Miscellaneous Facts about Functions

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Andrzej Trybulec
Warsaw University
Białystok

MML Identifier: FUNCT_7.

The papers [16], [26], [3], [24], [29], [14], [28], [19], [23], [25], [22], [1], [17], [18], [30], [10], [6], [5], [15], [8], [13], [7], [11], [21], [9], [12], [2], [27], [20], and [4] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, m, n are natural numbers, f, g are functions, and A, B are sets.

We now state several propositions:
(1) For every function f and for every set X such that $\operatorname{rng} f \subseteq X$ holds $\mathrm{id}_{X} \cdot f=f$.
(2) Let X be a set, and let Y be a non empty set, and let f be a function from X into Y. Suppose f is one-to-one. Let B be a subset of X and let C be a subset of Y. If $C \subseteq f^{\circ} B$, then $f^{-1} C \subseteq B$.
(3) Let X, Y be non empty sets and let f be a function from X into Y. Suppose f is one-to-one. Let x be an element of X and let A be a subset of X. If $f(x) \in f^{\circ} A$, then $x \in A$.
(4) Let X, Y be non empty sets and let f be a function from X into Y. Suppose f is one-to-one. Let x be an element of X, and let A be a subset of X, and let B be a subset of Y. If $f(x) \in f^{\circ} A \backslash B$, then $x \in A \backslash f^{-1} B$.
(5) Let X, Y be non empty sets and let f be a function from X into Y. Suppose f is one-to-one. Let y be an element of Y, and let A be a subset of X, and let B be a subset of Y. If $y \in f^{\circ} A \backslash B$, then $f^{-1}(y) \in A \backslash f^{-1} B$.
(6) For every function f and for arbitrary a such that $a \in \operatorname{dom} f$ holds $f \upharpoonright\{a\}=a \longmapsto f(a)$.

Let x, y be arbitrary. Observe that $x \longmapsto y$ is non empty.
Let x, y, a, b be arbitrary. One can check that $[x \longmapsto a, y \longmapsto b]$ is non empty.

One can prove the following propositions:
(7) For every set I and for every many sorted set M indexed by I and for arbitrary i such that $i \in I$ holds $i \longmapsto M(i)=M \upharpoonright\{i\}$.
(8) Let I, J be sets, and let M be a many sorted set indexed by $: I, J:$, and let i, j be arbitrary. If $i \in I$ and $j \in J$, then $[\langle i, j\rangle \mapsto M(i, j)]=M \upharpoonright:\{i\}$, $\{j\}$:.
(9) If $x \in \operatorname{dom} f$ and $x \notin \operatorname{dom} g$, then $(f+\cdot g)(x)=f(x)$.
(10) For all functions f, g, h such that $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ holds $f \cdot(g+\cdot h)=f \cdot g+\cdot f \cdot h$.
(11) For all functions f, g, h holds $(g+\cdot h) \cdot f=g \cdot f+\cdot h \cdot f$.
(12) For all functions f, g, h such that rng f misses $\operatorname{dom} g$ holds $(h+\cdot g) \cdot f=$ $h \cdot f$.
(13) For all sets A, B and for arbitrary y such that A meets $\operatorname{rng}\left(\operatorname{id}_{B+} \cdot(A \longmapsto\right.$ $y))$ holds $y \in A$.
(14) For arbitrary x, y and for every set A such that $x \neq y$ holds $x \notin$ $\operatorname{rng}\left(\mathrm{id}_{A}+\cdot(x \longmapsto y)\right)$.
(15) For every set X and for arbitrary a and for every function f such that $\operatorname{dom} f=X \cup\{a\}$ holds $f=f \upharpoonright X+\cdot(a \longmapsto f(a))$.
(16) For every function f and for all sets X, y, z holds $f+\cdot(X \longmapsto$ $y)+\cdot(X \longmapsto z)=f+\cdot(X \longmapsto z)$.
(17) If $0<m$ and $m \leq n$, then $\mathbb{Z}_{m} \subseteq \mathbb{Z}_{n}$.
(18) $\mathbb{Z} \neq \mathbb{Z}^{*}$.
(19) $\emptyset^{*}=\{\emptyset\}$.
(20) $\langle x\rangle \in A^{*}$ iff $x \in A$.
(21) $\quad A \subseteq B$ iff $A^{*} \subseteq B^{*}$.
(22) For every subset A of \mathbb{N} such that for all n, m such that $n \in A$ and $m<n$ holds $m \in A$ holds A is a cardinal number.
(23) Let A be a finite set and let X be a non empty family of subsets of A. Then there exists an element C of X such that for every element B of X such that $B \subseteq C$ holds $B=C$.
(24) Let p, q be finite sequences. Suppose len $p=\operatorname{len} q+1$. Let i be a natural number. Then $i \in \operatorname{dom} q$ if and only if the following conditions are satisfied:
(i) $\quad i \in \operatorname{dom} p$, and
(ii) $i+1 \in \operatorname{dom} p$.

