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Summary. The goal of the article is to start the formalization
of Knuth-Bendix completion method (see [2,11] or [1]; see also [12,10]),
i.e. to formalize the concept of the completion of a reduction relation.
The completion of a reduction relation R is a complete reduction rela-
tion equivalent to R such that convertible elements have the same normal
forms. The theory formalized in the article includes concepts and facts
concerning normal forms, terminating reductions, Church-Rosser prop-
erty, and equivalence of reduction relations.

MML Identifier: REWRITE1.

The terminology and notation used here are introduced in the following articles:
[16], [17], [9], [3], [6], [18], [19], [4], [13], [14], [5], [15], [7], and [8].

1. Forgetting concatenation and reduction sequence

Let p, q be finite sequences. The functor p $ � q yielding a finite sequence is
defined as follows:

(Def. 1) (i) p $ � q = p � q if p = ε or q = ε,
(ii) there exists a natural number i and there exists a finite sequence r

such that len p = i + 1 and r = p
�
Seg i and p $ � q = r � q, otherwise.

In the sequel p, q are finite sequences and x, y are sets.
We now state several propositions:

(1) ε $ � p = p and p $ � ε = p.

(2) If q 6= ε, then (p � 〈x〉) $ � q = p � q.

(3) (p � 〈x〉) $ � (〈y〉 � q) = p � 〈y〉 � q.

(4) If q 6= ε, then 〈x〉 $ � q = q.

(5) If p 6= ε, then there exist x, q such that p = 〈x〉 � q and len p = len q +1.
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The scheme PathCatenation concerns finite sequences A, B and a binary
predicate P, and states that:

Let i be a natural number. Suppose i ∈ dom(A $ � B) and i + 1 ∈
dom(A $ � B). Let x, y be sets. If x = (A $ � B)(i) and y = (A $ �
B)(i + 1), then P[x, y]

provided the parameters satisfy the following conditions:
• For every natural number i such that i ∈ domA and i+1 ∈ domA

holds P[A(i),A(i + 1)],
• For every natural number i such that i ∈ domB and i + 1 ∈ domB

holds P[B(i),B(i + 1)],
• lenA > 0 and lenB > 0 and A(lenA) = B(1).
Let R be a binary relation. A finite sequence is said to be a reduction

sequence w.r.t. R if:

(Def. 2) len it > 0 and for every natural number i such that i ∈ dom it and
i + 1 ∈ dom it holds 〈〈it(i), it(i + 1)〉〉 ∈ R.

Next we state the proposition

(6) For every binary relation R and for every reduction sequence p w.r.t.
R holds 1 ∈ dom p and len p ∈ dom p.

Let R be a binary relation. Note that every reduction sequence w.r.t. R is
non empty.

One can prove the following propositions:

(7) For every binary relation R and for every set a holds 〈a〉 is a reduction
sequence w.r.t. R.

(8) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds 〈a, b〉 is a reduction sequence w.r.t. R.

(9) Let R be a binary relation and let p, q be reduction sequences w.r.t. R.
If p(len p) = q(1), then p $ � q is a reduction sequence w.r.t. R.

(10) Let R be a binary relation and let p be a reduction sequence w.r.t. R.
Then Rev(p) is a reduction sequence w.r.t. R � .

(11) For all binary relations R, Q such that R ⊆ Q holds every reduction
sequence w.r.t. R is a reduction sequence w.r.t. Q.

2. Reducibility, convertibility and normal forms

Let R be a binary relation and let a, b be sets. We say that R reduces a to
b if and only if:

(Def. 3) There exists a reduction sequence p w.r.t. R such that p(1) = a and
p(len p) = b.

Let R be a binary relation and let a, b be sets. We say that a and b are
convertible w.r.t. R if and only if:

(Def. 4) R ∪ R � reduces a to b.
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One can prove the following propositions:

(12) Let R be a binary relation and let a, b be sets. Then R reduces a to b if
and only if there exists a finite sequence p such that len p > 0 and p(1) = a
and p(len p) = b and for every natural number i such that i ∈ dom p and
i + 1 ∈ dom p holds 〈〈p(i), p(i + 1)〉〉 ∈ R.

(13) For every binary relation R and for every set a holds R reduces a to a.

(14) For all sets a, b such that ∅ reduces a to b holds a = b.

(15) For every binary relation R and for all sets a, b such that R reduces a
to b and a /∈ field R holds a = b.

(16) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds R reduces a to b.

(17) Let R be a binary relation and let a, b, c be sets. Suppose R reduces a
to b and R reduces b to c. Then R reduces a to c.

