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The papers [16], [26], [3], [24], [29], [14], [28], [19], [23], [25], [22], [1], [17], [18],
[30], [10], [6], [5], [15], [8], [13], [7], [11], [21], [9], [12], [2], [27], [20], and [4]
provide the terminology and notation for this paper.

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, m, n are natural
numbers, f , g are functions, and A, B are sets.

We now state several propositions:

(1) For every function f and for every set X such that rng f ⊆ X holds
idX · f = f.

(2) Let X be a set, and let Y be a non empty set, and let f be a function
from X into Y . Suppose f is one-to-one. Let B be a subset of X and let
C be a subset of Y . If C ⊆ f ◦B, then f −1 C ⊆ B.

(3) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let x be an element of X and let A be a subset
of X. If f(x) ∈ f ◦A, then x ∈ A.

(4) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let x be an element of X, and let A be a subset
of X, and let B be a subset of Y . If f(x) ∈ f ◦A \B, then x ∈ A \ f −1 B.

(5) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let y be an element of Y , and let A be a subset
of X, and let B be a subset of Y . If y ∈ f ◦A\B, then f−1(y) ∈ A\f −1 B.

(6) For every function f and for arbitrary a such that a ∈ dom f holds
f

�
{a} = a7−→. f(a).
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Let x, y be arbitrary. Observe that x7−→. y is non empty.
Let x, y, a, b be arbitrary. One can check that [x 7−→ a, y 7−→ b] is non

empty.
One can prove the following propositions:

(7) For every set I and for every many sorted set M indexed by I and for
arbitrary i such that i ∈ I holds i7−→. M(i) = M

�
{i}.

(8) Let I, J be sets, and let M be a many sorted set indexed by [: I, J :], and
let i, j be arbitrary. If i ∈ I and j ∈ J, then [〈〈i, j〉〉 7→ M(i, j)] = M

�
[: {i},

{j} :].

(9) If x ∈ dom f and x /∈ dom g, then (f+·g)(x) = f(x).

(10) For all functions f , g, h such that rng g ⊆ dom f and rng h ⊆ dom f
holds f · (g+·h) = f · g+·f · h.

(11) For all functions f , g, h holds (g+·h) · f = g · f+·h · f.

(12) For all functions f , g, h such that rng f misses dom g holds (h+·g) ·f =
h · f.

(13) For all sets A, B and for arbitrary y such that A meets rng(idB+·(A 7−→
y)) holds y ∈ A.

(14) For arbitrary x, y and for every set A such that x 6= y holds x /∈
rng(idA+·(x7−→. y)).

(15) For every set X and for arbitrary a and for every function f such that
dom f = X ∪ {a} holds f = f

�
X+·(a7−→. f(a)).

(16) For every function f and for all sets X, y, z holds f+·(X 7−→
y)+·(X 7−→ z) = f+·(X 7−→ z).

(17) If 0 < m and m ≤ n, then � m ⊆ � n.

(18) � 6= � ∗.

(19) ∅∗ = {∅}.

(20) 〈x〉 ∈ A∗ iff x ∈ A.

(21) A ⊆ B iff A∗ ⊆ B∗.

(22) For every subset A of � such that for all n, m such that n ∈ A and
m < n holds m ∈ A holds A is a cardinal number.

(23) Let A be a finite set and let X be a non empty family of subsets of A.
Then there exists an element C of X such that for every element B of X
such that B ⊆ C holds B = C.

(24) Let p, q be finite sequences. Suppose len p = len q + 1. Let i be a
natural number. Then i ∈ dom q if and only if the following conditions
are satisfied:

(i) i ∈ dom p, and
(ii) i + 1 ∈ dom p.

Let us note that there exists a finite sequence which is function yielding non
empty and non-empty.

Note that ε is function yielding. Let f be a function. Observe that 〈f〉 is
function yielding. Let g be a function. One can check that 〈f, g〉 is function
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yielding. Let h be a function. Observe that 〈f, g, h〉 is function yielding.
Let n be a natural number and let f be a function. One can verify that

n 7→ f is function yielding.
Let p be a finite sequence and let q be a non empty finite sequence. One can

verify that p � q is non empty and q � p is non empty.
Let p, q be function yielding finite sequences. Note that p � q is function

yielding.
Next we state the proposition

(25) Let p, q be finite sequences. Suppose p � q is function yielding. Then p
is function yielding and q is function yielding.

