Reduction Relations

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Abstract

Summary. The goal of the article is to start the formalization of Knuth-Bendix completion method (see $[2,11]$ or [1]; see also [12,10]), i.e. to formalize the concept of the completion of a reduction relation. The completion of a reduction relation R is a complete reduction relation equivalent to R such that convertible elements have the same normal forms. The theory formalized in the article includes concepts and facts concerning normal forms, terminating reductions, Church-Rosser property, and equivalence of reduction relations.

MML Identifier: REWRITE1.

The terminology and notation used here are introduced in the following articles: [16], [17], [9], [3], [6], [18], [19], [4], [13], [14], [5], [15], [7], and [8].

1. Forgetting concatenation and reduction sequence

Let p, q be finite sequences. The functor $p^{\$ \sim} q$ yielding a finite sequence is defined as follows:
(Def. 1) (i) $\quad p^{\$ \sim} q=p^{\wedge} q$ if $p=\varepsilon$ or $q=\varepsilon$,
(ii) there exists a natural number i and there exists a finite sequence r such that len $p=i+1$ and $r=p \upharpoonright \operatorname{Seg} i$ and $p^{\$ \curvearrowright} q=r^{\wedge} q$, otherwise.
In the sequel p, q are finite sequences and x, y are sets.
We now state several propositions:
(1) $\varepsilon^{\$ \sim} p=p$ and $p^{\$ \curvearrowright} \varepsilon=p$.
(2) If $q \neq \varepsilon$, then $\left(p^{\wedge}\langle x\rangle\right)^{\text {\& }} q=p^{\wedge} q$.
(3) $\quad\left(p^{\wedge}\langle x\rangle\right)^{\mathscr{S}}(\langle y\rangle \wedge q)=p^{\wedge}\langle y\rangle \wedge q$.
(4) If $q \neq \varepsilon$, then $\langle x\rangle^{\& \curvearrowright} q=q$.
(5) If $p \neq \varepsilon$, then there exist x, q such that $p=\langle x\rangle \wedge q$ and len $p=\operatorname{len} q+1$.

The scheme PathCatenation concerns finite sequences \mathcal{A}, \mathcal{B} and a binary predicate \mathcal{P}, and states that:

Let i be a natural number. Suppose $i \in \operatorname{dom}\left(\mathcal{A}^{\mathscr{}} \mathcal{\mathcal { B }}\right)$ and $i+1 \in$ $\operatorname{dom}\left(\mathcal{A}^{\text {S }} \mathcal{B}\right)$. Let x, y be sets. If $x=\left(\mathcal{A}^{\text {S }} \mathcal{B}\right)(i)$ and $y=\left(\mathcal{A}^{\text {S }}\right.$ $\mathcal{B})(i+1)$, then $\mathcal{P}[x, y]$
provided the parameters satisfy the following conditions:

- For every natural number i such that $i \in \operatorname{dom} \mathcal{A}$ and $i+1 \in \operatorname{dom} \mathcal{A}$ holds $\mathcal{P}[\mathcal{A}(i), \mathcal{A}(i+1)]$,
- For every natural number i such that $i \in \operatorname{dom} \mathcal{B}$ and $i+1 \in \operatorname{dom} \mathcal{B}$ holds $\mathcal{P}[\mathcal{B}(i), \mathcal{B}(i+1)]$,
- len $\mathcal{A}>0$ and len $\mathcal{B}>0$ and $\mathcal{A}(\operatorname{len} \mathcal{A})=\mathcal{B}(1)$.

Let R be a binary relation. A finite sequence is said to be a reduction sequence w.r.t. R if:
(Def. 2) len it >0 and for every natural number i such that $i \in$ domit and $i+1 \in$ dom it holds $\langle\mathrm{it}(i)$, it $(i+1)\rangle \in R$.
Next we state the proposition
(6) For every binary relation R and for every reduction sequence p w.r.t. R holds $1 \in \operatorname{dom} p$ and len $p \in \operatorname{dom} p$.
Let R be a binary relation. Note that every reduction sequence w.r.t. R is non empty.