Let us note that there exists a finite sequence which is function yielding non empty and non-empty.

Note that ε is function yielding. Let f be a function. Observe that $\langle f\rangle$ is function yielding. Let g be a function. One can check that $\langle f, g\rangle$ is function
yielding. Let h be a function. Observe that $\langle f, g, h\rangle$ is function yielding.
Let n be a natural number and let f be a function. One can verify that $n \mapsto f$ is function yielding.

Let p be a finite sequence and let q be a non empty finite sequence. One can verify that $p^{\wedge} q$ is non empty and $q^{\wedge} p$ is non empty.

Let p, q be function yielding finite sequences. Note that $p^{\wedge} q$ is function yielding.

Next we state the proposition
(25) Let p, q be finite sequences. Suppose $p^{\wedge} q$ is function yielding. Then p is function yielding and q is function yielding.

2. Some useful schemes

In this article we present several logical schemes. The scheme KappaD concerns non empty sets \mathcal{A}, \mathcal{B} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x)=\mathcal{F}(x)$
provided the parameters meet the following condition:

- For every element x of \mathcal{A} holds $\mathcal{F}(x) \in \mathcal{B}$.

The scheme Kappa2D deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a binary functor \mathcal{F} yielding arbitrary, and states that:

There exists a function f from $: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $f(\langle x, y\rangle)=$ $\mathcal{F}(x, y)$
provided the parameters meet the following requirement:

- For every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\mathcal{F}(x, y) \in \mathcal{C}$.
The scheme FinMono concerns a set \mathcal{A}, a non empty set \mathcal{B}, and two unary functors \mathcal{F} and \mathcal{G} yielding arbitrary, and states that:
$\{\mathcal{F}(d): d$ ranges over elements of $\mathcal{B}, \mathcal{G}(d) \in \mathcal{A}\}$ is finite
provided the following conditions are satisfied:
- \mathcal{A} is finite,
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{G}\left(d_{1}\right)=\mathcal{G}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme CardMono concerns a set \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding arbitrary, and states that:
$\mathcal{A} \approx\{d: d$ ranges over elements of $\mathcal{B}, \mathcal{F}(d) \in \mathcal{A}\}$
provided the following requirements are met:

- For arbitrary x such that $x \in \mathcal{A}$ there exists an element d of \mathcal{B} such that $x=\mathcal{F}(d)$,
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{F}\left(d_{1}\right)=\mathcal{F}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme CardMono' concerns a set \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding arbitrary, and states that:
$\mathcal{A} \approx\{\mathcal{F}(d): d$ ranges over elements of $\mathcal{B}, d \in \mathcal{A}\}$
provided the following conditions are satisfied:

- $\mathcal{A} \subseteq \mathcal{B}$,
- For all elements d_{1}, d_{2} of \mathcal{B} such that $\mathcal{F}\left(d_{1}\right)=\mathcal{F}\left(d_{2}\right)$ holds $d_{1}=d_{2}$.

