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Summary. In the paper the construction of a category of partially
ordered sets is shown: in the second section according to [8] and in the
third section according to the definition given in [15]. Some of useful
notions such as monotone map and the set of monotone maps between
relational structures are given.
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The articles [18], [21], [9], [22], [24], [6], [1], [19], [3], [2], [7], [4], [13], [23], [14],
[20], [8], [5], [16], [17], [10], [11], [12], and [15] provide the terminology and
notation for this paper.

1. Preliminaries

Let I1 be a relation structure. We say that I1 is discrete if and only if:

(Def. 1) The internal relation of I1 = △the carrier of I1.

Let us mention that there exists a poset which is strict discrete and non
empty and there exists a poset which is strict discrete and empty.

Let X be a set. Then △X is an order in X.
Observe that 〈∅,△∅〉 is empty. Let P be an empty relation structure. One

can check that the internal relation of P is empty.
Let us mention that every relation structure which is empty is also discrete.
Let P be a relation structure and let I1 be a subset of P . We say that I1 is

disconnected if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exist subsets A, B of P such that
(i) A 6= ∅,
(ii) B 6= ∅,
(iii) I1 = A ∪ B,
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(iv) A misses B, and
(v) the internal relation of P = (the internal relation of P ) |2 (A) ∪ (the

internal relation of P ) |2 (B).

We introduce I1 is connected as an antonym of I1 is disconnected.
Let I1 be a non empty relation structure. We say that I1 is disconnected if

and only if:

(Def. 3) Ω(I1) is disconnected.

We introduce I1 is connected as an antonym of I1 is disconnected.
In the sequel T will denote a non empty relation structure and a will denote

an element of T .
One can prove the following propositions:

(1) For every discrete non empty relation structure D1 and for all elements
x, y of D1 holds x ≤ y iff x = y.

(2) For every binary relation R and for arbitrary a such that R is an order
in {a} holds R = △{a}.

(3) If T is reflexive and ΩT = {a}, then T is discrete.

In the sequel a will be arbitrary.
One can prove the following two propositions:

(4) If ΩT = {a}, then T is connected.

(5) For every discrete non empty poset D1 such that there exist elements
a, b of D1 such that a 6= b holds D1 is disconnected.

One can check that there exists a non empty poset which is strict and con-
nected and there exists a non empty poset which is strict disconnected and
discrete.

2. On the Category of Posets

Let I1 be a set. We say that I1 is poset-membered if and only if:

(Def. 4) For arbitrary a such that a ∈ I1 holds a is a non empty poset.

One can check that there exists a set which is non empty and poset-membered.
A set of posets is a poset-membered set.
Let P be a non empty set of posets. We see that the element of P is a non

empty poset.
Let L1, L2 be relation structures and let f be a map from L1 into L2. We

say that f is monotone if and only if:

(Def. 5) For all elements x, y of L1 such that x ≤ y and for all elements a, b of
L2 such that a = f(x) and b = f(y) holds a ≤ b.

In the sequel P will denote a non empty set of posets and A, B will denote
elements of P .

Let A, B be relation structures. The functor BA
≤ is defined by the condition

(Def. 6).
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(Def. 6) a ∈ BA
≤ if and only if there exists a map f from A into B such that

a = f and f ∈ (the carrier of B)the carrier of A and f is monotone.

The following propositions are true:

(6) For all non empty relation structures A, B, C and for all functions f ,
g such that f ∈ BA

≤ and g ∈ CB
≤ holds g · f ∈ CA

≤ .

(7) id(the carrier of T ) ∈ T T
≤ .

Let us consider T . Observe that T T
≤ is non empty.

Let X be a set. The functor Carr(X) yields a set and is defined by:

(Def. 7) a ∈ Carr(X) iff there exists a 1-sorted structure s such that s ∈ X and
a = the carrier of s.

Let us consider P . Observe that Carr(P ) is non empty.
The following propositions are true:

(8) For every 1-sorted structure f holds Carr({f}) = {the carrier of f}.

(9) For all 1-sorted structures f , g holds Carr({f, g}) = {the carrier of f ,
the carrier of g}.

(10) BA
≤ ⊆ FuncsCarr(P ).

(11) For all relation structures A, B holds BA
≤ ⊆ (the carrier of

B)the carrier of A.

Let A, B be non empty poset. Observe that BA
≤ is functional.

Let P be a non empty set of posets. The functor POSCat(P ) yielding a strict
category with triple-like morphisms is defined by the conditions (Def. 8).

(Def. 8) (i) The objects of POSCat(P ) = P,

(ii) for all elements a, b of P and for every element f of FuncsCarr(P )
such that f ∈ ba

≤ holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of POSCat(P ),
(iii) for every morphism m of POSCat(P ) there exist elements a, b of P

and there exists an element f of Funcs Carr(P ) such that m = 〈〈〈〈a, b〉〉, f〉〉
and f ∈ ba

≤, and
(iv) for all morphisms m1, m2 of POSCat(P ) and for all elements a1, a2,

a3 of P and for all elements f1, f2 of FuncsCarr(P ) such that m1 = 〈〈〈〈a1,

a2〉〉, f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 · m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

3. On the Alternative Category of Posets

In this article we present several logical schemes. The scheme AltCatEx

concerns a non empty set A and a binary functor F yielding a functional set,
and states that:

There exists a strict category structure C such that
(i) the carrier of C = A, and
(ii) for all elements i, j of A holds (the arrows of C)(i, j) = F(i, j)
and for all elements i, j, k of A holds (the composition of C)(i, j,

k) = FuncComp(F(i, j),F(j, k))
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provided the following condition is met:
• For all elements i, j, k of A and for all functions f , g such that

f ∈ F(i, j) and g ∈ F(j, k) holds g · f ∈ F(i, k).
The scheme AltCatUniq deals with a non empty set A and a binary functor

F yielding a functional set, and states that:
Let C1, C2 be strict category structures. Suppose that
(i) the carrier of C1 = A,

(ii) for all elements i, j of A holds (the arrows of C1)(i, j) =
F(i, j) and for all elements i, j, k of A holds (the composition of
C1)(i, j, k) = FuncComp(F(i, j),F(j, k)),
(iii) the carrier of C2 = A, and
(iv) for all elements i, j of A holds (the arrows of C2)(i, j) =
F(i, j) and for all elements i, j, k of A holds (the composition of
C2)(i, j, k) = FuncComp(F(i, j),F(j, k)).

Then C1 = C2

for all values of the parameters.
Let P be a non empty set of posets. The functor POSAltCat(P ) yielding a

strict category structure is defined by the conditions (Def. 9).

(Def. 9) (i) The carrier of POSAltCat(P ) = P, and
(ii) for all elements i, j of P holds (the arrows of POSAltCat(P ))(i,

j) = ji
≤ and for all elements i, j, k of P holds (the composition of

POSAltCat(P ))(i, j, k) = FuncComp(j i
≤, k

j
≤).

Let P be a non empty set of posets. One can verify that POSAltCat(P ) is
transitive and non empty.

Let P be a non empty set of posets. Observe that POSAltCat(P ) is associa-
tive and has units.

One can prove the following proposition

(12) Let o1, o2 be objects of POSAltCat(P ) and let A, B be elements of P .
If o1 = A and o2 = B, then 〈o1, o2〉 ⊆ (the carrier of B)the carrier of A.
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