(18) Let R be a binary relation, and let p be a reduction sequence w.r.t. R,
and let i, j be natural numbers. If i ∈ dom p and j ∈ dom p and i ≤ j,
then R reduces p(i) to p(j).

(19) For every binary relation R and for all sets a, b such that R reduces a
to b and a 6= b holds a ∈ fieldR and b ∈ field R.

(20) For every binary relation R and for all sets a, b such that R reduces a
to b holds a ∈ field R iff b ∈ field R.

(21) For every binary relation R and for all sets a, b holds R reduces a to b
iff a = b or 〈〈a, b〉〉 ∈ R∗.

(22) For every binary relation R and for all sets a, b holds R reduces a to b
iff R∗ reduces a to b.

(23) Let R, Q be binary relations. Suppose R ⊆ Q. Let a, b be sets. If R
reduces a to b, then Q reduces a to b.

(24) Let R be a binary relation, and let X be a set, and let a, b be sets.
Then R reduces a to b if and only if R ∪△X reduces a to b.

(25) For every binary relation R and for all sets a, b such that R reduces a
to b holds R � reduces b to a.

(26) Let R be a binary relation and let a, b be sets. Suppose R reduces a
to b. Then a and b are convertible w.r.t. R and b and a are convertible
w.r.t. R.

(27) For every binary relation R and for every set a holds a and a are con-
vertible w.r.t. R.

(28) For all sets a, b such that a and b are convertible w.r.t. ∅ holds a = b.

(29) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a /∈ fieldR, then a = b.

(30) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds a and b are convertible w.r.t. R.

(31) Let R be a binary relation and let a, b, c be sets. Suppose a and b are
convertible w.r.t. R and b and c are convertible w.r.t. R. Then a and c



472 grzegorz bancerek

are convertible w.r.t. R.

(32) Let R be a binary relation and let a, b be sets. Suppose a and b are
convertible w.r.t. R. Then b and a are convertible w.r.t. R.

(33) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a 6= b, then a ∈ field R and b ∈ field R.

Let R be a binary relation and let a be a set. We say that a is a normal form
w.r.t. R if and only if:

(Def. 5) It is not true that there exists a set b such that 〈〈a, b〉〉 ∈ R.

The following propositions are true:

(34) Let R be a binary relation and let a, b be sets. If a is a normal form
w.r.t. R and R reduces a to b, then a = b.

(35) For every binary relation R and for every set a such that a /∈ field R
holds a is a normal form w.r.t. R.

Let R be a binary relation and let a, b be sets. We say that b is a normal
form of a w.r.t. R if and only if:

(Def. 6) b is a normal form w.r.t. R and R reduces a to b.

We say that a and b are convergent w.r.t. R if and only if:

(Def. 7) There exists a set c such that R reduces a to c and R reduces b to c.

We say that a and b are divergent w.r.t. R if and only if:

(Def. 8) There exists a set c such that R reduces c to a and R reduces c to b.

We say that a and b are convergent at most in 1 step w.r.t. R if and only if:

(Def. 9) There exists a set c such that 〈〈a, c〉〉 ∈ R or a = c but 〈〈b, c〉〉 ∈ R or
b = c.

We say that a and b are divergent at most in 1 step w.r.t. R if and only if:

(Def. 10) There exists a set c such that 〈〈c, a〉〉 ∈ R or a = c but 〈〈c, b〉〉 ∈ R or
b = c.

Next we state a number of propositions:

(36) For every binary relation R and for every set a such that a /∈ field R
holds a is a normal form of a w.r.t. R.

(37) Let R be a binary relation and let a, b be sets. Suppose R reduces a to
b. Then

(i) a and b are convergent w.r.t. R,

(ii) a and b are divergent w.r.t. R,

(iii) b and a are convergent w.r.t. R, and

(iv) b and a are divergent w.r.t. R.

(38) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R or a and b are divergent w.r.t. R. Then a and b are
convertible w.r.t. R.

(39) Let R be a binary relation and let a be a set. Then a and a are
convergent w.r.t. R and a and a are divergent w.r.t. R.
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(40) For all sets a, b such that a and b are convergent w.r.t. ∅ or a and b are
divergent w.r.t. ∅ holds a = b.

(41) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R. Then b and a are convergent w.r.t. R.

(42) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent w.r.t. R. Then b and a are divergent w.r.t. R.

(43) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) R reduces a to b and b and c are convergent w.r.t. R, or
(ii) a and b are convergent w.r.t. R and R reduces c to b.