The scheme FuncSeqInd concerns a unary predicate \mathcal{P}, and states that:
For every function yielding finite sequence p holds $\mathcal{P}[p]$ provided the following conditions are satisfied:

- $\mathcal{P}[\varepsilon]$,
- For every function yielding finite sequence p such that $\mathcal{P}[p]$ and for every function f holds $\mathcal{P}\left[p^{\wedge}\langle f\rangle\right]$.

3. Some auxiliary concepts

Let x be arbitrary and let y be a set. Let us assume that $x \in y$. The functor $x(\in y)$ yielding an element of y is defined as follows:
(Def. 1) $\quad x(\in y)=x$.
One can prove the following proposition
(26) If $x \in A \cap B$, then $x(\in A)=x(\in B)$.

Let f, g be functions and let A be a set. We say that f and g equal outside A if and only if:
(Def. 2) $\quad f \upharpoonright(\operatorname{dom} f \backslash A)=g \upharpoonright(\operatorname{dom} g \backslash A)$.
Next we state several propositions:
(27) For every function f and for every set A holds f and f equal outside A.
(28) For all functions f, g and for every set A such that f and g equal outside A holds g and f equal outside A
(29) Let f, g, h be functions and let A be a set. Suppose f and g equal outside A and g and h equal outside A. Then f and h equal outside A.
(30) For all functions f, g and for every set A such that f and g equal outside A holds $\operatorname{dom} f \backslash A=\operatorname{dom} g \backslash A$.
(31) For all functions f, g and for every set A such that $\operatorname{dom} g \subseteq A$ holds f and $f+\cdot g$ equal outside A
Let f be a function and let i, x be arbitrary. The functor $f+\cdot(i, x)$ yields a function and is defined by:
(Def. 3) (i) $\quad f+\cdot(i, x)=f+\cdot(i \mapsto x)$ if $i \in \operatorname{dom} f$,
(ii) $f+\cdot(i, x)=f$, otherwise.

Next we state several propositions:
(32) For every function f and for arbitrary d, i holds $\operatorname{dom}(f+\cdot(i, d))=$ $\operatorname{dom} f$.
(33) For every function f and for arbitrary d, i such that $i \in \operatorname{dom} f$ holds $(f+\cdot(i, d))(i)=d$.

For every function f and for arbitrary d, i, j such that $i \neq j$ and $j \in \operatorname{dom} f$ holds $(f+\cdot(i, d))(j)=f(j)$.
(35) For every function f and for arbitrary d, e, i, j such that $i \neq j$ holds $f+\cdot(i, d)+\cdot(j, e)=f+\cdot(j, e)+\cdot(i, d)$.
(36) For every function f and for arbitrary d, e, i holds $f+\cdot(i, d)+\cdot(i, e)=$ $f+\cdot(i, e)$.
(37) For every function f and for arbitrary i holds $f+\cdot(i, f(i))=f$.

Let f be a finite sequence, let i be a natural number, and let x be arbitrary. One can check that $f+\cdot(i, x)$ is finite sequence-like.

Let D be a set, let f be a finite sequence of elements of D, let i be a natural number, and let d be an element of D. Then $f+\cdot(i, d)$ is a finite sequence of elements of D.

The following three propositions are true:
(38) Let D be a non empty set, and let f be a finite sequence of elements of D, and let d be an element of D, and let i be a natural number. If $i \in \operatorname{dom} f$, then $\pi_{i}(f+\cdot(i, d))=d$.
(39) Let D be a non empty set, and let f be a finite sequence of elements of D, and let d be an element of D, and let i, j be natural numbers. If $i \neq j$ and $j \in \operatorname{dom} f$, then $\pi_{j}(f+\cdot(i, d))=\pi_{j} f$.
(40) Let D be a non empty set, and let f be a finite sequence of elements of D, and let d, e be elements of D, and let i be a natural number. Then $f+\cdot\left(i, \pi_{i} f\right)=f$.

