, y be elements of L. If x � y, then for every ideal I of L such that
y ≤ sup I holds x ∈ I.

(21) Let L be an up-complete non empty poset and let x, y be elements of
L. If for every ideal I of L such that y ≤ sup I holds x ∈ I, then x� y.

(22) Let L be a lower-bounded lattice. Suppose L is meet-continuous. Let
x, y be elements of L. Then x � y if and only if for every ideal I of L
such that y = sup I holds x ∈ I.

(23) Let L be a complete lattice. Then every element of L is compact if and
only if for every non empty subset X of L there exists an element x of

172 grzegorz bancerek

L such that x ∈ X and for every element y of L such that y ∈ X holds
x 6< y.

3. Continuous Lattices

Let L be a non empty reflexive relational structure. We say that L satisfies
axiom of approximation if and only if:

(Def. 5) For every element x of L holds x = sup ↓↓x.
Let us note that every non empty reflexive relational structure which is trivial

satisfies axiom of approximation.
Let L be a non empty reflexive relational structure. We say that L is con-

tinuous if and only if:

(Def. 6) For every element x of L holds ↓↓x is non empty and directed and L is
up-complete and satisfies axiom of approximation.

One can check that every non empty reflexive relational structure which is
continuous is also up-complete and satisfies axiom of approximation and ev-
ery lower-bounded sup-semilattice which is up-complete and satisfies axiom of
approximation is also continuous.

Let us note that there exists a lattice which is continuous, complete, and
strict.

Let L be a continuous non empty reflexive relational structure and let x be
an element of L. One can verify that ↓↓x is non empty and directed.

Next we state two propositions:

(24) Let L be an up-complete semilattice. Suppose that for every element
x of L holds ↓↓x is non empty and directed. Then L satisfies axiom of
approximation if and only if for all elements x, y of L such that x 6≤ y
there exists an element u of L such that u� x and u 6≤ y.

(25) For every continuous lattice L and for all elements x, y of L holds x ≤ y
iff ↓↓x ⊆ ↓↓y.

One can verify that every non empty chain which is complete satisfies axiom
of approximation.

The following proposition is true

(26) For every complete lattice L such that every element of L is compact
holds L satisfies axiom of approximation.

4. The Way-Below Relation in Direct Powers

Let f be a binary relation. We say that f is nonempty if and only if:

(Def. 7) For every 1-sorted structure S such that S ∈ rng f holds S is non empty.

We say that f is reflexive-yielding if and only if:

the “way-below” relation 173

(Def. 8) For every relational structure S such that S ∈ rng f holds S is reflexive.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is relational structure yielding, nonempty, and reflexive-yielding.

Let I be a set and let J be a relational structure yielding nonempty many
sorted set indexed by I. Observe that

∏
J is non empty.

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, and let i be an element of I. Then J(i) is a non
empty relational structure.

Let I be a set and let J be a relational structure yielding nonempty many
sorted set indexed by I. Note that every element of

∏
J is function-like and

relation-like.

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, let x be an element of

∏
J, and let i be an element

of I. Then x(i) is an element of J(i).

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, let i be an element of I, and let X be a subset of∏
J. Then πiX is a subset of J(i).

Next we state two propositions:

(27) Let I be a non empty set, and let J be a relational structure yielding
nonempty many sorted set indexed by I, and let x be a function. Then x
is an element of

∏
J if and only if domx = I and for every element i of

I holds x(i) is an element of J(i).

(28) Let I be a non empty set, and let J be a relational structure yielding
nonempty many sorted set indexed by I, and let x, y be elements of

∏
J.

Then x ≤ y if and only if for every element i of I holds x(i) ≤ y(i).

Let I be a non empty set and let J be a relational structure yielding nonempty
reflexive-yielding many sorted set indexed by I. Note that

∏
J is reflexive. Let

i be an element of I. Then J(i) is a non empty reflexive relational structure.

