
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

Left and Right Component of the

Complement of a Special Closed Curve

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. In the article the concept of the left and right compo-
nent are introduced. These are the auxiliary notions needed in the proof
of Jordan Curve Theorem.

MML Identifier: GOBOARD9.

The articles [23], [26], [7], [25], [11], [2], [21], [18], [27], [6], [5], [3], [24], [12], [1],
[13], [20], [28], [19], [4], [9], [10], [14], [15], [16], [8], [22], and [17] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f will denote a non constant
standard special circular sequence, i, j, k will denote natural numbers, p, q will
denote points of E2

T
, and G will denote a Go-board.

The following propositions are true:

(1) i −′ i = 0.

(2) i −′ j ≤ i.

(3) Let G1 be a non empty topological space and let A1, A2, B be subsets of
the carrier of G1. Suppose A1 is a component of B and A2 is a component
of B. Then A1 = A2 or A1 misses A2.

(4) Let G1 be a non empty topological space, and let A, B be non empty
subsets of the carrier of G1, and let A3 be a subset of the carrier of G1

�
B.If

A = A3, then G1

�
A = G1

�
B

�
A3.

(5) Let G1 be a non empty topological space and let A, B be non empty
subsets of the carrier of G1. Suppose A ⊆ B and A is connected. Then
there exists a subset C of the carrier of G1 such that C is a component
of B and A ⊆ C.

(6) Let G1 be a non empty topological space and let A, B, C, D be subsets
of the carrier of G1. Suppose B is connected and C is a component of D

and A ⊆ C and A meets B and B ⊆ D. Then B ⊆ C.
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(7) L(p, q) is convex.

(8) L(p, q) is connected.

One can check that there exists a subset of the carrier of E 2

T
which is convex.

One can prove the following three propositions:

(9) For all convex subsets P , Q of the carrier of E 2

T
holds P ∩ Q is convex.

(10) For every finite sequence f of elements of E 2

T
holds Rev(X-coordinate(f)) =

X-coordinate(Rev(f)).

(11) For every finite sequence f of elements of E 2

T
holds Rev(Y-coordinate(f)) =

Y-coordinate(Rev(f)).

Let us mention that there exists a finite sequence which is non constant.
Let f be a non constant finite sequence. Note that Rev(f) is non constant.
Let f be a standard special circular sequence. Then Rev(f) is a standard

special circular sequence.
We now state a number of propositions:

(12) If i ≥ 1 and j ≥ 1 and i + j = len f, then leftcell(f, i) =
rightcell(Rev(f), j).

(13) If i ≥ 1 and j ≥ 1 and i + j = len f, then leftcell(Rev(f), i) =
rightcell(f, j).

(14) Suppose 1 ≤ k and k + 1 ≤ len f. Then there exist i, j such that
i ≤ len the Go-board of f and j ≤ width the Go-board of f and cell(the
Go-board of f , i, j) = leftcell(f, k).

(15) If j ≤ width G, then Int hstrip(G, j) is convex.

(16) If i ≤ len G, then Int vstrip(G, i) is convex.

(17) If i ≤ len G and j ≤ widthG, then Int cell(G, i, j) 6= ∅.

(18) If 1 ≤ k and k + 1 ≤ len f, then Int leftcell(f, k) 6= ∅.

(19) If 1 ≤ k and k + 1 ≤ len f, then Int rightcell(f, k) 6= ∅.

(20) If i ≤ len G and j ≤ widthG, then Int cell(G, i, j) is convex.

(21) If i ≤ len G and j ≤ widthG, then Int cell(G, i, j) is connected.

(22) If 1 ≤ k and k + 1 ≤ len f, then Int leftcell(f, k) is connected.

(23) If 1 ≤ k and k + 1 ≤ len f, then Int rightcell(f, k) is connected.

Let us consider f . The functor LeftComp(f) yields a subset of the carrier of
E2

T
and is defined as follows:

(Def. 1) LeftComp(f) is a component of (L̃(f))c and Int leftcell(f, 1) ⊆
LeftComp(f).

The functor RightComp(f) yields a subset of the carrier of E 2

T
and is defined

by:

(Def. 2) RightComp(f) is a component of (L̃(f))c and Int rightcell(f, 1) ⊆
RightComp(f).

One can prove the following propositions:

(24) For every k such that 1 ≤ k and k + 1 ≤ len f holds Int leftcell(f, k) ⊆
LeftComp(f).
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(25) The Go-board of Rev(f) = the Go-board of f .

(26) RightComp(f) = LeftComp(Rev(f)).

(27) RightComp(Rev(f)) = LeftComp(f).

(28) For every k such that 1 ≤ k and k +1 ≤ len f holds Int rightcell(f, k) ⊆
RightComp(f).
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