4. On the composition of a finite sequence of functions

Let X be a set and let p be a function yielding finite sequence. The functor compose $_{X} p$ yielding a function is defined by the condition (Def. 4).
(Def. 4) There exists a many sorted function f of \mathbb{N} such that
(i) $\operatorname{compose}_{X} p=f(\operatorname{len} p)$,
(ii) $f(0)=\mathrm{id}_{X}$, and
(iii) for every natural number i such that $i+1 \in \operatorname{dom} p$ and for all functions g, h such that $g=f(i)$ and $h=p(i+1)$ holds $f(i+1)=h \cdot g$.
Let p be a function yielding finite sequence and let x be a set. The functor $\operatorname{apply}(p, x)$ yields a finite sequence and is defined by the conditions (Def. 5).
(Def. 5) (i) $\quad \operatorname{len} \operatorname{apply}(p, x)=\operatorname{len} p+1$,
(ii) $\quad(\operatorname{apply}(p, x))(1)=x$, and
(iii) for every natural number i and for every function f such that $i \in \operatorname{dom} p$ and $f=p(i)$ holds $(\operatorname{apply}(p, x))(i+1)=f((\operatorname{apply}(p, x))(i))$.
We adopt the following convention: X, Y, x denote sets, p, q denote function yielding finite sequences, and f, g, h denote functions.

The following propositions are true:
1)))($\operatorname{len} q+1)$. $g, h\rangle=h \cdot g \cdot f$.
compose $_{X} \varepsilon=\mathrm{id}_{X}$.
$\operatorname{apply}(\varepsilon, x)=\langle x\rangle$.
$\operatorname{compose}_{X}\left(p^{\wedge}\langle f\rangle\right)=f \cdot$ compose $_{X} p$.
$\operatorname{apply}\left(p^{\wedge}\langle f\rangle, x\right)=(\operatorname{apply}(p, x))^{\wedge}\langle f((\operatorname{apply}(p, x))(\operatorname{len} p+1))\rangle$.
$\operatorname{compose}_{X}(\langle f\rangle \wedge p)=$ compose $_{f^{\circ} X} p \cdot(f \upharpoonright X)$.
$\operatorname{apply}(\langle f\rangle \wedge p, x)=\langle x\rangle \wedge \operatorname{apply}(p, f(x))$.
$\operatorname{compose}_{X}\langle f\rangle=f \cdot \mathrm{id}_{X}$.
If $\operatorname{dom} f \subseteq X$, then compose $_{X}\langle f\rangle=f$.
$\operatorname{apply}(\langle f\rangle, x)=\langle x, f(x)\rangle$.
If rng compose ${ }_{X} p \subseteq Y$, then $\operatorname{compose}_{X}\left(p^{\wedge} q\right)=\operatorname{compose}_{Y} q$. compose $_{X} p$.
$(\operatorname{apply}(p \wedge q, x))(\operatorname{len}(p \wedge q)+1)=(\operatorname{apply}(q,(\operatorname{apply}(p, x))(\operatorname{len} p+$ $\operatorname{apply}\left(p^{\wedge} q, x\right)=(\operatorname{apply}(p, x))^{\$ _} \operatorname{apply}(q,(\operatorname{apply}(p, x))(\operatorname{len} p+1))$. $\operatorname{compose}_{X}\langle f, g\rangle=g \cdot f \cdot \mathrm{id}_{X}$.
If $\operatorname{dom} f \subseteq X$ or $\operatorname{dom}(g \cdot f) \subseteq X$, then compose $_{X}\langle f, g\rangle=g \cdot f$. $\operatorname{apply}(\langle f, g\rangle, x)=\langle x, f(x), g(f(x))\rangle$. $\operatorname{compose}_{X}\langle f, g, h\rangle=h \cdot g \cdot f \cdot \mathrm{id}_{X}$.
If $\operatorname{dom} f \subseteq X$ or $\operatorname{dom}(g \cdot f) \subseteq X$ or $\operatorname{dom}(h \cdot g \cdot f) \subseteq X$, then compose $_{X}\langle f$,

Let F be a finite sequence. The functor firstdom (F) is defined as follows:
(Def. 6) (i) firstdom (F) is empty if F is empty,
(ii) firstdom $(F)=\pi_{1}(F(1))$, otherwise.