Then a and c are convergent w.r.t. R.

(44) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) R reduces b to a and b and c are divergent w.r.t. R, or
(ii) a and b are divergent w.r.t. R and R reduces b to c.

Then a and c are divergent w.r.t. R.

(45) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent at most in 1 step w.r.t. R. Then a and b are convergent w.r.t.
R.

(46) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent at most in 1 step w.r.t. R. Then a and b are divergent w.r.t.
R.

Let R be a binary relation and let a be a set. We say that a has a normal
form w.r.t. R if and only if:

(Def. 11) There exists set which is a normal form of a w.r.t. R.

Next we state the proposition

(47) For every binary relation R and for every set a such that a /∈ field R
holds a has a normal form w.r.t. R.

Let R be a binary relation and let a be a set. Let us assume that a has a
normal form w.r.t. R and for all sets b, c such that b is a normal form of a
w.r.t. R and c is a normal form of a w.r.t. R holds b = c. The functor nfR(a)
is defined by:

(Def. 12) nfR(a) is a normal form of a w.r.t. R.

3. Terminating reductions

Let R be a binary relation. We say that R is reversely well founded if and
only if:

(Def. 13) R � is well founded.

We say that R is weakly-normalizing if and only if:

(Def. 14) For every set a such that a ∈ field R holds a has a normal form w.r.t.
R.

We say that R is strongly-normalizing if and only if:
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(Def. 15) For every many sorted set f indexed by � there exists a natural number
i such that 〈〈f(i), f(i + 1)〉〉 /∈ R.

Let R be a binary relation. Let us observe that R is reversely well founded
if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let Y be a set. Suppose Y ⊆ field R and Y 6= ∅. Then there exists a
set a such that a ∈ Y and for every set b such that b ∈ Y and a 6= b holds
〈〈a, b〉〉 /∈ R.

The scheme coNoetherianInduction deals with a binary relation A and a
unary predicate P, and states that:

For every set a such that a ∈ fieldA holds P[a]
provided the parameters meet the following conditions:

• A is reversely well founded,
• For every set a such that for every set b such that 〈〈a, b〉〉 ∈ A and

a 6= b holds P[b] holds P[a].
One can check that every binary relation which is strongly-normalizing is

also irreflexive and reversely well founded and every binary relation which is
reversely well founded and irreflexive is also strongly-normalizing.

Let us note that every binary relation which is empty is also weakly-normalizing
and strongly-normalizing.

Let us note that there exists a binary relation which is empty.
Next we state the proposition

(48) Let Q be a reversely well founded binary relation and let R be a binary
relation. If R ⊆ Q, then R is reversely well founded.

Let us observe that every binary relation which is strongly-normalizing is
also weakly-normalizing.

4. Church-Rosser property

Let R, Q be binary relations. We say that R commutes-weakly with Q if and
only if the condition (Def. 17) is satisfied.

(Def. 17) Let a, b, c be sets. Suppose 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ Q. Then there
exists a set d such that Q reduces b to d and R reduces c to d.

Let us notice that the predicate defined above is symmetric. We say that R
commutes with Q if and only if the condition (Def. 18) is satisfied.

(Def. 18) Let a, b, c be sets. Suppose R reduces a to b and Q reduces a to c.
Then there exists a set d such that Q reduces b to d and R reduces c to d.

Let us notice that the predicate introduced above is symmetric.
We now state the proposition

(49) For all binary relations R, Q such that R commutes with Q holds R
commutes-weakly with Q.

Let R be a binary relation. We say that R has unique normal form property
if and only if the condition (Def. 19) is satisfied.



reduction relations 475

(Def. 19) Let a, b be sets. Suppose a is a normal form w.r.t. R and b is a normal
form w.r.t. R and a and b are convertible w.r.t. R. Then a = b.

We say that R has normal form property if and only if the condition (Def. 20)
is satisfied.

(Def. 20) Let a, b be sets. Suppose a is a normal form w.r.t. R and a and b are
convertible w.r.t. R. Then R reduces b to a.

We say that R is subcommutative if and only if:

(Def. 21) For all sets a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ R holds b and c are
convergent at most in 1 step w.r.t. R.

We introduce R has diamond property as a synonym of R is subcommutative.
We say that R is confluent if and only if:

(Def. 22) For all sets a, b such that a and b are divergent w.r.t. R holds a and b
are convergent w.r.t. R.

We say that R has Church-Rosser property if and only if:

(Def. 23) For all sets a, b such that a and b are convertible w.r.t. R holds a and
b are convergent w.r.t. R.