Let I be a non empty set, let J be a relational structure yielding nonempty
reflexive-yielding many sorted set indexed by I, let x be an element of

∏
J, and

let i be an element of I. Then x(i) is an element of J(i).

One can prove the following propositions:

(29) Let I be a non empty set and let J be a relational structure yielding
nonempty many sorted set indexed by I. If for every element i of I holds
J(i) is transitive, then

∏
J is transitive.

(30) Let I be a non empty set and let J be a relational structure yielding
nonempty many sorted set indexed by I. Suppose that for every element
i of I holds J(i) is antisymmetric. Then

∏
J is antisymmetric.

(31) Let I be a non empty set and let J be a relational structure yielding
nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Then

∏
J is a

complete lattice.

(32) Let I be a non empty set and let J be a relational structure yielding

174 grzegorz bancerek

nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Let X be a subset
of
∏
J and let i be an element of I. Then (supX)(i) = supπiX.

(33) Let I be a non empty set and let J be a relational structure yielding
nonempty reflexive-yielding many sorted set indexed by I. Suppose that
for every element i of I holds J(i) is a complete lattice. Let x, y be
elements of

∏
J. Then x � y if and only if the following conditions are

satisfied:
(i) for every element i of I holds x(i)� y(i), and

(ii) there exists a finite subset K of I such that for every element i of I
such that i /∈ K holds x(i) = ⊥J(i).

5. The Way-Below Relation in Topological Spaces

One can prove the following four propositions:

(34) Let T be a non empty topological space and let x, y be elements of
〈the topology of T , ⊆〉. Suppose x is way below y. Let F be a family of
subsets of T . If F is open and y ⊆ ⋃F, then there exists a finite subset
G of F such that x ⊆ ⋃G.

(35) Let T be a non empty topological space and let x, y be elements of 〈the
topology of T , ⊆〉. Suppose that for every family F of subsets of T such
that F is open and y ⊆ ⋃F there exists a finite subset G of F such that
x ⊆ ⋃G. Then x is way below y.

(36) Let T be a non empty topological space, and let x be an element of
〈the topology of T , ⊆〉, and let X be a subset of T . If x = X, then x is
compact iff X is compact.

(37) Let T be a non empty topological space and let x be an element of 〈the
topology of T , ⊆〉. Suppose x = the carrier of T . Then x is compact if
and only if T is compact.

Let T be a non empty topological space. We say that T is locally-compact
if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x be a point of T and let X be a subset of T . Suppose x ∈ X and
X is open. Then there exists a subset Y of T such that x ∈ IntY and
Y ⊆ X and Y is compact.

Let us observe that every non empty topological space which is compact and
T2 is also T3 , T4 , and locally-compact.

We now state the proposition

(38) For every set x holds {x}top is T2.

One can verify that there exists a non empty topological space which is
compact and T2 .

One can prove the following two propositions:

the “way-below” relation 175

(39) Let T be a non empty topological space and let x, y be elements of 〈the
topology of T , ⊆〉. If there exists a subset Z of T such that x ⊆ Z and
Z ⊆ y and Z is compact, then x� y.

(40) Let T be a non empty topological space. Suppose T is locally-compact.
Let x, y be elements of 〈the topology of T , ⊆〉. If x� y, then there exists
a subset Z of T such that x ⊆ Z and Z ⊆ y and Z is compact.

Let T be a topological structure and let X be a subset of the carrier of T .
Then X is a subset of T .

The following three propositions are true:

(41) Let T be a non empty topological space. Suppose T is locally-compact
and a T2 space. Let x, y be elements of 〈the topology of T , ⊆〉. If x� y,
then there exists a subset Z of T such that Z = x and Z ⊆ y and Z is
compact.

(42) Let X be a non empty topological space. Suppose X is a T3 space and
〈the topology of X, ⊆〉 is continuous. Then X is locally-compact.

(43) For every non empty topological space T such that T is locally-compact
holds 〈the topology of T , ⊆〉 is continuous.

