Components and Unions of Components

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. First, we generalized **skl** function for a subset of topological spaces the value of which is the component including the set. Second, we introduced a concept of union of components a family of which has good algebraic properties. At the end, we discuss relationship between connectivity of a set as a subset in the whole space and as a subset of a subspace.

MML Identifier: CONNSP_3.

The notation and terminology used in this paper are introduced in the following articles: [8], [11], [3], [1], [10], [5], [9], [7], [2], [6], [12], and [4].

1. The Component of a Subset in a Topological Space

In this paper G_1 will denote a non empty topological space and V, A will denote subsets of the carrier of G_1 .

Let G_1 be a non empty topological structure and let V be a subset of the carrier of G_1 . The functor Component(V) yields a subset of the carrier of G_1 and is defined by the condition (Def. 1).

(Def. 1) There exists a family F of subsets of G_1 such that for every subset A of the carrier of G_1 holds $A \in F$ iff A is connected and $V \subseteq A$ and $\bigcup F = \text{Component}(V)$.

One can prove the following propositions:

- (1) If there exists A such that A is connected and $V \subseteq A$, then $V \subseteq$ Component(V).
- (2) If it is not true that there exists A such that A is connected and $V \subseteq A$, then Component $(V) = \emptyset$.
- (3) Component $(\emptyset_{(G_1)})$ = the carrier of G_1 .

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (4) For every subset V of the carrier of G_1 such that V is connected holds Component $(V) \neq \emptyset$.
- (5) For every subset V of the carrier of G_1 such that V is connected and $V \neq \emptyset$ holds Component(V) is connected.
- (6) For all subsets V, C of the carrier of G_1 such that V is connected and C is connected holds if $Component(V) \subseteq C$, then C = Component(V).
- (7) For every subset A of the carrier of G_1 such that A is a component of G_1 holds Component(A) = A.
- (8) Let A be a subset of the carrier of G_1 . Then A is a component of G_1 if and only if there exists a subset V of the carrier of G_1 such that V is connected and $V \neq \emptyset$ and A = Component(V).
- (9) For every subset V of the carrier of G_1 such that V is connected and $V \neq \emptyset$ holds Component(V) is a component of G_1 .
- (10) If A is a component of G_1 and V is connected and $V \subseteq A$ and $V \neq \emptyset$, then A = Component(V).
- (11) For every subset V of the carrier of G_1 such that V is connected and $V \neq \emptyset$ holds Component(Component(V)) = Component(V).
- (12) Let A, B be subsets of the carrier of G_1 . If A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$, then Component(A) = Component(B).
- (13) For all subsets A, B of the carrier of G_1 such that A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$ holds $B \subseteq \text{Component}(A)$.
- (14) For all subsets A, B of the carrier of G_1 such that A is connected and $A \cup B$ is connected and $A \neq \emptyset$ holds $A \cup B \subseteq \text{Component}(A)$.
- (15) For every subset A of the carrier of G_1 and for every point p of G_1 such that A is connected and $p \in A$ holds Component(p) = Component(A).
- (16) Let A, B be subsets of the carrier of G_1 . Suppose A is connected and B is connected and $A \cap B \neq \emptyset$. Then $A \cup B \subseteq \text{Component}(A)$ and $A \cup B \subseteq \text{Component}(B)$ and $A \subseteq \text{Component}(B)$ and $B \subseteq \text{Component}(A)$.
- (17) For every subset A of the carrier of G_1 such that A is connected and $A \neq \emptyset$ holds $\overline{A} \subseteq \text{Component}(A)$.
- (18) Let A, B be subsets of the carrier of G_1 . Suppose A is a component of G_1 and B is connected and $B \neq \emptyset$ and $A \cap B = \emptyset$. Then $A \cap \text{Component}(B) = \emptyset$.

2. On Unions of Components

Let G_1 be a non empty topological structure. A subset of the carrier of G_1 is called a union of components of G_1 if it satisfies the condition (Def. 2).

(Def. 2) There exists a family F of subsets of G_1 such that for every subset B of the carrier of G_1 such that $B \in F$ holds B is a component of G_1 and it $= \bigcup F$.

