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The papers [20], [21], [7], [16], [22], [4], [5], [3], [8], [6], [1], [19], [18], [2], [12],
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this paper.

1. Preliminaries

For simplicity we follow a convention: I is a set, i, x are arbitrary, A, M are
many sorted sets indexed by I, f is a function, and F is a many sorted function
of I.

The scheme MSSUBSET concerns a set A, a non-empty many sorted set B
indexed by A, a many sorted set C indexed by A, and a unary predicate P, and
states that:

If for every many sorted set X indexed by A holds X ∈ B iff X ∈ C
and P[X], then B ⊆ C

for all values of the parameters.
The following two propositions are true:

(1) Let X be a non empty set and let x, y be arbitrary. If x ⊆ y, then
{t : t ranges over elements of X, y ⊆ t} ⊆ {z : z ranges over elements of
X, x ⊆ z}.

(2) If there exists A such that A ∈ M, then M is non-empty.

Let us consider I, F , A. Then F � A is a many sorted set indexed by I.
Let us consider I, let A, B be non-empty many sorted sets indexed by I,

let F be a many sorted function from A into B, and let X be an element of A.
Then F � X is an element of B.

One can prove the following propositions:

529
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



530 artur korni lowicz

(3) Let A, X be many sorted sets indexed by I, and let B be a non-empty
many sorted set indexed by I and let F be a many sorted function from
A into B. If X ∈ A, then F � X ∈ B.

(4) Let F , G be many sorted functions of I and let A be a many sorted set
indexed by I. If A ∈ domκ G(κ), then F � (G � A) = (F ◦ G) � A.

(5) If F is “1-1”, then for all many sorted sets A, B indexed by I such that
A ∈ domκ F (κ) and B ∈ domκ F (κ) and F � A = F � B holds A = B.

(6) Suppose domκ F (κ) is non-empty and for all many sorted sets A, B

indexed by I such that A ∈ domκ F (κ) and B ∈ domκ F (κ) and F �
A = F � B holds A = B. Then F is “1-1”.

(7) Let A, B be non-empty many sorted sets indexed by I and let F , G be
many sorted functions from A into B. If for every M such that M ∈ A

holds F � M = G � M, then F = G.

Let us consider I, M . One can verify that there exists an element of 2M

which is empty yielding and locally-finite.

2. Properties of Many Sorted Closure Operators

Let us consider I, M .

(Def. 1) A many sorted function from 2M into 2M is called a set many sorted
operation in M .

Let us consider I, M , let O be a set many sorted operation in M , and let X

be an element of 2M . Then O � X is an element of 2M .
Let us consider I, M and let I1 be a set many sorted operation in M . We

say that I1 is reflexive if and only if:

(Def. 2) For every element X of 2M holds X ⊆ I1 � X.

We say that I1 is monotonic if and only if:

(Def. 3) For all elements X, Y of 2M such that X ⊆ Y holds I1 � X ⊆ I1 � Y.

We say that I1 is idempotent if and only if:

(Def. 4) For every element X of 2M holds I1 � X = I1 � (I1 � X).

We say that I1 is topological if and only if:

(Def. 5) For all elements X, Y of 2M holds I1 � (X ∪ Y ) = I1 � X ∪ I1 � Y.

One can prove the following propositions:

(8) For every non-empty many sorted set M indexed by I and for every
element X of M holds X = idM � X.

(9) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M . If X ⊆ Y, then idM � X ⊆ idM � Y.

(10) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M . If X ∪ Y is an element of M , then idM � (X ∪ Y ) =
idM � X ∪ idM � Y.
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(11) Let X be an element of 2M and let i, x be arbitrary. Suppose i ∈ I

and x ∈ (id2M � X)(i). Then there exists a locally-finite element Y of
2M such that Y ⊆ X and x ∈ (id2M � Y )(i).

Let us consider I, M . Note that there exists a set many sorted operation in
M which is reflexive monotonic idempotent and topological.

Next we state four propositions:

(12) id2A is a reflexive set many sorted operation in A.

(13) id2A is a monotonic set many sorted operation in A.