One can prove the following propositions:
(7) For every binary relation R and for every set a holds $\langle a\rangle$ is a reduction sequence w.r.t. R.
(8) For every binary relation R and for all sets a, b such that $\langle a, b\rangle \in R$ holds $\langle a, b\rangle$ is a reduction sequence w.r.t. R.
(9) Let R be a binary relation and let p, q be reduction sequences w.r.t. R. If $p(\operatorname{len} p)=q(1)$, then $p^{\$ \sim} q$ is a reduction sequence w.r.t. R.
(10) Let R be a binary relation and let p be a reduction sequence w.r.t. R. Then $\operatorname{Rev}(p)$ is a reduction sequence w.r.t. R^{\hookrightarrow}.
(11) For all binary relations R, Q such that $R \subseteq Q$ holds every reduction sequence w.r.t. R is a reduction sequence w.r.t. Q.

2. Reducibility, CONVERTIBILITY and NORMAL FORMS

Let R be a binary relation and let a, b be sets. We say that R reduces a to b if and only if:
(Def. 3) There exists a reduction sequence p w.r.t. R such that $p(1)=a$ and $p(\operatorname{len} p)=b$.
Let R be a binary relation and let a, b be sets. We say that a and b are convertible w.r.t. R if and only if:
(Def. 4) $\quad R \cup R^{\smile}$ reduces a to b.

One can prove the following propositions:
(12) Let R be a binary relation and let a, b be sets. Then R reduces a to b if and only if there exists a finite sequence p such that len $p>0$ and $p(1)=a$ and $p(\operatorname{len} p)=b$ and for every natural number i such that $i \in \operatorname{dom} p$ and $i+1 \in \operatorname{dom} p$ holds $\langle p(i), p(i+1)\rangle \in R$.
(13) For every binary relation R and for every set a holds R reduces a to a.
(14) For all sets a, b such that \emptyset reduces a to b holds $a=b$.
(15) For every binary relation R and for all sets a, b such that R reduces a to b and $a \notin$ field R holds $a=b$.
(16) For every binary relation R and for all sets a, b such that $\langle a, b\rangle \in R$ holds R reduces a to b.
(17) Let R be a binary relation and let a, b, c be sets. Suppose R reduces a to b and R reduces b to c. Then R reduces a to c.
(18) Let R be a binary relation, and let p be a reduction sequence w.r.t. R, and let i, j be natural numbers. If $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $i \leq j$, then R reduces $p(i)$ to $p(j)$.
(19) For every binary relation R and for all sets a, b such that R reduces a to b and $a \neq b$ holds $a \in$ field R and $b \in$ field R.
(20) For every binary relation R and for all sets a, b such that R reduces a to b holds $a \in$ field R iff $b \in$ field R.
(21) For every binary relation R and for all sets a, b holds R reduces a to b iff $a=b$ or $\langle a, b\rangle \in R^{*}$.
(22) For every binary relation R and for all sets a, b holds R reduces a to b iff R^{*} reduces a to b.
(23) Let R, Q be binary relations. Suppose $R \subseteq Q$. Let a, b be sets. If R reduces a to b, then Q reduces a to b.
(24) Let R be a binary relation, and let X be a set, and let a, b be sets. Then R reduces a to b if and only if $R \cup \triangle_{X}$ reduces a to b.
(25) For every binary relation R and for all sets a, b such that R reduces a to b holds R^{\smile} reduces b to a.
(26) Let R be a binary relation and let a, b be sets. Suppose R reduces a to b. Then a and b are convertible w.r.t. R and b and a are convertible w.r.t. R.
(27) For every binary relation R and for every set a holds a and a are convertible w.r.t. R.
(28) For all sets a, b such that a and b are convertible w.r.t. \emptyset holds $a=b$.
(29) Let R be a binary relation and let a, b be sets. If a and b are convertible w.r.t. R and $a \notin$ field R, then $a=b$.
(30) For every binary relation R and for all sets a, b such that $\langle a, b\rangle \in R$ holds a and b are convertible w.r.t. R.
(31) Let R be a binary relation and let a, b, c be sets. Suppose a and b are convertible w.r.t. R and b and c are convertible w.r.t. R. Then a and c
are convertible w.r.t. R.
(32) Let R be a binary relation and let a, b be sets. Suppose a and b are convertible w.r.t. R. Then b and a are convertible w.r.t. R.
(33) Let R be a binary relation and let a, b be sets. If a and b are convertible w.r.t. R and $a \neq b$, then $a \in$ field R and $b \in$ field R.

