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Summary. The goal of the article is to start the formalization
of Knuth-Bendix completion method (see [2,11] or [1]; see also [12,10]),
i.e. to formalize the concept of the completion of a reduction relation.
The completion of a reduction relation R is a complete reduction rela-
tion equivalent to R such that convertible elements have the same normal
forms. The theory formalized in the article includes concepts and facts
concerning normal forms, terminating reductions, Church-Rosser prop-
erty, and equivalence of reduction relations.

MML Identifier: REWRITE1.

The terminology and notation used here are introduced in the following articles:
[16], [17], 91, [3], [6], [18], [19], [4], [13], [14], [5], [15], [7], and [8].

1. FORGETTING CONCATENATION AND REDUCTION SEQUENCE

Let p, ¢ be finite sequences. The functor p %~ ¢ yielding a finite sequence is
defined as follows:

(Def. 1) (i) pPqg=p-qifp=corqg=c¢,
(ii)  there exists a natural number ¢ and there exists a finite sequence r
such that lenp =7+ 1 and r = p| Segi and p $~ ¢ = r " ¢, otherwise.

In the sequel p, ¢ are finite sequences and x, y are sets.
We now state several propositions:

(1) e¥p=pandp¥ec=p.

(2) Ifg#e, then (p~(z)) % g=p~gq

B) @ @)W d=p" ) ¢

(4) Ifq+#e, then ()% ¢ =q.

(5) If p # e, then there exist z, ¢ such that p = (z) ~ ¢ and lenp = len g+ 1.

© 1996 Warsaw University - Bialystok
469 ISSN 1426-2630



470 GRZEGORZ BANCEREK

The scheme PathCatenation concerns finite sequences A, B and a binary
predicate P, and states that:
Let i be a natural number. Suppose i € dom(A > B) and i + 1 €
dom(A %~ B). Let z, y be sets. If 2 = (A% B)(i) and y = (4%
B)(i + 1), then P[x,y]
provided the parameters satisfy the following conditions:
e For every natural number i such that i € dom A and i+ 1 € dom A
holds P[A(i), A(i + 1)],
e For every natural number ¢ such that i € dom B and ¢ +1 € dom B
holds P[B(i), B(i + 1)],
e len A >0 and lenB > 0 and A(len A) = B(1).
Let R be a binary relation. A finite sequence is said to be a reduction
sequence w.r.t. R if:
(Def. 2)  lenit > 0 and for every natural number i such that ¢ € domit and
i+ 1 € domit holds (it(7), it(i + 1)) € R.
Next we state the proposition
(6) For every binary relation R and for every reduction sequence p w.r.t.
R holds 1 € domp and lenp € dom p.
Let R be a binary relation. Note that every reduction sequence w.r.t. R is
non empty.
One can prove the following propositions:
(7)  For every binary relation R and for every set a holds (a) is a reduction
sequence w.r.t. R.
(8) For every binary relation R and for all sets a, b such that {(a, b) € R
holds (a, b) is a reduction sequence w.r.t. R.
(9) Let R be a binary relation and let p, ¢ be reduction sequences w.r.t. R.
If p(lenp) = g(1), then p *~ ¢ is a reduction sequence w.r.t. R.
(10) Let R be a binary relation and let p be a reduction sequence w.r.t. R.
Then Rev(p) is a reduction sequence w.r.t. R~.

(11)  For all binary relations R, @ such that R C @ holds every reduction
sequence w.r.t. R is a reduction sequence w.r.t. Q.

2. REDUCIBILITY, CONVERTIBILITY AND NORMAL FORMS

Let R be a binary relation and let a, b be sets. We say that R reduces a to
b if and only if:
(Def. 3)  There exists a reduction sequence p w.r.t. R such that p(1) = a and
p(lenp) = b.
Let R be a binary relation and let a, b be sets. We say that a and b are
convertible w.r.t. R if and only if:
(Def. 4)  RU R reduces a to b.
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One can prove the following propositions:

(12)  Let R be a binary relation and let a, b be sets. Then R reduces a to b if
and only if there exists a finite sequence p such that lenp > 0 and p(1) = a
and p(lenp) = b and for every natural number i such that ¢ € dom p and
i+ 1 € domp holds (p(i), p(i + 1)) € R.

(13)  For every binary relation R and for every set a holds R reduces a to a.

(14)  For all sets a, b such that () reduces a to b holds a = b.

(15)  For every binary relation R and for all sets a, b such that R reduces a
to b and a ¢ field R holds a = b.

(16)  For every binary relation R and for all sets a, b such that (a, b) € R
holds R reduces a to b.