We say that R is locally-confluent if and only if:

(Def. 24) For all sets a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ R holds b and c are
convergent w.r.t. R.

We introduce R has weak Church-Rosser property as a synonym of R is locally-
confluent.

Next we state four propositions:

(50) Let R be a binary relation. Suppose R is subcommutative. Let a, b,
c be sets. Suppose R reduces a to b and 〈〈a, c〉〉 ∈ R. Then b and c are
convergent w.r.t. R.

(51) For every binary relation R holds R is confluent iff R commutes with
R.

(52) Let R be a binary relation. Then R is confluent if and only if for all
sets a, b, c such that R reduces a to b and 〈〈a, c〉〉 ∈ R holds b and c are
convergent w.r.t. R

(53) For every binary relation R holds R is locally-confluent iff R commutes-
weakly with R.

One can verify the following observations:

∗ every binary relation which has Church-Rosser property is confluent,

∗ every binary relation which is confluent is also locally-confluent and has
Church-Rosser property,

∗ every binary relation which is subcommutative is also confluent,

∗ every binary relation which has Church-Rosser property has also normal
form property,

∗ every binary relation which has normal form property has also unique
normal form property, and
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∗ every binary relation which is weakly-normalizing and has unique nor-
mal form property has Church-Rosser property.

One can check that every binary relation which is empty is also subcommu-
tative.

One can verify that there exists a binary relation which is empty.
The following three propositions are true:

(54) Let R be a binary relation with unique normal form property and let
a, b, c be sets. Suppose b is a normal form of a w.r.t. R and c is a normal
form of a w.r.t. R. Then b = c.

(55) Let R be a weakly-normalizing binary relation with unique normal form
property and let a be a set. Then nfR(a) is a normal form of a w.r.t. R.

(56) Let R be a weakly-normalizing binary relation with unique normal form
property and let a, b be sets. If a and b are convertible w.r.t. R, then
nfR(a) = nfR(b).

Let us note that every binary relation which is strongly-normalizing and
locally-confluent is also confluent.

Let R be a binary relation. We say that R is complete if and only if:

(Def. 25) R is confluent and strongly-normalizing.

Let us note that every binary relation which is complete is also confluent and
strongly-normalizing and every binary relation which is confluent and strongly-
normalizing is also complete.

Let us mention that there exists a binary relation which is empty.

Let us note that there exists a non empty binary relation which is complete.
We now state three propositions:

(57) Let R, Q be binary relations with Church-Rosser property. If R com-
mutes with Q, then R ∪ Q has Church-Rosser property.

(58) For every binary relation R holds R is confluent iff R∗ has weak Church-
Rosser property.

(59) For every binary relation R holds R is confluent iff R∗ is subcommuta-
tive.

5. Completion method

Let R, Q be binary relations. We say that R and Q are equivalent if and
only if the condition (Def. 26) is satisfied.

(Def. 26) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convertible w.r.t. Q.

Let us observe that the predicate introduced above is symmetric.
Let R be a binary relation and let a, b be sets. We say that a and b are

critical w.r.t. R if and only if:
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(Def. 27) a and b are divergent at most in 1 step w.r.t. R and a and b are not
convergent w.r.t. R.

We now state four propositions:

(60) Let R be a binary relation and let a, b be sets. Suppose a and b are
critical w.r.t. R. Then a and b are convertible w.r.t. R.

(61) Let R be a binary relation. Suppose that it is not true that there exist
sets a, b such that a and b are critical w.r.t. R Then R is locally-confluent.

(62) Let R, Q be binary relations. Suppose that for all sets a, b such that
〈〈a, b〉〉 ∈ Q holds a and b are critical w.r.t. R. Then R and R ∪ Q are
equivalent.

(63) Let R be a binary relation. Then there exists a complete binary relation
Q such that

(i) field Q ⊆ field R, and
(ii) for all sets a, b holds a and b are convertible w.r.t. R iff a and b are

convergent w.r.t. Q.

Let R be a binary relation. A complete binary relation is said to be a
completion of R if it satisfies the condition (Def. 28).

(Def. 28) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convergent w.r.t. it.

Next we state three propositions:

(64) For every binary relation R and for every completion C of R holds R
and C are equivalent.

(65) Let R be a binary relation and let Q be a complete binary relation. If
R and Q are equivalent, then Q is a completion of R.

(66) Let R be a binary relation, and let C be a completion of R, and let a, b be
sets. Then a and b are convertible w.r.t. R if and only if nfC(a) = nfC(b).
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