References

[1] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathemat-

ics, 6(1):93–107, 1997.
[4] Grzegorz Bancerek. Filters - Part II. Quotient lattices modulo filters and direct product

of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
[5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[6] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[8] Józef Bia las. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[9] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–

485, 1991.
[10] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[11] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Agata Darmochwa l. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[13] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[14] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York,
1980.

[16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and
products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[17] Artur Korni lowicz. Definitions and properties of the join and meet of subsets. Formalized
Mathematics, 6(1):153–158, 1997.

176 grzegorz bancerek

[18] Artur Korni lowicz. Meet – continuous lattices. Formalized Mathematics, 6(1):159–167,
1997.

[19] Beata Madras. Product of family of universal algebras. Formalized Mathematics,
4(1):103–108, 1993.

[20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[21] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[23] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[27] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[29] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[32] Miros law Wysocki and Agata Darmochwa l. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

[33] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received October 11, 1996

the “way-below” relation 177

alalalalalal alalalalalalal

Index of MML Identifiers

GOBRD10 . 1

GOBRD11 . 37

GOBRD12 . 49

KNASTER . 109

MSALIMIT . 5

MSINST 1 . 17

MSUALG 9 . 9

SCMFSA6A . 21

SCMFSA6B . 41

SCMFSA6C . 53

SCMFSA7B . 59

SCMFSA8A . 65

SCMFSA8B . 73

SF MASTR . 29

WAYBEL 0 . 93

WAYBEL 1 . 131

WAYBEL 2 . 159

WAYBEL 3 . 169

YELLOW 0 . 81

YELLOW 1 . 117

YELLOW 2 . 123

YELLOW 3 . 145

YELLOW 4 . 153

178

178

Contents Formaliz. Math. 6 (1)

Adjacency Concept for Pairs of Natural Numbers
By Yatsuka Nakamura and Andrzej Trybulec 1

Inverse Limits of Many Sorted Algebras
By Adam Grabowski . 5

On the Trivial Many Sorted Algebras and Many Sorted Congru-
ences

By Artur Korni lowicz . 9

Examples of Category Structures
By Adam Grabowski . 17

On the Compositions of Macro Instructions. Part I
By Andrzej Trybulec et al. 21

Memory Handling for SCMFSA

By Piotr Rudnicki and Andrzej Trybulec 29

Some Topological Properties of Cells in R2

By Yatsuka Nakamura and Andrzej Trybulec 37

On the Composition of Macro Instructions. Part II
By Noriko Asamoto et al. 41

The First Part of Jordan’s Theorem for Special Polygons
By Yatsuka Nakamura and Andrzej Trybulec 49

On the Composition of Macro Instructions. Part III
By Noriko Asamoto et al. 53

Constant Assignment Macro Instructions of SCMFSA. Part II
By Noriko Asamoto . 59

Conditional Branch Macro Instructions of SCMFSA. Part I
By Noriko Asamoto . 65

Continued on inside back cover

Conditional Branch Macro Instructions of SCMFSA. Part II
By Noriko Asamoto . 73

Bounds in Posets and Relational Substructures
By Grzegorz Bancerek . 81

Directed Sets, Nets, Ideals, Filters, and Maps
By Grzegorz Bancerek . 93

Fixpoints in Complete Lattices
By Piotr Rudnicki and Andrzej Trybulec 109

Boolean Posets, Posets under Inclusion and Products of Relational
Structures

By Adam Grabowski and Robert Milewski 117

Properties of Relational Structures, Posets, Lattices and Maps

By Mariusz Żynel et al. 123

Galois Connections
By Czes law Byliński . 131

Cartesian Products of Relations and Relational Structures
By Artur Korni lowicz . 145

Definitions and Properties of the Join and Meet of Subsets
By Artur Korni lowicz . 153

Meet – Continuous Lattices
By Artur Korni lowicz . 159

The “Way-Below” Relation
By Grzegorz Bancerek . 169

Index of MML Identifiers . 178