Let R be a binary relation and let a be a set. We say that a is a normal form w.r.t. R if and only if:
(Def. 5) It is not true that there exists a set b such that $\langle a, b\rangle \in R$.
The following propositions are true:
(34) Let R be a binary relation and let a, b be sets. If a is a normal form w.r.t. R and R reduces a to b, then $a=b$.
(35) For every binary relation R and for every set a such that $a \notin$ field R holds a is a normal form w.r.t. R.
Let R be a binary relation and let a, b be sets. We say that b is a normal form of a w.r.t. R if and only if:
(Def. 6) $\quad b$ is a normal form w.r.t. R and R reduces a to b.
We say that a and b are convergent w.r.t. R if and only if:
(Def. 7) There exists a set c such that R reduces a to c and R reduces b to c.
We say that a and b are divergent w.r.t. R if and only if:
(Def. 8) There exists a set c such that R reduces c to a and R reduces c to b.
We say that a and b are convergent at most in 1 step w.r.t. R if and only if:
(Def. 9) There exists a set c such that $\langle a, c\rangle \in R$ or $a=c$ but $\langle b, c\rangle \in R$ or $b=c$.
We say that a and b are divergent at most in 1 step w.r.t. R if and only if:
(Def. 10) There exists a set c such that $\langle c, a\rangle \in R$ or $a=c$ but $\langle c, b\rangle \in R$ or $b=c$.
Next we state a number of propositions:
(36) For every binary relation R and for every set a such that $a \notin$ field R holds a is a normal form of a w.r.t. R.
(37) Let R be a binary relation and let a, b be sets. Suppose R reduces a to b. Then
(i) $\quad a$ and b are convergent w.r.t. R,
(ii) $\quad a$ and b are divergent w.r.t. R,
(iii) b and a are convergent w.r.t. R, and
(iv) b and a are divergent w.r.t. R.
(38) Let R be a binary relation and let a, b be sets. Suppose a and b are convergent w.r.t. R or a and b are divergent w.r.t. R. Then a and b are convertible w.r.t. R.
(39) Let R be a binary relation and let a be a set. Then a and a are convergent w.r.t. R and a and a are divergent w.r.t. R.
(40) For all sets a, b such that a and b are convergent w.r.t. \emptyset or a and b are divergent w.r.t. \emptyset holds $a=b$.
(41) Let R be a binary relation and let a, b be sets. Suppose a and b are convergent w.r.t. R. Then b and a are convergent w.r.t. R.
(42) Let R be a binary relation and let a, b be sets. Suppose a and b are divergent w.r.t. R. Then b and a are divergent w.r.t. R.
(43) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) $\quad R$ reduces a to b and b and c are convergent w.r.t. R, or
(ii) $\quad a$ and b are convergent w.r.t. R and R reduces c to b.

Then a and c are convergent w.r.t. R.
(44) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) $\quad R$ reduces b to a and b and c are divergent w.r.t. R, or
(ii) a and b are divergent w.r.t. R and R reduces b to c.

Then a and c are divergent w.r.t. R.
(45) Let R be a binary relation and let a, b be sets. Suppose a and b are convergent at most in 1 step w.r.t. R. Then a and b are convergent w.r.t. R.
(46) Let R be a binary relation and let a, b be sets. Suppose a and b are divergent at most in 1 step w.r.t. R. Then a and b are divergent w.r.t. R.
Let R be a binary relation and let a be a set. We say that a has a normal form w.r.t. R if and only if:
(Def. 11) There exists set which is a normal form of a w.r.t. R.
Next we state the proposition
(47) For every binary relation R and for every set a such that $a \notin$ field R holds a has a normal form w.r.t. R.
Let R be a binary relation and let a be a set. Let us assume that a has a normal form w.r.t. R and for all sets b, c such that b is a normal form of a w.r.t. R and c is a normal form of a w.r.t. R holds $b=c$. The functor $\operatorname{nf}_{R}(a)$ is defined by:
(Def. 12) $\operatorname{nf}_{R}(a)$ is a normal form of a w.r.t. R.

