Components and Unions of Components

Yatsuka Nakamura
Shinshu University
Nagano
Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. First, we generalized skl function for a subset of topological spaces the value of which is the component including the set. Second, we introduced a concept of union of components a family of which has good algebraic properties. At the end, we discuss relationship between connectivity of a set as a subset in the whole space and as a subset of a subspace.

MML Identifier: CONNSP_3.

The notation and terminology used in this paper are introduced in the following articles: [8], [11], [3], [1], [10], [5], [9], [7], [2], [6], [12], and [4].

1. The Component of a Subset in a Topological Space

In this paper G_{1} will denote a non empty topological space and V, A will denote subsets of the carrier of G_{1}.

Let G_{1} be a non empty topological structure and let V be a subset of the carrier of G_{1}. The functor Component (V) yields a subset of the carrier of G_{1} and is defined by the condition (Def. 1).
(Def. 1) There exists a family F of subsets of G_{1} such that for every subset A of the carrier of G_{1} holds $A \in F$ iff A is connected and $V \subseteq A$ and $\bigcup F=\operatorname{Component}(V)$.
One can prove the following propositions:
(1) If there exists A such that A is connected and $V \subseteq A$, then $V \subseteq$ Component (V).
(2) If it is not true that there exists A such that A is connected and $V \subseteq A$, then $\operatorname{Component}(V)=\emptyset$.
(3) $\quad \operatorname{Component}\left(\emptyset_{\left(G_{1}\right)}\right)=$ the carrier of G_{1}.
(4) Component $(V) \neq \emptyset$.
(5) For every subset V of the carrier of G_{1} such that V is connected and $V \neq \emptyset$ holds Component (V) is connected.
(6) For all subsets V, C of the carrier of G_{1} such that V is connected and C is connected holds if Component $(V) \subseteq C$, then $C=\operatorname{Component}(V)$.
(7) For every subset A of the carrier of G_{1} such that A is a component of G_{1} holds Component $(A)=A$.
(8) Let A be a subset of the carrier of G_{1}. Then A is a component of G_{1} if and only if there exists a subset V of the carrier of G_{1} such that V is connected and $V \neq \emptyset$ and $A=\operatorname{Component}(V)$.
(9) For every subset V of the carrier of G_{1} such that V is connected and $V \neq \emptyset$ holds Component (V) is a component of G_{1}.
(10) If A is a component of G_{1} and V is connected and $V \subseteq A$ and $V \neq \emptyset$, then $A=\operatorname{Component}(V)$.
(11) For every subset V of the carrier of G_{1} such that V is connected and $V \neq \emptyset$ holds Component $(\operatorname{Component}(V))=\operatorname{Component}(V)$.
(12) Let A, B be subsets of the carrier of G_{1}. If A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$, then $\operatorname{Component}(A)=\operatorname{Component}(B)$.
(13) For all subsets A, B of the carrier of G_{1} such that A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$ holds $B \subseteq \operatorname{Component}(A)$.
(14) For all subsets A, B of the carrier of G_{1} such that A is connected and $A \cup B$ is connected and $A \neq \emptyset$ holds $A \cup B \subseteq \operatorname{Component}(A)$.
(15) For every subset A of the carrier of G_{1} and for every point p of G_{1} such that A is connected and $p \in A$ holds $\operatorname{Component}(p)=\operatorname{Component}(A)$.
(16) Let A, B be subsets of the carrier of G_{1}. Suppose A is connected and B is connected and $A \cap B \neq \emptyset$. Then $A \cup B \subseteq \operatorname{Component}(A)$ and $A \cup B \subseteq$ Component (B) and $A \subseteq \operatorname{Component}(B)$ and $B \subseteq \operatorname{Component}(A)$.
(17) For every subset A of the carrier of G_{1} such that A is connected and $A \neq \emptyset$ holds $\bar{A} \subseteq \operatorname{Component}(A)$.
(18) Let A, B be subsets of the carrier of G_{1}. Suppose A is a component of G_{1} and B is connected and $B \neq \emptyset$ and $A \cap B=\emptyset$. Then $A \cap \operatorname{Component}(B)=$ \emptyset.

2. On Unions of Components

Let G_{1} be a non empty topological structure. A subset of the carrier of G_{1} is called a union of components of G_{1} if it satisfies the condition (Def. 2).
(Def. 2) There exists a family F of subsets of G_{1} such that for every subset B of the carrier of G_{1} such that $B \in F$ holds B is a component of G_{1} and it $=\bigcup F$.

