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Summary. In the article the concept of the left and right compo-
nent are introduced. These are the auxiliary notions needed in the proof
of Jordan Curve Theorem.

MML Identifier: GOBOARD9.

The articles (23], [26], [7], [25], [11], [2], [21], [18], [27], [6], [5], (3], [24], [12], [1],
[13], [20], [28], [19], [4], [9], [10], [14], [15], [16], [8], [22], and [17] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f will denote a non constant
standard special circular sequence, 7, j, k will denote natural numbers, p, ¢ will
denote points of 5%, and G will denote a Go-board.

The following propositions are true:

(1) i—'i=0.

(2) i—"j<i.

(3) Let G be anon empty topological space and let A;, A, B be subsets of
the carrier of G1. Suppose A; is a component of B and As is a component
of B. Then A; = Ay or A; misses As.

(4) Let Gy be a non empty topological space, and let A, B be non empty
subsets of the carrier of G1, and let A3 be a subset of the carrier of G1| B.If
A=Az, then G 1 A=G| B As.

(5) Let G1 be a non empty topological space and let A, B be non empty
subsets of the carrier of G;. Suppose A C B and A is connected. Then
there exists a subset C' of the carrier of G such that C' is a component
of Band A CC.

(6) Let G1 be anon empty topological space and let A, B, C, D be subsets
of the carrier of G1. Suppose B is connected and C' is a component of D
and A C C and A meets B and B C D. Then B C C.
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(7)  L(p,q) is convex.
(8) L(p,q) is connected.
One can check that there exists a subset of the carrier of E% which is convex.
One can prove the following three propositions:
(9)  For all convex subsets P, Q of the carrier of £2 holds PN Q is convex.
(10)  For every finite sequence f of elements of £2 holds Rev(X-coordinate(f))
X-coordinate(Rev(f)).

(11)  For every finite sequence f of elements of £2 holds Rev(Y-coordinate( f))
Y-coordinate(Rev(f)).

Let us mention that there exists a finite sequence which is non constant.
Let f be a non constant finite sequence. Note that Rev(f) is non constant.
Let f be a standard special circular sequence. Then Rev(f) is a standard
special circular sequence.
We now state a number of propositions:
(12) If ¢« > 1 and j > 1 and ¢ + j = lenf, then leftcell(f,i) =
rightcell(Rev(f), 7).
(13) Ifi > 1and j > 1 and i+ j = lenf, then leftcell(Rev(f),i) =
rightcell(f, 7).

(14)  Suppose 1 < k and k + 1 < len f. Then there exist i, j such that
i < lenthe Go-board of f and j < widththe Go-board of f and cell(the
Go-board of f, i,7) = leftcell(f, k).

If j < width G, then Int hstrip(G, j) is convex.
If : < len @G, then Int vstrip(G, i) is convex.
If i <lenG and j < width G, then Int cell(G, 1, j) # 0.
If 1 <kand k+ 1 <len f, then Intleftcell(f, k) # 0.
If 1 <kand k+1<len f, then Int rightcell(f, k) # 0.
If i <lenG and j < width G, then Int cell(G, 1, j) is convex.
If i <lenG and j < width G, then Int cell(G, 1, j) is connected.
If 1 <kand k+1 <len f, then Intleftcell(f, k) is connected.
If 1 <kand k+1<len f, then Intrightcell(f, k) is connected.
Let us consider f. The functor LeftComp(f) yields a subset of the carrier of
EZ and is defined as follows:
(Def. 1) LeftComp(f) is a component of (£(f))¢ and Intleftcell(f,1) C
LeftComp(f).
The functor RightComp(f) yields a subset of the carrier of £% and is defined
by:
(Def. 2)  RightComp(f) is a component of (£(f))¢ and Intrightcell(f,1) C
RightComp(f).
One can prove the following propositions:

(24)  For every k such that 1 < k and k4 1 <len f holds Int leftcell(f, k) C
LeftComp( f).
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(25)  The Go-board of Rev(f) = the Go-board of f.

(26)  RightComp(f) = LeftComp(Rev(f)).

(27)  RightComp(Rev(f)) = LeftComp(f).

(28)  For every k such that 1 < k and k+1 < len f holds Int rightcell(f, k) C
RightComp(f).
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