Some Multi Instructions Defined by Sequence of Instructions of $\mathbf{S C M}_{\mathrm{FSA}}$

Noriko Asamoto
Ochanomizu University
Tokyo

MML Identifier: SCMFSA_7.

The terminology and notation used in this paper are introduced in the following papers: [10], [2], [14], [13], [18], [22], [6], [16], [21], [1], [15], [3], [9], [7], [20], [4], [19], [8], [5], [11], [12], and [17].

In this paper m will be a natural number.
Let us note that every finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$ is finite.
Let p be a finite sequence and let x, y be arbitrary. Note that $p+\cdot(x, y)$ is finite sequence-like.

Let i be an integer. Then $|i|$ is a natural number.
Let D be a set. Note that D^{*} is non empty.
The following four propositions are true:
(1) For every natural number k holds $|k|=k$.
(2) For all natural numbers a, b, c such that $a \geq c$ and $b \geq c$ and $a-^{\prime} c=$ $b-^{\prime} c$ holds $a=b$.
(3) For all natural numbers a, b such that $a \geq b$ holds $a-^{\prime} b=a-b$.
(4) For all integers a, b such that $a<b$ holds $a \leq b-1$.

The scheme CardMono" concerns a set \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding arbitrary, and states that:
$\mathcal{A} \approx\{\mathcal{F}(d): d$ ranges over elements of $\mathcal{B}, d \in \mathcal{A}\}$
provided the parameters satisfy the following conditions:

- $\mathcal{A} \subseteq \mathcal{B}$,
- For all elements d_{1}, d_{2} of \mathcal{B} such that $d_{1} \in \mathcal{A}$ and $d_{2} \in \mathcal{A}$ and $\mathcal{F}\left(d_{1}\right)=\mathcal{F}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.
One can prove the following propositions:
(5) For all finite sequences p_{1}, p_{2}, q such that $p_{1} \subseteq q$ and $p_{2} \subseteq q$ and len $p_{1}=\operatorname{len} p_{2}$ holds $p_{1}=p_{2}$.
(6) For all finite sequences p, q such that $p^{\wedge} q=p$ holds $q=\varepsilon$.
(7) For every finite sequence p and for arbitrary x holds $\operatorname{len}\left(p^{\sim}\langle x\rangle\right)=$ len $p+1$.
(8) For all finite sequences p, q such that $p \subseteq q$ holds len $p \leq \operatorname{len} q$.
(9) For all finite sequences p, q and for every natural number i such that $1 \leq i$ and $i \leq \operatorname{len} p$ holds $\left(p^{\wedge} q\right)(i)=p(i)$.
(10) For all finite sequences p, q and for every natural number i such that $1 \leq i$ and $i \leq \operatorname{len} q$ holds $\left(p^{\wedge} q\right)(\operatorname{len} p+i)=q(i)$.
(11) For every finite sequence p and for every natural number i holds $i \in$ $\operatorname{dom} p$ iff $1 \leq i$ and $i \leq \operatorname{len} p$.
(12) For every finite sequence p such that $p \neq \varepsilon$ holds $\operatorname{len} p \in \operatorname{dom} p$.
(13) For every set D holds $\operatorname{Flat}\left(\varepsilon_{D^{*}}\right)=\varepsilon_{D}$.
(14) For every set D and for all finite sequences F, G of elements of D^{*} holds Flat $(F \frown G)=\operatorname{Flat}(F) \wedge \operatorname{Flat}(G)$.
(15) For every set D and for all elements p, q of $D^{*} \operatorname{holds} \operatorname{Flat}(\langle p, q\rangle)=p^{\wedge} q$.
(16) For every set D and for all elements p, q, r of D^{*} holds Flat $(\langle p, q$, $r\rangle)=p^{\wedge} q^{\wedge} r$.
(17) Let D be a non empty set and let p, q be finite sequences of elements of D. If $p \subseteq q$, then there exists a finite sequence p^{\prime} of elements of D such that $p^{\wedge} p^{\prime}=q$.
(18) Let D be a non empty set, and let p, q be finite sequences of elements of D, and let i be a natural number. If $p \subseteq q$ and $1 \leq i$ and $i \leq \operatorname{len} p$, then $q(i)=p(i)$.
(19) For every set D and for all finite sequences F, G of elements of D^{*} such that $F \subseteq G$ holds Flat $(F) \subseteq \operatorname{Flat}(G)$.
(20) For every finite sequence p holds $p \upharpoonright \operatorname{Seg} 0=\varepsilon$.
(21) For all finite sequences f, g holds $f \upharpoonright \operatorname{Seg} 0=g \upharpoonright \operatorname{Seg} 0$.
(22) For every non empty set D and for every element x of D holds $\langle x\rangle$ is a finite sequence of elements of D.
(23) Let D be a set and let p, q be finite sequences of elements of D. Then $p^{\wedge} q$ is a finite sequence of elements of D.
Let f be a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$. The functor $\operatorname{Load}(f)$ yielding a finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$ is defined by:
(Def. 1) $\quad \operatorname{dom} \operatorname{Load}(f)=\left\{\operatorname{insloc}\left(m-^{\prime} 1\right): m \in \operatorname{dom} f\right\}$ and for every natural number k such that $\operatorname{insloc}(k) \in \operatorname{dom} \operatorname{Load}(f)$ holds $(\operatorname{Load}(f))(\operatorname{insloc}(k))=$ $\pi_{k+1} f$.
The following propositions are true:
(24) Let f be a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ and let k be a natural number. Then $\operatorname{dom} \operatorname{Load}(f)=\left\{\operatorname{insloc}\left(m-^{\prime} 1\right)\right.$: $m \in \operatorname{dom} f\}$.
(25) For every finite sequence f of elements of the instructions of $\mathbf{S C M}_{\text {FSA }}$ holds card $\operatorname{Load}(f)=\operatorname{len} f$.
(26) Let p be a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ and let k be a natural number. Then $\operatorname{insloc}(k) \in \operatorname{dom} \operatorname{Load}(p)$ if and only if $k+1 \in \operatorname{dom} p$.
(27) For all natural numbers k, n holds $k<n$ iff $0<k+1$ and $k+1 \leq n$.
(28) For all natural numbers k, n holds $k<n$ iff $1 \leq k+1$ and $k+1 \leq n$.
(29) Let p be a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ and let k be a natural number. Then $\operatorname{insloc}(k) \in \operatorname{dom} \operatorname{Load}(p)$ if and only if $k<\operatorname{len} p$.
(30) For every non empty finite sequence f of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ holds $1 \in \operatorname{dom} f$ and $\operatorname{insloc}(0) \in \operatorname{dom} \operatorname{Load}(f)$.
(31) For all finite sequences p, q of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ holds $\operatorname{Load}(p) \subseteq \operatorname{Load}\left(p^{\wedge} q\right)$.
(32) For all finite sequences p, q of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ such that $p \subseteq q$ holds $\operatorname{Load}(p) \subseteq \operatorname{Load}(q)$.
Let a be an integer location and let k be an integer. The functor $a:=k$ yields a finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$ and is defined as follows:
(Def. 2) (i) There exists a natural number k_{1} such that $k_{1}+1=k$ and $a:=k=$ $\operatorname{Load}\left(\langle a:=\operatorname{intloc}(0)\rangle^{\wedge}\left(k_{1} \mapsto \operatorname{AddTo}(a, \operatorname{intloc}(0))\right)^{\wedge}\left\langle\operatorname{halt}_{\mathbf{S C M}_{\mathrm{FSA}}}\right\rangle\right)$ if $k>$ 0 ,
(ii) there exists a natural number k_{1} such that $k_{1}+k=1$ and $a:=k=$ $\operatorname{Load}\left(\langle a:=\operatorname{intloc}(0)\rangle^{\wedge}\left(k_{1} \mapsto \operatorname{SubFrom}(a, \text { intloc}(0))\right)^{\wedge}\left\langle\right.\right.$ halt $\left.\left._{\mathbf{S C M}_{\mathrm{FSA}}}\right\rangle\right)$, otherwise.
Let a be an integer location and let k be an integer. The functor aSeq (a, k) yielding a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ is defined by:
(Def. 3) (i) There exists a natural number k_{1} such that $k_{1}+1=k$ and $\operatorname{aSeq}(a, k)=\langle a:=\operatorname{intloc}(0)\rangle \wedge\left(k_{1} \mapsto \operatorname{AddTo}(a, \operatorname{intloc}(0))\right)$ if $k>0$,
(ii) there exists a natural number k_{1} such that $k_{1}+k=1$ and aSeq $(a, k)=$ $\langle a:=\operatorname{intloc}(0)\rangle{ }^{\wedge}\left(k_{1} \mapsto \operatorname{SubFrom}(a\right.$, intloc $\left.(0))\right)$, otherwise.
One can prove the following proposition
(33) For every integer location a and for every integer k holds $a:=k=$ $\operatorname{Load}\left((\operatorname{aSeq}(a, k))^{\wedge}\left\langle\operatorname{halt}_{\mathbf{S C M}_{\mathrm{FSA}}}\right\rangle\right)$.
Let f be a finite sequence location and let p be a finite sequence of elements of \mathbb{Z}. The functor $\operatorname{aSeq}(f, p)$ yields a finite sequence of elements of the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$ and is defined by the condition (Def. 4).
(Def. 4) There exists a finite sequence p_{3} of elements of (the instructions of $\mathbf{S C M}_{\mathrm{FSA}}$)* such that
(i) $\operatorname{len} p_{3}=\operatorname{len} p$,
(ii) for every natural number k such that $1 \leq k$ and $k \leq \operatorname{len} p$ there exists an integer i such that $i=p(k)$ and $p_{3}(k)=(\operatorname{aSeq}(\operatorname{intloc}(1), k))^{\wedge}$
$\operatorname{aSeq}(\operatorname{intloc}(2), i)^{\wedge}\left\langle f_{\text {intloc(1) }}:=\operatorname{intloc}(2)\right\rangle$, and
(iii) $\operatorname{aSeq}(f, p)=\operatorname{Flat}\left(p_{3}\right)$.