(17)  Let R be a binary relation and let a, b, ¢ be sets. Suppose R reduces a
to b and R reduces b to c. Then R reduces a to c.

(18) Let R be a binary relation, and let p be a reduction sequence w.r.t. R,
and let 7, j be natural numbers. If i € domp and j € domp and i < j,
then R reduces p(i) to p(j).

(19)  For every binary relation R and for all sets a, b such that R reduces a
to b and a # b holds a € field R and b € field R.

(20)  For every binary relation R and for all sets a, b such that R reduces a
to b holds a € field R iff b € field R.

(21)  For every binary relation R and for all sets a, b holds R reduces a to b
iff a=0bor (a, b) € R*.

(22)  For every binary relation R and for all sets a, b holds R reduces a to b
iff R* reduces a to b.

(23) Let R, @ be binary relations. Suppose R C Q. Let a, b be sets. If R
reduces a to b, then () reduces a to b.

(24) Let R be a binary relation, and let X be a set, and let a, b be sets.
Then R reduces a to b if and only if R U A x reduces a to b.

(25)  For every binary relation R and for all sets a, b such that R reduces a
to b holds R~ reduces b to a.

(26) Let R be a binary relation and let a, b be sets. Suppose R reduces a
to b. Then a and b are convertible w.r.t. R and b and a are convertible
w.r.t. R.

(27)  For every binary relation R and for every set a holds a and a are con-
vertible w.r.t. R.

(28)  For all sets a, b such that a and b are convertible w.r.t. () holds a = b.

(29) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a ¢ field R, then a = b.

(30)  For every binary relation R and for all sets a, b such that (a, b) € R
holds a and b are convertible w.r.t. R.

(31) Let R be a binary relation and let a, b, ¢ be sets. Suppose a and b are
convertible w.r.t. R and b and ¢ are convertible w.r.t. R. Then a and ¢
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are convertible w.r.t. R.

(32) Let R be a binary relation and let a, b be sets. Suppose a and b are
convertible w.r.t. R. Then b and a are convertible w.r.t. R.

(33) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a # b, then a € field R and b € field R.

Let R be a binary relation and let a be a set. We say that a is a normal form
w.r.t. R if and only if:

(Def. 5) It is not true that there exists a set b such that (a, b) € R.
The following propositions are true:

(34) Let R be a binary relation and let a, b be sets. If a is a normal form
w.r.t. R and R reduces a to b, then a = b.

(35)  For every binary relation R and for every set a such that a ¢ field R
holds a is a normal form w.r.t. R.

Let R be a binary relation and let a, b be sets. We say that b is a normal
form of a w.r.t. R if and only if:

(Def. 6) b is a normal form w.r.t. R and R reduces a to b.
We say that a and b are convergent w.r.t. R if and only if:

(Def. 7)  There exists a set ¢ such that R reduces a to ¢ and R reduces b to c.
We say that a and b are divergent w.r.t. R if and only if:

(Def. 8)  There exists a set ¢ such that R reduces c to a and R reduces ¢ to b.
We say that a and b are convergent at most in 1 step w.r.t. R if and only if:
(Def. 9)  There exists a set ¢ such that {a, ¢) € R or a = ¢ but (b, ¢) € R or

b=rc.
We say that a and b are divergent at most in 1 step w.r.t. R if and only if:
(Def. 10)  There exists a set ¢ such that (¢, a) € R or a = ¢ but (¢, b) € R or
b=c.
Next we state a number of propositions:

(36) For every binary relation R and for every set a such that a ¢ field R
holds a is a normal form of a w.r.t. R.

(37)  Let R be a binary relation and let a, b be sets. Suppose R reduces a to
b. Then

(i) a and b are convergent w.r.t. R,

(ii) a and b are divergent w.r.t. R,

(iii) b and a are convergent w.r.t. R, and

(iv) b and a are divergent w.r.t. R.

(38) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R or a and b are divergent w.r.t. R. Then a and b are
convertible w.r.t. R.

v

(39) Let R be a binary relation and let a be a set. Then a and a are
convergent w.r.t. R and a and a are divergent w.r.t. R.
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(40)  For all sets a, b such that a and b are convergent w.r.t. () or @ and b are
divergent w.r.t. () holds a = b.

(41) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R. Then b and a are convergent w.r.t. R.

(42) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent w.r.t. R. Then b and a are divergent w.r.t. R.

(43) Let R be a binary relation and let a, b, ¢ be sets. Suppose that
(i) R reduces a to b and b and ¢ are convergent w.r.t. R, or
(ii) @ and b are convergent w.r.t. R and R reduces c to b.
Then a and ¢ are convergent w.r.t. R.