The following propositions are true:
(19) $\emptyset_{\left(G_{1}\right)}$ is a union of components of G_{1}.
(20) Let A be a subset of the carrier of G_{1}. If $A=$ the carrier of G_{1}, then A is a union of components of G_{1}.
(21) Let A be a subset of the carrier of G_{1} and let p be a point of G_{1}. If $p \in A$ and A is a union of components of G_{1}, then $\operatorname{Component}(p) \subseteq A$.
(22) Let A, B be subsets of the carrier of G_{1}. Suppose A is a union of components of G_{1} and B is a union of components of G_{1}. Then $A \cup B$ is a union of components of G_{1} and $A \cap B$ is a union of components of G_{1}
(23) Let F_{1} be a family of subsets of G_{1}. Suppose that for every subset A of the carrier of G_{1} such that $A \in F_{1}$ holds A is a union of components of G_{1}. Then $\bigcup F_{1}$ is a union of components of G_{1}.
(24) Let F_{1} be a family of subsets of G_{1}. Suppose that for every subset A of the carrier of G_{1} such that $A \in F_{1}$ holds A is a union of components of G_{1}. Then $\cap F_{1}$ is a union of components of G_{1}.
(25) Let A, B be subsets of the carrier of G_{1}. Suppose A is a union of components of G_{1} and B is a union of components of G_{1}. Then $A \backslash B$ is a union of components of G_{1}.

3. Operations Down and Up

Let us consider G_{1}, let B be a subset of the carrier of G_{1}, and let p be a point of G_{1}. Let us assume that $p \in B$. The functor $\operatorname{Down}(p, B)$ yielding a point of $G_{1} \upharpoonright B$ is defined by:
(Def. 3) $\quad \operatorname{Down}(p, B)=p$.
Let us consider G_{1}, let B be a subset of the carrier of G_{1}, and let p be a point of $G_{1} \upharpoonright B$. Let us assume that $B \neq \emptyset$. The functor $\operatorname{Up}(p)$ yielding a point of G_{1} is defined as follows:
(Def. 4) $\operatorname{Up}(p)=p$.
Let us consider G_{1} and let V, B be subsets of the carrier of G_{1}. Let us assume that $B \neq \emptyset$. The functor $\operatorname{Down}(V, B)$ yields a subset of the carrier of $G_{1} \upharpoonright B$ and is defined by:
(Def. 5) $\quad \operatorname{Down}(V, B)=V \cap B$.
Let us consider G_{1}, let B be a subset of the carrier of G_{1}, and let V be a subset of the carrier of $G_{1} \upharpoonright B$. Let us assume that $B \neq \emptyset$. The functor $\operatorname{Up}(V)$ yielding a subset of the carrier of G_{1} is defined as follows:
(Def. 6) $\operatorname{Up}(V)=V$.
Let us consider G_{1}, let B be a subset of the carrier of G_{1}, and let p be a point of G_{1}. Let us assume that $p \in B$. The functor $\operatorname{skl}(p, B)$ yields a subset of the carrier of G_{1} and is defined as follows:
(Def. 7) For every point q of $G_{1} \upharpoonright B$ such that $q=p$ holds $\operatorname{skl}(p, B)=$ Component (q).
The following propositions are true:
(26) For every subset B of the carrier of G_{1} and for every point p of G_{1} such that $p \in B$ holds $\operatorname{skl}(p, B) \neq \emptyset$.
(27) For every subset B of the carrier of G_{1} and for every point p of G_{1} such that $p \in B$ holds $\operatorname{skl}(p, B)=\operatorname{Component}(\operatorname{Down}(p, B))$.
(28) For all subsets V, B of the carrier of G_{1} such that $B \neq \emptyset$ and $V \subseteq B$ holds $\operatorname{Down}(V, B)=V$.
(29) For all subsets V, B of the carrier of G_{1} such that $B \neq \emptyset$ and V is open holds $\operatorname{Down}(V, B)$ is open.
(30) For all subsets V, B of the carrier of G_{1} such that $B \neq \emptyset$ and $V \subseteq B$ holds $\overline{\operatorname{Down}(V, B)}=\bar{V} \cap B$.
(31) Let B be a subset of the carrier of G_{1} and let V be a subset of the carrier of $G_{1} \upharpoonright B$.If $B \neq \emptyset$, then $\bar{V}=\overline{\mathrm{Up}(V)} \cap B$.
(32) For all subsets V, B of the carrier of G_{1} such that $B \neq \emptyset$ and $V \subseteq B$

(33) Let B be a subset of the carrier of G_{1} and let V be a subset of the carrier of $G_{1} \upharpoonright B$.If $B \neq \emptyset$ and $V \subseteq B$, then $\operatorname{Down}(\operatorname{Up}(V), B)=V$.
(34) Let V, B be subsets of the carrier of G_{1} and let W be a subset of the carrier of $G_{1} \upharpoonright B$.If $V=W$ and $V \neq \emptyset$ and $B \neq \emptyset$ and W is connected, then V is connected.
(35) For every subset B of the carrier of G_{1} and for every point p of G_{1} such that $p \in B$ holds $\operatorname{skl}(p, B)$ is connected.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[4] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Mirosław Wysocki and Agata Darmochwat. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received February 5, 1996