3. Terminating Reductions

Let R be a binary relation. We say that R is reversely well founded if and only if:
(Def. 13) $\quad R^{\smile}$ is well founded.
We say that R is weakly-normalizing if and only if:
(Def. 14) For every set a such that $a \in$ field R holds a has a normal form w.r.t. R.
We say that R is strongly-normalizing if and only if:
(Def. 15) For every many sorted set f indexed by \mathbb{N} there exists a natural number i such that $\langle f(i), f(i+1)\rangle \notin R$.
Let R be a binary relation. Let us observe that R is reversely well founded if and only if the condition (Def. 16) is satisfied.
(Def. 16) Let Y be a set. Suppose $Y \subseteq$ field R and $Y \neq \emptyset$. Then there exists a set a such that $a \in Y$ and for every set b such that $b \in Y$ and $a \neq b$ holds $\langle a, b\rangle \notin R$.
The scheme coNoetherianInduction deals with a binary relation \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For every set a such that $a \in$ field \mathcal{A} holds $\mathcal{P}[a]$ provided the parameters meet the following conditions:

- \mathcal{A} is reversely well founded,
- For every set a such that for every set b such that $\langle a, b\rangle \in \mathcal{A}$ and $a \neq b$ holds $\mathcal{P}[b]$ holds $\mathcal{P}[a]$.
One can check that every binary relation which is strongly-normalizing is also irreflexive and reversely well founded and every binary relation which is reversely well founded and irreflexive is also strongly-normalizing.

Let us note that every binary relation which is empty is also weakly-normalizing and strongly-normalizing.

Let us note that there exists a binary relation which is empty.
Next we state the proposition
(48) Let Q be a reversely well founded binary relation and let R be a binary relation. If $R \subseteq Q$, then R is reversely well founded.
Let us observe that every binary relation which is strongly-normalizing is also weakly-normalizing.

4. Church-Rosser property

Let R, Q be binary relations. We say that R commutes-weakly with Q if and only if the condition (Def. 17) is satisfied.
(Def. 17) Let a, b, c be sets. Suppose $\langle a, b\rangle \in R$ and $\langle a, c\rangle \in Q$. Then there exists a set d such that Q reduces b to d and R reduces c to d.
Let us notice that the predicate defined above is symmetric. We say that R commutes with Q if and only if the condition (Def. 18) is satisfied.
(Def. 18) Let a, b, c be sets. Suppose R reduces a to b and Q reduces a to c. Then there exists a set d such that Q reduces b to d and R reduces c to d. Let us notice that the predicate introduced above is symmetric.

We now state the proposition
(49) For all binary relations R, Q such that R commutes with Q holds R commutes-weakly with Q.
Let R be a binary relation. We say that R has unique normal form property if and only if the condition (Def. 19) is satisfied.
(Def. 19) Let a, b be sets. Suppose a is a normal form w.r.t. R and b is a normal form w.r.t. R and a and b are convertible w.r.t. R. Then $a=b$.
We say that R has normal form property if and only if the condition (Def. 20) is satisfied.
(Def. 20) Let a, b be sets. Suppose a is a normal form w.r.t. R and a and b are convertible w.r.t. R. Then R reduces b to a.
We say that R is subcommutative if and only if:
(Def. 21) For all sets a, b, c such that $\langle a, b\rangle \in R$ and $\langle a, c\rangle \in R$ holds b and c are convergent at most in 1 step w.r.t. R.
We introduce R has diamond property as a synonym of R is subcommutative. We say that R is confluent if and only if:
(Def. 22) For all sets a, b such that a and b are divergent w.r.t. R holds a and b are convergent w.r.t. R.
We say that R has Church-Rosser property if and only if:
(Def. 23) For all sets a, b such that a and b are convertible w.r.t. R holds a and b are convergent w.r.t. R.
We say that R is locally-confluent if and only if:
(Def. 24) For all sets a, b, c such that $\langle a, b\rangle \in R$ and $\langle a, c\rangle \in R$ holds b and c are convergent w.r.t. R.
We introduce R has weak Church-Rosser property as a synonym of R is locallyconfluent.

Next we state four propositions:
(50) Let R be a binary relation. Suppose R is subcommutative. Let a, b, c be sets. Suppose R reduces a to b and $\langle a, c\rangle \in R$. Then b and c are convergent w.r.t. R.
(51) For every binary relation R holds R is confluent iff R commutes with R.
(52) Let R be a binary relation. Then R is confluent if and only if for all sets a, b, c such that R reduces a to b and $\langle a, c\rangle \in R$ holds b and c are convergent w.r.t. R
(53) For every binary relation R holds R is locally-confluent iff R commutesweakly with R.
One can verify the following observations:

* every binary relation which has Church-Rosser property is confluent,
* every binary relation which is confluent is also locally-confluent and has Church-Rosser property,
* every binary relation which is subcommutative is also confluent,
* every binary relation which has Church-Rosser property has also normal form property,
* every binary relation which has normal form property has also unique normal form property, and
* every binary relation which is weakly-normalizing and has unique normal form property has Church-Rosser property.
One can check that every binary relation which is empty is also subcommutative.