(14) id2A is an idempotent set many sorted operation in A.

(15) id2A is a topological set many sorted operation in A.

In the sequel P , R will denote set many sorted operations in M and E, T

will denote elements of 2M .

One can prove the following three propositions:

(16) If E = M and P is reflexive, then E = P � E.

(17) If P is reflexive and for every element X of 2M holds P � X ⊆ X, then
P is idempotent.

(18) If P is monotonic, then P � (E ∩ T ) ⊆ P � E ∩ P � T.

Let us consider I, M . Observe that every set many sorted operation in M

which is topological is also monotonic.

One can prove the following proposition

(19) If P is topological, then P � E \ P � T ⊆ P � (E \ T ).

Let us consider I, M , R, P . Then P ◦ R is a set many sorted operation in
M .

One can prove the following propositions:

(20) If P is reflexive and R is reflexive, then P ◦ R is reflexive.

(21) If P is monotonic and R is monotonic, then P ◦ R is monotonic.

(22) If P is idempotent and R is idempotent and P ◦R = R ◦P, then P ◦R

is idempotent.

(23) If P is topological and R is topological, then P ◦ R is topological.

(24) If P is reflexive and i ∈ I and f = P (i), then for every element x of
2M(i) holds x ⊆ f(x).

(25) If P is monotonic and i ∈ I and f = P (i), then for all elements x, y of
2M(i) such that x ⊆ y holds f(x) ⊆ f(y).

(26) If P is idempotent and i ∈ I and f = P (i), then for every element x of
2M(i) holds f(x) = f(f(x)).

(27) If P is topological and i ∈ I and f = P (i), then for all elements x, y of
2M(i) holds f(x ∪ y) = f(x) ∪ f(y).
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3. On the Many Sorted Closure Operator and the Many Sorted

Closure System

In the sequel S will be a 1-sorted structure.
Let us consider S. We consider many sorted closure system structures over

S as extensions of many-sorted structure over S as systems
〈 sorts, a family 〉,

where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a subset family of the sorts.

In the sequel M1 will be a many-sorted structure over S.
Let us consider S and let I1 be a many sorted closure system structure over

S. We say that I1 is additive if and only if:

(Def. 6) The family of I1 is additive.

We say that I1 is absolutely-additive if and only if:

(Def. 7) The family of I1 is absolutely-additive.

We say that I1 is multiplicative if and only if:

(Def. 8) The family of I1 is multiplicative.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 9) The family of I1 is absolutely-multiplicative.

We say that I1 is properly upper bound if and only if:

(Def. 10) The family of I1 is properly upper bound.

We say that I1 is properly lower bound if and only if:

(Def. 11) The family of I1 is properly lower bound.

Let us consider S, M1. The functor MSFull(M1) yields a many sorted closure
system structure over S and is defined as follows:

(Def. 12) MSFull(M1) = 〈the sorts of M1, 2the sorts of M1〉.

Let us consider S, M1. One can check that MSFull(M1) is strict addi-
tive absolutely-additive multiplicative absolutely-multiplicative properly upper
bound and properly lower bound.

Let us consider S and let M1 be a non-empty many-sorted structure over S.
One can check that MSFull(M1) is non-empty.

Let us consider S. Observe that there exists a many sorted closure system
structure over S which is strict non-empty additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound.

Let us consider S and let C1 be an additive many sorted closure system
structure over S. Note that the family of C1 is additive.

Let us consider S and let C1 be an absolutely-additive many sorted closure
system structure over S. Observe that the family of C1 is absolutely-additive.

Let us consider S and let C1 be a multiplicative many sorted closure system
structure over S. One can verify that the family of C1 is multiplicative.
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Let us consider S and let C1 be an absolutely-multiplicative many sorted clo-
sure system structure over S. One can check that the family of C1 is absolutely-
multiplicative.

Let us consider S and let C1 be a properly upper bound many sorted closure
system structure over S. One can check that the family of C1 is properly upper
bound.

Let us consider S and let C1 be a properly lower bound many sorted closure
system structure over S. Note that the family of C1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F be a subset family of M . Observe that 〈M,F 〉 is non-
empty.