(44) Let R be a binary relation and let a, b, ¢ be sets. Suppose that
(i) R reduces b to a and b and ¢ are divergent w.r.t. R, or
(ii) @ and b are divergent w.r.t. R and R reduces b to c.
Then a and c are divergent w.r.t. R.
(45) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent at most in 1 step w.r.t. R. Then a and b are convergent w.r.t.
R.
(46) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent at most in 1 step w.r.t. R. Then a and b are divergent w.r.t.
R.
Let R be a binary relation and let a be a set. We say that a has a normal
form w.r.t. R if and only if:
(Def. 11)  There exists set which is a normal form of a w.r.t. R.
Next we state the proposition
(47)  For every binary relation R and for every set a such that a ¢ field R
holds @ has a normal form w.r.t. R.

Let R be a binary relation and let a be a set. Let us assume that a has a
normal form w.r.t. R and for all sets b, ¢ such that b is a normal form of a
w.r.t. R and c is a normal form of @ w.r.t. R holds b = ¢. The functor nf g(a)
is defined by:

(Def. 12)  nfg(a) is a normal form of a w.r.t. R.

3. TERMINATING REDUCTIONS

Let R be a binary relation. We say that R is reversely well founded if and
only if:
(Def. 13) R~ is well founded.
We say that R is weakly-normalizing if and only if:

(Def. 14)  For every set a such that a € field R holds a has a normal form w.r.t.
R.

We say that R is strongly-normalizing if and only if:
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(Def. 15)  For every many sorted set f indexed by N there exists a natural number
i such that (f(4), f(i +1)) ¢ R.
Let R be a binary relation. Let us observe that R is reversely well founded
if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let Y be a set. Suppose Y C field R and Y # (). Then there exists a
set a such that a € Y and for every set b such that b € Y and a # b holds
(a, b) ¢ R.
The scheme coNoetherianInduction deals with a binary relation A and a
unary predicate P, and states that:
For every set a such that a € field A holds PJa]
provided the parameters meet the following conditions:
e A is reversely well founded,
e For every set a such that for every set b such that (a, b) € A and
a # b holds P[b] holds Pl[a].

One can check that every binary relation which is strongly-normalizing is
also irreflexive and reversely well founded and every binary relation which is
reversely well founded and irreflexive is also strongly-normalizing.

Let us note that every binary relation which is empty is also weakly-normalizing
and strongly-normalizing.

Let us note that there exists a binary relation which is empty.

Next we state the proposition

(48)  Let @ be a reversely well founded binary relation and let R be a binary
relation. If R C @, then R is reversely well founded.

Let us observe that every binary relation which is strongly-normalizing is
also weakly-normalizing.

4. CHURCH-ROSSER PROPERTY

Let R, Q be binary relations. We say that R commutes-weakly with @ if and
only if the condition (Def. 17) is satisfied.
(Def. 17)  Let a, b, ¢ be sets. Suppose {a, b) € R and (a, ¢) € Q. Then there
exists a set d such that @) reduces b to d and R reduces c to d.
Let us notice that the predicate defined above is symmetric. We say that R
commutes with @ if and only if the condition (Def. 18) is satisfied.
(Def. 18)  Let a, b, ¢ be sets. Suppose R reduces a to b and @ reduces a to c.
Then there exists a set d such that @ reduces b to d and R reduces ¢ to d.
Let us notice that the predicate introduced above is symmetric.
We now state the proposition
(49)  For all binary relations R, @ such that R commutes with @ holds R
commutes-weakly with Q.
Let R be a binary relation. We say that R has unique normal form property
if and only if the condition (Def. 19) is satisfied.
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(Def. 19)  Let a, b be sets. Suppose a is a normal form w.r.t. R and b is a normal
form w.r.t. R and a and b are convertible w.r.t. R. Then a = b.

We say that R has normal form property if and only if the condition (Def. 20)
is satisfied.

(Def. 20)  Let a, b be sets. Suppose a is a normal form w.r.t. R and a and b are
convertible w.r.t. R. Then R reduces b to a.

We say that R is subcommutative if and only if:

(Def. 21)  For all sets a, b, ¢ such that {a, b) € R and (a, ¢) € R holds b and ¢ are
convergent at most in 1 step w.r.t. R.

We introduce R has diamond property as a synonym of R is subcommutative.
We say that R is confluent if and only if:

(Def. 22)  For all sets a, b such that a and b are divergent w.r.t. R holds a and b
are convergent w.r.t. R.

We say that R has Church-Rosser property if and only if:

(Def. 23)  For all sets a, b such that a and b are convertible w.r.t. R holds a and
b are convergent w.r.t. R.

