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Summary. The graph induced by a many sorted signature is de-
fined as follows: the vertices are the symbols of sorts, and if a sort s is
an argument of an operation with result sort t, then a directed edge [s, t]
is in the graph. The key lemma states relationship between the depth of
elements of a free many sorted algebra over a signature and the length
of directed chains in the graph induced by the signature. Then we prove
that a monotonic many sorted signature (every finitely-generated algebra
over it is locally-finite) induces a well-founded graph. The converse holds
with an additional assumption that the signature is finitely operated, i.e.
there is only a finite number of operations with the given result sort.

MML Identifier: MSSCYC 2.

The articles [30], [33], [19], [2], [15], [31], [34], [12], [14], [13], [18], [21], [17], [10],
[3], [5], [7], [1], [4], [26], [6], [32], [20], [22], [29], [28], [11], [27], [25], [24], [23],
[8], [9], and [16] provide the terminology and notation for this paper.

In this paper n will be a natural number.
Let S be a many sorted signature. The functor InducedEdges(S) yields a set

and is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ InducedEdges(S) if and only if there exist
sets o1, v such that x = 〈〈o1, v〉〉 and o1 ∈ the operation symbols of S and
v ∈ the carrier of S and there exists a natural number n and there exists
an element a1 of (the carrier of S)∗ such that (the arity of S)(o1) = a1

and n ∈ dom a1 and a1(n) = v.

Next we state the proposition
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(1) For every many sorted signature S holds InducedEdges(S) ⊆ [: the op-
eration symbols of S, the carrier of S :].

Let S be a many sorted signature. The functor InducedSource(S) yields a
function from InducedEdges(S) into the carrier of S and is defined as follows:

(Def. 2) For every set e such that e ∈ InducedEdges(S) holds (InducedSource(S))
(e) = e2.

The functor InducedTarget(S) yielding a function from InducedEdges(S) into
the carrier of S is defined by:

(Def. 3) For every set e such that e ∈ InducedEdges(S) holds (InducedTarget(S))
(e) = (the result sort of S)(e1).

Let S be a non empty many sorted signature. The functor InducedGraph(S)
yields a graph and is defined by:

(Def. 4) InducedGraph(S) = 〈the carrier of S, InducedEdges(S), InducedSource
(S), InducedTarget(S)〉.

One can prove the following propositions:

(2) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be
a sort symbol of S, and given n. Suppose 1 ≤ n. Then there exists an
element t of (the sorts of Free(X))(v) such that depth(t) = n if and only
if there exists a directed chain c of InducedGraph(S) such that len c = n

and (vertex-seq(c))(len c + 1) = v.

(3) For every void non empty many sorted signature S holds S is monotonic
iff InducedGraph(S) is well-founded.

(4) For every non void non empty many sorted signature S such that S is
monotonic holds InducedGraph(S) is well-founded.

(5) Let S be a non void non empty many sorted signature and let X be
a non-empty locally-finite many sorted set indexed by the carrier of S.
Suppose S is finitely operated. Let n be a natural number and let v be
a sort symbol of S. Then {t : t ranges over elements of (the sorts of
Free(X))(v), depth(t) ≤ n} is finite.

(6) Let S be a non void non empty many sorted signature. If S is finitely
operated and InducedGraph(S) is well-founded, then S is monotonic.
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[12] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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