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Summary. This article presents some theorems about functor
structures. We start with some basic lemmata concerning the composition
of functor structures. Then, two theorems about the restriction operator
are formulated. Later, we show two theorems stating that the properties
’full’ and ’faithful’ of functor structures which are equivalent to the ’onto’
and ’one-to-one’ properties of their morphmaps, respectively. Further-
more, we prove some theorems about the inversion of functor structures.

MML Identifier: FUNCTOR1.

The terminology and notation used here are introduced in the following articles:
[17], [16], [6], [18], [4], [5], [3], [15], [14], [9], [8], [11], [12], [2], [13], [10], [7], and
[1].

1. Definitions

In this paper X, Y denote sets and Z denotes a non empty set.
Let us mention that there exists a non empty category structure which is

transitive and reflexive and has units.
Let A be a non empty reflexive category structure. One can verify that there

exists a substructure of A which is non empty and reflexive.
Let C1, C2 be non empty reflexive category structures, let F be a feasible

functor structure from C1 to C2, and let A be a non empty reflexive substructure
of C1. Observe that F

�
A is feasible.

2. Theorems about sets and functions

We now state four propositions:
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(1) For every set X holds idX is onto.

(2) Let A be a non empty set, and let B, C be non empty subsets of A and

let D be a non empty subset of B. If C = D, then C

→֒
= ( B

→֒
) · ( D

→֒
).

(3) For every function f from X into Y such that f is bijective holds f−1

is a function from Y into X.

(4) Let f be a function from X into Y and let g be a function from Y into
Z. Suppose f is bijective and g is bijective. Then there exists a function
h from X into Z such that h = g · f and h is bijective.

3. Theorems about the composition of functor structures

The following propositions are true:

(5) Let A be a non empty reflexive category structure, and let B be a non
empty reflexive substructure of A, and let C be a non empty substructure
of A, and let D be a non empty substructure of B. If C = D, then
C

→֒
= ( B

→֒
) · ( D

→֒
).

(6) Let A, B be non empty category structures and let F be a functor
structure from A to B. Suppose F is bijective. Then the object map of
F is bijective and the morphism map of F is “1-1”.

(7) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3. If F is one-to-one and G is
one-to-one, then G · F is one-to-one.

(8) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3 If F is faithful and G is faithful,
then G · F is faithful.

(9) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3 If F is onto and G is onto, then
G · F is onto.

(10) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G

be a functor structure from C2 to C3 If F is full and G is full, then G · F

is full.

(11) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G

be a functor structure from C2 to C3 If F is injective and G is injective,
then G · F is injective.

(12) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G



basic properties of functor structures 611

be a functor structure from C2 to C3 If F is surjective and G is surjective,
then G · F is surjective.

(13) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G

be a functor structure from C2 to C3 If F is bijective and G is bijective,
then G · F is bijective.

4. Theorems about the restriction and inclusion operator

We now state three propositions:

(14) Let A, I be non empty reflexive category structures, and let B be a non
empty reflexive substructure of A, and let C be a non empty substructure
of A, and let D be a non empty substructure of B. Suppose C = D. Let
F be a functor structure from A to I. Then F

�
C = F

�
B

�
D.

(15) Let C1, C2, C3 be non empty reflexive category structures, and let F

be a feasible functor structure from C1 to C2, and let G be a functor
structure from C2 to C3 and let A be a non empty reflexive substructure
of C1. Then (G · F )

�
A = G · (F

�
A).

(17)1 Let A be a non empty category structure and let B be a non empty

substructure of A. Then B is full if and only if B

→֒
is full.

5. Theorems about ’full’ and ’faithful’ functor structures

Next we state two propositions:

(18) Let C1, C2 be non empty category structures and let F be a precovariant
functor structure from C1 to C2. Then F is full if and only if for all objects
o1, o2 of C1 holds Morph-MapF (o1, o2) is onto.

(19) Let C1, C2 be non empty category structures and let F be a precovariant
functor structure from C1 to C2. Then F is faithful if and only if for all
objects o1, o2 of C1 holds Morph-MapF (o1, o2) is one-to-one.

6. Theorems about the inversion of functor structures

One can prove the following propositions:

(20) For every transitive non empty category structure A with units holds
(idA)−1 = idA.

1The proposition (16) has been removed.
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(21) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. Suppose F is bijective. Let G be a strict feasible
functor structure from B to A. If G = F−1, then F · G = idB .

(22) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. If F is bijective, then F −1

· F = idA.

(23) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. If F is bijective, then (F −1)−1 = F.

(24) Let A, B, C be transitive reflexive non empty category structures with
units, and let G be a strict feasible functor structure from A to B, and
let F be a strict feasible functor structure from B to C, and let G1 be a
strict feasible functor structure from B to A, and let F1 be a strict feasible
functor structure from C to B. Suppose F is bijective and G is bijective
and F1 is bijective and G1 is bijective and G1 = G−1 and F1 = F−1. Then
(F · G)−1 = G1 · F1.
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[2] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
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