One can verify that there exists a binary relation which is empty.
The following three propositions are true:
(54) Let R be a binary relation with unique normal form property and let a, b, c be sets. Suppose b is a normal form of a w.r.t. R and c is a normal form of a w.r.t. R. Then $b=c$.
(55) Let R be a weakly-normalizing binary relation with unique normal form property and let a be a set. Then $\operatorname{nf}_{R}(a)$ is a normal form of a w.r.t. R.
(56) Let R be a weakly-normalizing binary relation with unique normal form property and let a, b be sets. If a and b are convertible w.r.t. R, then $\mathrm{nf}_{R}(a)=\mathrm{nf}_{R}(b)$.
Let us note that every binary relation which is strongly-normalizing and locally-confluent is also confluent.

Let R be a binary relation. We say that R is complete if and only if:
(Def. 25) $\quad R$ is confluent and strongly-normalizing.
Let us note that every binary relation which is complete is also confluent and strongly-normalizing and every binary relation which is confluent and stronglynormalizing is also complete.

Let us mention that there exists a binary relation which is empty.
Let us note that there exists a non empty binary relation which is complete.
We now state three propositions:
(57) Let R, Q be binary relations with Church-Rosser property. If R commutes with Q, then $R \cup Q$ has Church-Rosser property.
(58) For every binary relation R holds R is confluent iff R^{*} has weak ChurchRosser property.
(59) For every binary relation R holds R is confluent iff R^{*} is subcommutative.

5. Completion method

Let R, Q be binary relations. We say that R and Q are equivalent if and only if the condition (Def. 26) is satisfied.
(Def. 26) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a and b are convertible w.r.t. Q.
Let us observe that the predicate introduced above is symmetric.
Let R be a binary relation and let a, b be sets. We say that a and b are critical w.r.t. R if and only if:
(Def. 27) a and b are divergent at most in 1 step w.r.t. R and a and b are not convergent w.r.t. R.
We now state four propositions:
(60) Let R be a binary relation and let a, b be sets. Suppose a and b are critical w.r.t. R. Then a and b are convertible w.r.t. R.
(61) Let R be a binary relation. Suppose that it is not true that there exist sets a, b such that a and b are critical w.r.t. R Then R is locally-confluent.
(62) Let R, Q be binary relations. Suppose that for all sets a, b such that $\langle a, b\rangle \in Q$ holds a and b are critical w.r.t. R. Then R and $R \cup Q$ are equivalent.
(63) Let R be a binary relation. Then there exists a complete binary relation Q such that
(i) field $Q \subseteq$ field R, and
(ii) for all sets a, b holds a and b are convertible w.r.t. R iff a and b are convergent w.r.t. Q.
Let R be a binary relation. A complete binary relation is said to be a completion of R if it satisfies the condition (Def. 28).
(Def. 28) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a and b are convergent w.r.t. it.
Next we state three propositions:
(64) For every binary relation R and for every completion C of R holds R and C are equivalent.
(65) Let R be a binary relation and let Q be a complete binary relation. If R and Q are equivalent, then Q is a completion of R.
(66) Let R be a binary relation, and let C be a completion of R, and let a, b be sets. Then a and b are convertible w.r.t. R if and only if $\mathrm{nf}_{C}(a)=\operatorname{nf}_{C}(b)$.

REferences

[1] S. Abramsky, D. M. Gabbay, and S. E. Maibaum, editors. Handbook of Logic in Computer Science, vol. 2: Computational structures. Clarendon Press, Oxford, 1992.
[2] Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion. Journal of Symbolic Computation, 6(1):1-18, 1988.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[8] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Gerard Huet. A complete proof of correctness of the knuth-bendix completion. Journal of Computer and System Sciences, 23(1):3-57, 1981.
[11] Jan Willem Klop and Aart Middeldrop. An introduction to knuth-bendix completion. CWI Quarterly, 1(3):31-52, 1988.
[12] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Computational Problems in Abstract Algebras, pages 263-297, Pergamon, Oxford, 1970.
[13] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[15] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received November 14, 1995

