Left and Right Component of the Complement of a Special Closed Curve

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. In the article the concept of the left and right component are introduced. These are the auxiliary notions needed in the proof of Jordan Curve Theorem.

MML Identifier: GOBOARD9.

The articles [23], [26], [7], [25], [11], [2], [21], [18], [27], [6], [5], [3], [24], [12], [1], [13], [20], [28], [19], [4], [9], [10], [14], [15], [16], [8], [22], and [17] provide the notation and terminology for this paper.

For simplicity we adopt the following rules: f will denote a non constant standard special circular sequence, i, j, k will denote natural numbers, p, q will denote points of $\mathcal{E}_{\mathrm{T}}^{2}$, and G will denote a Go-board.

The following propositions are true:
(1) $i-^{\prime} i=0$.
(2) $i-^{\prime} j \leq i$.
(3) Let G_{1} be a non empty topological space and let A_{1}, A_{2}, B be subsets of the carrier of G_{1}. Suppose A_{1} is a component of B and A_{2} is a component of B. Then $A_{1}=A_{2}$ or A_{1} misses A_{2}.
(4) Let G_{1} be a non empty topological space, and let A, B be non empty subsets of the carrier of G_{1}, and let A_{3} be a subset of the carrier of $G_{1} \upharpoonright B$.If $A=A_{3}$, then $G_{1} \upharpoonright A=G_{1} \upharpoonright B \upharpoonright A_{3}$.
(5) Let G_{1} be a non empty topological space and let A, B be non empty subsets of the carrier of G_{1}. Suppose $A \subseteq B$ and A is connected. Then there exists a subset C of the carrier of G_{1} such that C is a component of B and $A \subseteq C$.
(6) Let G_{1} be a non empty topological space and let A, B, C, D be subsets of the carrier of G_{1}. Suppose B is connected and C is a component of D and $A \subseteq C$ and A meets B and $B \subseteq D$. Then $B \subseteq C$.
(7) $\quad \mathcal{L}(p, q)$ is convex.
(8) $\mathcal{L}(p, q)$ is connected.

One can check that there exists a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ which is convex.
One can prove the following three propositions:
(9) For all convex subsets P, Q of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $P \cap Q$ is convex.
(10) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{Rev}(\mathbf{X}$-coordinate $(f))=$ X-coordinate $(\operatorname{Rev}(f))$.
(11) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2} \operatorname{holds} \operatorname{Rev}(\mathbf{Y}$-coordinate $(f))=$ Y-coordinate($\operatorname{Rev}(f))$.
Let us mention that there exists a finite sequence which is non constant.
Let f be a non constant finite sequence. Note that $\operatorname{Rev}(f)$ is non constant.
Let f be a standard special circular sequence. Then $\operatorname{Rev}(f)$ is a standard special circular sequence.

We now state a number of propositions:
(12) If $i \geq 1$ and $j \geq 1$ and $i+j=\operatorname{len} f$, then $\operatorname{leftcell}(f, i)=$ rightcell $(\operatorname{Rev}(f), j)$.
(13) If $i \geq 1$ and $j \geq 1$ and $i+j=\operatorname{len} f$, then $\operatorname{leftcell}(\operatorname{Rev}(f), i)=$ $\operatorname{rightcell}(f, j)$.
(14) Suppose $1 \leq k$ and $k+1 \leq \operatorname{len} f$. Then there exist i, j such that $i \leq$ len the Go-board of f and $j \leq$ width the Go-board of f and cell(the Go-board of $f, i, j)=\operatorname{leftcell}(f, k)$.
(15) If $j \leq \operatorname{width} G$, then $\operatorname{Inthstrip}(G, j)$ is convex.
(16) If $i \leq \operatorname{len} G$, then $\operatorname{Int} \operatorname{vstrip}(G, i)$ is convex.
(17) If $i \leq \operatorname{len} G$ and $j \leq$ width G, then $\operatorname{Int} \operatorname{cell}(G, i, j) \neq \emptyset$.
(18) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{leftcell}(f, k) \neq \emptyset$.
(19) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{rightcell}(f, k) \neq \emptyset$.
(20) If $i \leq \operatorname{len} G$ and $j \leq$ width G, then $\operatorname{Int} \operatorname{cell}(G, i, j)$ is convex.
(21) If $i \leq \operatorname{len} G$ and $j \leq \operatorname{width} G$, then $\operatorname{Int} \operatorname{cell}(G, i, j)$ is connected.
(22) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{leftcell}(f, k)$ is connected.
(23) If $1 \leq k$ and $k+1 \leq \operatorname{len} f$, then $\operatorname{Int} \operatorname{rightcell}(f, k)$ is connected.

Let us consider f. The functor $\operatorname{Left} \operatorname{Comp}(f)$ yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 1) $\operatorname{LeftComp}(f)$ is a component of $(\widetilde{\mathcal{L}}(f))^{\text {c }}$ and $\operatorname{Intleftcell}(f, 1) \subseteq$ $\operatorname{LeftComp}(f)$.
The functor $\operatorname{Right} \operatorname{Comp}(f)$ yields a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 2) $\operatorname{RightComp}(f)$ is a component of $(\widetilde{\mathcal{L}}(f))^{c}$ and $\operatorname{Intrightcell}(f, 1) \subseteq$ $\operatorname{RightComp}(f)$.
One can prove the following propositions:
(24) For every k such that $1 \leq k$ and $k+1 \leq \operatorname{len} f \operatorname{holds} \operatorname{Int} \operatorname{leftcell}(f, k) \subseteq$ $\operatorname{LeftComp}(f)$.

REferences

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[16] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. Formalized Mathematics, 3(2):137-142, 1992.
[17] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[19] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[21] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[22] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received October 29, 1995