2. Some useful schemes

In this article we present several logical schemes. The scheme KappaD con-
cerns non empty sets A, B and a unary functor F yielding arbitrary, and states
that:

There exists a function f from A into B such that for every element
x of A holds f(x) = F(x)

provided the parameters meet the following condition:
• For every element x of A holds F(x) ∈ B.
The scheme Kappa2D deals with non empty sets A, B, C and a binary functor

F yielding arbitrary, and states that:
There exists a function f from [:A, B :] into C such that for every
element x of A and for every element y of B holds f(〈〈x, y〉〉) =
F(x, y)

provided the parameters meet the following requirement:
• For every element x of A and for every element y of B holds

F(x, y) ∈ C.
The scheme FinMono concerns a set A, a non empty set B, and two unary

functors F and G yielding arbitrary, and states that:
{F(d) : d ranges over elements of B, G(d) ∈ A} is finite

provided the following conditions are satisfied:
• A is finite,
• For all elements d1, d2 of B such that G(d1) = G(d2) holds d1 = d2.
The scheme CardMono concerns a set A, a non empty set B, and a unary

functor F yielding arbitrary, and states that:
A ≈ {d : d ranges over elements of B, F(d) ∈ A}

provided the following requirements are met:
• For arbitrary x such that x ∈ A there exists an element d of B such

that x = F(d),
• For all elements d1, d2 of B such that F(d1) = F(d2) holds d1 = d2.
The scheme CardMono’ concerns a set A, a non empty set B, and a unary

functor F yielding arbitrary, and states that:
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A ≈ {F(d) : d ranges over elements of B, d ∈ A}
provided the following conditions are satisfied:

• A ⊆ B,
• For all elements d1, d2 of B such that F(d1) = F(d2) holds d1 = d2.
The scheme FuncSeqInd concerns a unary predicate P, and states that:

For every function yielding finite sequence p holds P[p]
provided the following conditions are satisfied:

• P[ε],
• For every function yielding finite sequence p such that P[p] and for

every function f holds P[p � 〈f〉].

3. Some auxiliary concepts

Let x be arbitrary and let y be a set. Let us assume that x ∈ y. The functor
x(∈ y) yielding an element of y is defined as follows:

(Def. 1) x(∈ y) = x.

One can prove the following proposition

(26) If x ∈ A ∩ B, then x(∈ A) = x(∈ B).

Let f , g be functions and let A be a set. We say that f and g equal outside
A if and only if:

(Def. 2) f
�
(dom f \ A) = g

�
(dom g \ A).

Next we state several propositions:

(27) For every function f and for every set A holds f and f equal outside
A.

(28) For all functions f , g and for every set A such that f and g equal outside
A holds g and f equal outside A

(29) Let f , g, h be functions and let A be a set. Suppose f and g equal
outside A and g and h equal outside A. Then f and h equal outside A.

(30) For all functions f , g and for every set A such that f and g equal outside
A holds dom f \ A = dom g \ A.

(31) For all functions f , g and for every set A such that dom g ⊆ A holds f
and f+·g equal outside A

Let f be a function and let i, x be arbitrary. The functor f +· (i, x) yields a
function and is defined by:

(Def. 3) (i) f +· (i, x) = f+·(i7−→. x) if i ∈ dom f,
(ii) f +· (i, x) = f, otherwise.

Next we state several propositions:

(32) For every function f and for arbitrary d, i holds dom(f +· (i, d)) =
dom f.

(33) For every function f and for arbitrary d, i such that i ∈ dom f holds
(f +· (i, d))(i) = d.
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(34) For every function f and for arbitrary d, i, j such that i 6= j and
j ∈ dom f holds (f +· (i, d))(j) = f(j).

(35) For every function f and for arbitrary d, e, i, j such that i 6= j holds
f +· (i, d) +· (j, e) = f +· (j, e) +· (i, d).

(36) For every function f and for arbitrary d, e, i holds f +· (i, d) +· (i, e) =
f +· (i, e).

(37) For every function f and for arbitrary i holds f +· (i, f(i)) = f.

Let f be a finite sequence, let i be a natural number, and let x be arbitrary.
One can check that f +· (i, x) is finite sequence-like.

Let D be a set, let f be a finite sequence of elements of D, let i be a natural
number, and let d be an element of D. Then f +· (i, d) is a finite sequence of
elements of D.

The following three propositions are true:

(38) Let D be a non empty set, and let f be a finite sequence of elements
of D, and let d be an element of D, and let i be a natural number. If
i ∈ dom f, then πi(f +· (i, d)) = d.

(39) Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d be an element of D, and let i, j be natural numbers. If i 6= j
and j ∈ dom f, then πj(f +· (i, d)) = πjf.

(40) Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d, e be elements of D, and let i be a natural number. Then
f +· (i, πif) = f.

4. On the composition of a finite sequence of functions

Let X be a set and let p be a function yielding finite sequence. The functor
composeX p yielding a function is defined by the condition (Def. 4).

(Def. 4) There exists a many sorted function f of � such that
(i) composeX p = f(len p),
(ii) f(0) = idX , and
(iii) for every natural number i such that i+1 ∈ dom p and for all functions

g, h such that g = f(i) and h = p(i + 1) holds f(i + 1) = h · g.

Let p be a function yielding finite sequence and let x be a set. The functor
apply(p, x) yields a finite sequence and is defined by the conditions (Def. 5).

(Def. 5) (i) len apply(p, x) = len p + 1,
(ii) (apply(p, x))(1) = x, and
(iii) for every natural number i and for every function f such that i ∈ dom p

and f = p(i) holds (apply(p, x))(i + 1) = f((apply(p, x))(i)).