We say that R is locally-confluent if and only if:

(Def. 24)  For all sets a, b, ¢ such that {a, b) € R and (a, ¢) € R holds b and ¢ are
convergent w.r.t. R.

We introduce R has weak Church-Rosser property as a synonym of R is locally-
confluent.
Next we state four propositions:

(50) Let R be a binary relation. Suppose R is subcommutative. Let a, b,
¢ be sets. Suppose R reduces a to b and (a, ¢) € R. Then b and ¢ are
convergent w.r.t. R.

(51)  For every binary relation R holds R is confluent iff R commutes with
R

(52) Let R be a binary relation. Then R is confluent if and only if for all
sets a, b, ¢ such that R reduces a to b and (a, ¢) € R holds b and ¢ are
convergent w.r.t. R

(53)  For every binary relation R holds R is locally-confluent iff R commutes-
weakly with R.

One can verify the following observations:
*  every binary relation which has Church-Rosser property is confluent,

% every binary relation which is confluent is also locally-confluent and has
Church-Rosser property,

%  every binary relation which is subcommutative is also confluent,

*  every binary relation which has Church-Rosser property has also normal
form property,

*  every binary relation which has normal form property has also unique
normal form property, and
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*  every binary relation which is weakly-normalizing and has unique nor-
mal form property has Church-Rosser property.

One can check that every binary relation which is empty is also subcommu-
tative.

One can verify that there exists a binary relation which is empty.

The following three propositions are true:

(54) Let R be a binary relation with unique normal form property and let
a, b, ¢ be sets. Suppose b is a normal form of @ w.r.t. R and c is a normal
form of a w.r.t. R. Then b= c.

(55)  Let R be a weakly-normalizing binary relation with unique normal form
property and let a be a set. Then nfr(a) is a normal form of @ w.r.t. R.

(56)  Let R be a weakly-normalizing binary relation with unique normal form
property and let a, b be sets. If a and b are convertible w.r.t. R, then
nfr(a) = nfr(d).

Let us note that every binary relation which is strongly-normalizing and
locally-confluent is also confluent.

Let R be a binary relation. We say that R is complete if and only if:

(Def. 25) R is confluent and strongly-normalizing.

Let us note that every binary relation which is complete is also confluent and
strongly-normalizing and every binary relation which is confluent and strongly-
normalizing is also complete.

Let us mention that there exists a binary relation which is empty.

Let us note that there exists a non empty binary relation which is complete.

We now state three propositions:

(57) Let R, @ be binary relations with Church-Rosser property. If R com-
mutes with @, then R U @ has Church-Rosser property.

(58)  For every binary relation R holds R is confluent iff R* has weak Church-
Rosser property.

(59)  For every binary relation R holds R is confluent iff R* is subcommuta-
tive.

5. COMPLETION METHOD

Let R, @Q be binary relations. We say that R and ) are equivalent if and
only if the condition (Def. 26) is satisfied.
(Def. 26)  Let a, b be sets. Then @ and b are convertible w.r.t. R if and only if a
and b are convertible w.r.t. Q.
Let us observe that the predicate introduced above is symmetric.

Let R be a binary relation and let a, b be sets. We say that a and b are
critical w.r.t. R if and only if:
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(Def. 27)  a and b are divergent at most in 1 step w.r.t. R and a and b are not
convergent w.r.t. R.

We now state four propositions:

(60) Let R be a binary relation and let a, b be sets. Suppose a and b are
critical w.r.t. R. Then a and b are convertible w.r.t. R.

(61) Let R be a binary relation. Suppose that it is not true that there exist
sets a, b such that a and b are critical w.r.t. R Then R is locally-confluent.

(62) Let R, Q be binary relations. Suppose that for all sets a, b such that

(a, b) € @ holds a and b are critical w.r.t. R. Then R and RU Q are
equivalent.

(63) Let R be a binary relation. Then there exists a complete binary relation
() such that
(i) field@ C field R, and
(ii)  for all sets a, b holds a and b are convertible w.r.t. R iff a and b are
convergent w.r.t. Q.

Let R be a binary relation. A complete binary relation is said to be a
completion of R if it satisfies the condition (Def. 28).

(Def. 28)  Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convergent w.r.t. it.

Next we state three propositions:

(64)  For every binary relation R and for every completion C' of R holds R
and C are equivalent.

(65) Let R be a binary relation and let @) be a complete binary relation. If
R and @ are equivalent, then () is a completion of R.

(66) Let R be a binary relation, and let C' be a completion of R, and let a, b be
sets. Then a and b are convertible w.r.t. R if and only if nfo(a) = nfe(b).
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