Let f be a finite sequence location and let p be a finite sequence of elements of \mathbb{Z} The functor $f:=p$ yielding a finite partial state of $\mathbf{S C M}_{\mathrm{FSA}}$ is defined by:

$$
\begin{equation*}
f:=p=\operatorname{Load}((\operatorname{aSeq}(\operatorname{intloc}(1), \operatorname{len} p)) \wedge\langle f:=\langle\underbrace{0, \ldots, 0}_{\operatorname{intloc}(1)}\rangle\rangle \wedge \operatorname{aSeq}(f, p) \wedge \tag{Def.5}
\end{equation*}
$$

$\left\langle\right.$ halt $\left._{\text {SCM }_{\text {FSA }}}\right\rangle$).
Next we state several propositions:
(34) For every integer location a holds $a:=1=\operatorname{Load}(\langle a:=\operatorname{intloc}(0)\rangle$ ~ (halt $\left.\left.\mathrm{SCM}_{\mathrm{FSA}}\right\rangle\right)$.
(35) For every integer location a holds $a:=0=\operatorname{Load}(\langle a:=\operatorname{intloc}(0)\rangle$ ~ $\langle\operatorname{SubFrom}(a, \operatorname{intloc}(0))\rangle{ }^{\wedge}\left\langle\right.$ halt $\left.\left._{\mathbf{S C M}_{\mathrm{FSA}}}\right\rangle\right)$.
(36) Let s be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose $s(\operatorname{intloc}(0))=1$. Let c_{0} be a natural number. Suppose $\mathbf{I C}_{s}=\operatorname{insloc}\left(c_{0}\right)$. Let a be an integer location and let k be an integer. Suppose $a \neq \operatorname{intloc}(0)$ and for every natural number c such that $c \in \operatorname{domaSeq}(a, k)$ holds $(\operatorname{aSeq}(a, k))(c)=s\left(\operatorname{insloc}\left(\left(c_{0}+c\right)-^{\prime} 1\right)\right)$. Then
(i) for every natural number i such that $i \leq \operatorname{len} \operatorname{aSeq}(a, k)$ holds $\mathbf{I C}_{(\text {Computation }(s))(i)}=\operatorname{insloc}\left(c_{0}+i\right)$ and for every integer location b such that $b \neq a$ holds $($ Computation $(s))(i)(b)=s(b)$ and for every finite sequence location f holds (Computation $(s))(i)(f)=s(f)$, and
(ii) $\quad(\operatorname{Computation}(s))(\operatorname{len} \operatorname{aSeq}(a, k))(a)=k$.
(37) Let s be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose $\mathbf{I C}_{s}=\operatorname{insloc}(0)$ and $s(\operatorname{intloc}(0))=1$. Let a be an integer location and let k be an integer. Suppose $\operatorname{Load}(\operatorname{aSeq}(a, k)) \subseteq s$ and $a \neq \operatorname{intloc}(0)$. Then
(i) for every natural number i such that $i \leq \operatorname{len} \operatorname{aSeq}(a, k)$ holds $\mathbf{I C}_{(\text {Computation }(s))(i)}=\operatorname{insloc}(i)$ and for every integer location b such that $b \neq a$ holds $($ Computation $(s))(i)(b)=s(b)$ and for every finite sequence location f holds (Computation $(s))(i)(f)=s(f)$, and
(ii) $\quad(\operatorname{Computation}(s))(\operatorname{len} \operatorname{aSeq}(a, k))(a)=k$.
(38) Let s be a state of $\mathbf{S C M}_{\mathrm{FSA}}$. Suppose $\mathbf{I C}_{s}=\operatorname{insloc}(0)$ and $s($ intloc $(0))=1$. Let a be an integer location and let k be an integer. Suppose $a:=k \subseteq s$ and $a \neq$ intloc(0). Then
(i) s is halting,
(ii) $(\operatorname{Result}(s))(a)=k$,
(iii) for every integer location b such that $b \neq a$ holds $(\operatorname{Result}(s))(b)=s(b)$, and
(iv) for every finite sequence location f holds $(\operatorname{Result}(s))(f)=s(f)$.
(39) Let s be a state of $\mathbf{S C M}_{\text {FSA }}$. Suppose $\mathbf{I C}_{s}=\operatorname{insloc}(0)$ and $s($ intloc $(0))=1$. Let f be a finite sequence location and let p be a finite sequence of elements of \mathbb{Z}. Suppose $f:=p \subseteq s$. Then
(i) s is halting,
(ii) $(\operatorname{Result}(s))(f)=p$,
(iii) for every integer location b such that $b \neq \operatorname{intloc}(1)$ and $b \neq \operatorname{intloc}(2)$ holds $(\operatorname{Result}(s))(b)=s(b)$, and
(iv) for every finite sequence location g such that $g \neq f$ holds $(\operatorname{Result}(s))(g)=s(g)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[15] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The $\mathbf{S C M}_{\text {FSA }}$ computer. Formalized Mathematics, 5(4):519-528, 1996.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[21] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