We adopt the following convention: X, Y , x denote sets, p, q denote function
yielding finite sequences, and f , g, h denote functions.

The following propositions are true:
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(41) composeX ε = idX .

(42) apply(ε, x) = 〈x〉.

(43) composeX(p � 〈f〉) = f · composeX p.

(44) apply(p � 〈f〉, x) = (apply(p, x)) � 〈f((apply(p, x))(len p + 1))〉.

(45) composeX(〈f〉 � p) = composef◦X p · (f
�
X).

(46) apply(〈f〉 � p, x) = 〈x〉 � apply(p, f(x)).

(47) composeX〈f〉 = f · idX .

(48) If dom f ⊆ X, then composeX〈f〉 = f.

(49) apply(〈f〉, x) = 〈x, f(x)〉.

(50) If rng composeX p ⊆ Y, then composeX(p � q) = composeY q ·
composeX p.

(51) (apply(p � q, x))(len(p � q) + 1) = (apply(q, (apply(p, x))(len p +
1)))(len q + 1).

(52) apply(p � q, x) = (apply(p, x)) $ � apply(q, (apply(p, x))(len p + 1)).

(53) composeX〈f, g〉 = g · f · idX .

(54) If dom f ⊆ X or dom(g · f) ⊆ X, then composeX〈f, g〉 = g · f.

(55) apply(〈f, g〉, x) = 〈x, f(x), g(f(x))〉.

(56) composeX〈f, g, h〉 = h · g · f · idX .

(57) If dom f ⊆ X or dom(g ·f) ⊆ X or dom(h·g ·f) ⊆ X, then composeX〈f,
g, h〉 = h · g · f.

(58) apply(〈f, g, h〉, x) = 〈x〉 � 〈f(x), g(f(x)), h(g(f(x)))〉.

Let F be a finite sequence. The functor firstdom(F ) is defined as follows:

(Def. 6) (i) firstdom(F ) is empty if F is empty,
(ii) firstdom(F ) = π1(F (1)), otherwise.

The functor lastrng(F ) is defined by:

(Def. 7) (i) lastrng(F ) is empty if F is empty,
(ii) lastrng(F ) = π2(F (len F )), otherwise.

Next we state three propositions:

(59) firstdom(ε) = ∅ and lastrng(ε) = ∅.

(60) For every finite sequence p holds firstdom(〈f〉 � p) = dom f and
lastrng(p � 〈f〉) = rng f.

(61) For every function yielding finite sequence p such that p 6= ε holds
rng composeX p ⊆ lastrng(p).

Let I1 be a finite sequence. We say that I1 is composable if and only if:

(Def. 8) There exists a finite sequence p such that len p = len I1+1 and for every
natural number i such that i ∈ dom I1 holds I1(i) ∈ p(i + 1)p(i).

We now state the proposition

(62) For all finite sequences p, q such that p � q is composable holds p is
composable and q is composable.
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One can verify that every finite sequence which is composable is also function
yielding.

Let us observe that every finite sequence which is empty is also composable.
Let f be a function. One can check that 〈f〉 is composable.
Let us observe that there exists a finite sequence which is composable non

empty and non-empty.
A composable sequence is a composable finite sequence.
Next we state several propositions:

(63) For every composable sequence p such that p 6= ε holds
dom composeX p = firstdom(p) ∩ X.

(64) For every composable sequence p holds domcomposefirstdom(p) p =
firstdom(p).

(65) For every composable sequence p and for every function f such that
rng f ⊆ firstdom(p) holds 〈f〉 � p is a composable sequence.

(66) For every composable sequence p and for every function f such that
lastrng(p) ⊆ dom f holds p � 〈f〉 is a composable sequence.

(67) For every composable sequence p such that x ∈ firstdom(p) and x ∈ X
holds (apply(p, x))(len p + 1) = (composeX p)(x).

Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A
composable sequence is called a composable sequence from X into Y if:

(Def. 9) firstdom(it) = X and lastrng(it) ⊆ Y.

Let Y be a non empty set, let X be a set, and let F be a composable sequence
from X into Y . Then composeX F is a function from X into Y .

Let q be a non-empty non empty finite sequence. A finite sequence is said to
be a composable sequence along q if:

(Def. 10) len it + 1 = len q and for every natural number i such that i ∈ dom it
holds it(i) ∈ q(i + 1)q(i).

Let q be a non-empty non empty finite sequence. Observe that every com-
posable sequence along q is composable and non-empty.

One can prove the following three propositions:

(68) Let q be a non-empty non empty finite sequence and let p be a com-
posable sequence along q. If p 6= ε, then firstdom(p) = q(1) and
lastrng(p) ⊆ q(len q).

(69) Let q be a non-empty non empty finite sequence and let p be a
composable sequence along q. Then domcomposeq(1) p = q(1) and
rng composeq(1) p ⊆ q(len q).

(70) For every function f and for every natural number n holds f n =
composedom f∪rng f (n 7→ f).
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