The following propositions are true:

- (19) $\emptyset_{(G_1)}$ is a union of components of G_1 .
- (20) Let A be a subset of the carrier of G_1 . If A = the carrier of G_1 , then A is a union of components of G_1 .
- (21) Let A be a subset of the carrier of G_1 and let p be a point of G_1 . If $p \in A$ and A is a union of components of G_1 , then $\text{Component}(p) \subseteq A$.
- (22) Let A, B be subsets of the carrier of G_1 . Suppose A is a union of components of G_1 and B is a union of components of G_1 . Then $A \cup B$ is a union of components of G_1 and $A \cap B$ is a union of components of G_1
- (23) Let F_1 be a family of subsets of G_1 . Suppose that for every subset A of the carrier of G_1 such that $A \in F_1$ holds A is a union of components of G_1 . Then $\bigcup F_1$ is a union of components of G_1 .
- (24) Let F_1 be a family of subsets of G_1 . Suppose that for every subset A of the carrier of G_1 such that $A \in F_1$ holds A is a union of components of G_1 . Then $\bigcap F_1$ is a union of components of G_1 .
- (25) Let A, B be subsets of the carrier of G_1 . Suppose A is a union of components of G_1 and B is a union of components of G_1 . Then $A \setminus B$ is a union of components of G_1 .

3. Operations Down and Up

Let us consider G_1 , let B be a subset of the carrier of G_1 , and let p be a point of G_1 . Let us assume that $p \in B$. The functor Down(p, B) yielding a point of $G_1 \upharpoonright B$ is defined by:

(Def. 3) $\operatorname{Down}(p, B) = p.$

Let us consider G_1 , let B be a subset of the carrier of G_1 , and let p be a point of $G_1 \upharpoonright B$. Let us assume that $B \neq \emptyset$. The functor Up(p) yielding a point of G_1 is defined as follows:

 $(Def. 4) \quad Up(p) = p.$

Let us consider G_1 and let V, B be subsets of the carrier of G_1 . Let us assume that $B \neq \emptyset$. The functor Down(V, B) yields a subset of the carrier of $G_1 \upharpoonright B$ and is defined by:

(Def. 5)
$$\operatorname{Down}(V, B) = V \cap B.$$

Let us consider G_1 , let B be a subset of the carrier of G_1 , and let V be a subset of the carrier of $G_1 \upharpoonright B$. Let us assume that $B \neq \emptyset$. The functor Up(V) yielding a subset of the carrier of G_1 is defined as follows:

 $(Def. 6) \quad Up(V) = V.$

Let us consider G_1 , let B be a subset of the carrier of G_1 , and let p be a point of G_1 . Let us assume that $p \in B$. The functor skl(p, B) yields a subset of the carrier of G_1 and is defined as follows:

(Def. 7) For every point q of $G_1 \upharpoonright B$ such that q = p holds skl(p, B) = Component(q).

The following propositions are true:

- (26) For every subset B of the carrier of G_1 and for every point p of G_1 such that $p \in B$ holds $\operatorname{skl}(p, B) \neq \emptyset$.
- (27) For every subset B of the carrier of G_1 and for every point p of G_1 such that $p \in B$ holds skl(p, B) = Component(Down(p, B)).
- (28) For all subsets V, B of the carrier of G_1 such that $B \neq \emptyset$ and $V \subseteq B$ holds Down(V, B) = V.
- (29) For all subsets V, B of the carrier of G_1 such that $B \neq \emptyset$ and V is open holds Down(V, B) is open.
- (30) For all subsets V, B of the carrier of G_1 such that $B \neq \emptyset$ and $V \subseteq B$ holds $\overline{\text{Down}(V, B)} = \overline{V} \cap B$.
- (31) Let B be a subset of the carrier of G_1 and let V be a subset of the carrier of $G_1 \upharpoonright B$. If $B \neq \emptyset$, then $\overline{V} = \overline{\operatorname{Up}(V)} \cap B$.
- (32) For all subsets V, B of the carrier of G_1 such that $B \neq \emptyset$ and $V \subseteq B$ holds $\overline{\text{Down}(V, B)} \subseteq \overline{V}$.
- (33) Let B be a subset of the carrier of G_1 and let V be a subset of the carrier of $G_1 \upharpoonright B$. If $B \neq \emptyset$ and $V \subseteq B$, then Down(Up(V), B) = V.
- (34) Let V, B be subsets of the carrier of G_1 and let W be a subset of the carrier of $G_1 \upharpoonright B$. If V = W and $V \neq \emptyset$ and $B \neq \emptyset$ and W is connected, then V is connected.
- (35) For every subset B of the carrier of G_1 and for every point p of G_1 such that $p \in B$ holds skl(p, B) is connected.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [4] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [12] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received February 5, 1996