The functor lastrng (F) is defined by:
(Def. 7) (i) lastrng (F) is empty if F is empty,
(ii) $\quad \operatorname{lastrng}(F)=\pi_{2}(F(\operatorname{len} F))$, otherwise.

Next we state three propositions:
(59) \quad firstdom $(\varepsilon)=\emptyset$ and lastrng $(\varepsilon)=\emptyset$.
(60) For every finite sequence p holds firstdom $\left.(\langle f\rangle\rangle^{\wedge} p\right)=\operatorname{dom} f$ and lastrng $\left(p^{\wedge}\langle f\rangle\right)=\operatorname{rng} f$.
(61) For every function yielding finite sequence p such that $p \neq \varepsilon$ holds rng compose ${ }_{X} p \subseteq$ lastrng (p).
Let I_{1} be a finite sequence. We say that I_{1} is composable if and only if:
(Def. 8) There exists a finite sequence p such that len $p=\operatorname{len} I_{1}+1$ and for every natural number i such that $i \in \operatorname{dom} I_{1}$ holds $I_{1}(i) \in p(i+1)^{p(i)}$.
We now state the proposition
(62) For all finite sequences p, q such that $p^{\wedge} q$ is composable holds p is composable and q is composable.

One can verify that every finite sequence which is composable is also function yielding.

Let us observe that every finite sequence which is empty is also composable.
Let f be a function. One can check that $\langle f\rangle$ is composable.
Let us observe that there exists a finite sequence which is composable non empty and non-empty.

A composable sequence is a composable finite sequence.
Next we state several propositions:
(63) For every composable sequence p such that $p \neq \varepsilon$ holds ${\text { dom } \text { compose }_{X}} p=\operatorname{firstdom}(p) \cap X$.
(64) For every composable sequence p holds dom $\operatorname{compose}_{\text {firstdom }(p)} p=$ firstdom (p).
(65) For every composable sequence p and for every function f such that $\operatorname{rng} f \subseteq$ firstdom (p) holds $\langle f\rangle^{\wedge} p$ is a composable sequence.
(66) For every composable sequence p and for every function f such that lastrng $(p) \subseteq \operatorname{dom} f$ holds $p^{\wedge}\langle f\rangle$ is a composable sequence.
(67) For every composable sequence p such that $x \in \operatorname{firstdom}(p)$ and $x \in X$ holds $(\operatorname{apply}(p, x))(\operatorname{len} p+1)=\left(\operatorname{compose}_{X} p\right)(x)$.
Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A composable sequence is called a composable sequence from X into Y if:
(Def. 9) \quad firstdom(it) $=X$ and lastrng(it) $\subseteq Y$.
Let Y be a non empty set, let X be a set, and let F be a composable sequence from X into Y. Then compose ${ }_{X} F$ is a function from X into Y.

Let q be a non-empty non empty finite sequence. A finite sequence is said to be a composable sequence along q if:
(Def. 10) len it $+1=\operatorname{len} q$ and for every natural number i such that $i \in$ domit holds $\operatorname{it}(i) \in q(i+1)^{q(i)}$.
Let q be a non-empty non empty finite sequence. Observe that every composable sequence along q is composable and non-empty.

One can prove the following three propositions:
(68) Let q be a non-empty non empty finite sequence and let p be a composable sequence along q. If $p \neq \varepsilon$, then $\operatorname{firstdom}(p)=q(1)$ and $\operatorname{lastrng}(p) \subseteq q(\operatorname{len} q)$.
(69) Let q be a non-empty non empty finite sequence and let p be a composable sequence along q. Then dom compose ${ }_{q(1)} p=q(1)$ and rng compose ${ }_{q(1)} p \subseteq q(\operatorname{len} q)$.
(70) For every function f and for every natural number n holds $f^{n}=$ compose $_{\operatorname{dom} f \cup \mathrm{rng} f}(n \mapsto f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Cartesian categories. Formalized Mathematics, 3(2):161-169, 1992.
[8] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[13] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[17] Jarosław Kotowicz, Beata Madras, and Matgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[18] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[19] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[20] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[23] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[26] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