Let us consider S, M1 and let F be an additive subset family of the sorts of
M1. Observe that 〈the sorts of M1, F 〉 is additive.

Let us consider S, M1 and let F be an absolutely-additive subset family of
the sorts of M1. One can check that 〈the sorts of M1, F 〉 is absolutely-additive.

Let us consider S, M1 and let F be a multiplicative subset family of the sorts
of M1. Note that 〈the sorts of M1, F 〉 is multiplicative.

Let us consider S, M1 and let F be an absolutely-multiplicative subset family
of the sorts of M1. Observe that 〈the sorts of M1, F 〉 is absolutely-multiplicative.

Let us consider S, M1 and let F be a properly upper bound subset family
of the sorts of M1. One can verify that 〈the sorts of M1, F 〉 is properly upper
bound.

Let us consider S, M1 and let F be a properly lower bound subset family of
the sorts of M1. Observe that 〈the sorts of M1, F 〉 is properly lower bound.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-additive is also additive.

Let us consider S. One can check that every many sorted closure system
structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can verify that every many sorted closure system
structure over S which is absolutely-additive is also properly lower bound.

Let us consider S. A many sorted closure system of S is an absolutely-
multiplicative many sorted closure system structure over S.

Let us consider I, M . A many sorted closure operator of M is a reflexive
monotonic idempotent set many sorted operation in M .

Let us consider I, M and let F be a many sorted function from M into M .
The functor FixPoints(F ) yielding a many sorted subset of M is defined by:

(Def. 13) For every i such that i ∈ I holds x ∈ (FixPoints(F ))(i) iff there exists
a function f such that f = F (i) and x ∈ dom f and f(x) = x.

Let us consider I, let M be an empty yielding many sorted set indexed by
I, and let F be a many sorted function from M into M . One can verify that
FixPoints(F ) is empty yielding.

Next we state a number of propositions:



534 artur korni lowicz

(28) For every many sorted function F from M into M holds A ∈ M and
F � A = A iff A ∈ FixPoints(F ).

(29) FixPoints(idA) = A.

(30) Let A be a many sorted set indexed by the carrier of S, and let J be a
reflexive monotonic set many sorted operation in A, and let D be a subset
family of A. If D = FixPoints(J), then 〈A,D〉 is a many sorted closure
system of S.

(31) Let D be a properly upper bound subset family of M and let X be an
element of 2M . Then there exists a non-empty subset family S1 of M

such that for every many sorted set Y indexed by I holds Y ∈ S1 if and
only if the following conditions are satisfied:

(i) Y ∈ D, and

(ii) X ⊆ Y.

(32) Let D be a properly upper bound subset family of M , and let X be an
element of 2M , and let S1 be a non-empty subset family of M . Suppose
that for every many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D

and X ⊆ Y. Let i be arbitrary and let D1 be a non empty set. If i ∈ I and
D1 = D(i), then S1(i) = {z : z ranges over elements of D1, X(i) ⊆ z}.

(33) Let D be a properly upper bound subset family of M . Then there
exists a set many sorted operation J in M such that for every element X

of 2M and for every non-empty subset family S1 of M if for every many
sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y, then
J � X =

⋂
S1.

(34) Let D be a properly upper bound subset family of M , and let A be an
element of 2M , and let J be a set many sorted operation in M . Suppose
that

(i) A ∈ D, and

(ii) for every element X of 2M and for every non-empty subset family S1

of M such that for every many sorted set Y indexed by I holds Y ∈ S1

iff Y ∈ D and X ⊆ Y holds J � X =
⋂

S1.

Then J � A = A.

(35) Let D be an absolutely-multiplicative subset family of M , and let A

be an element of 2M , and let J be a set many sorted operation in M .
Suppose that

(i) J � A = A, and

(ii) for every element X of 2M and for every non-empty subset family S1

of M such that for every many sorted set Y indexed by I holds Y ∈ S1

iff Y ∈ D and X ⊆ Y holds J � X =
⋂

S1.

Then A ∈ D.

(36) Let D be a properly upper bound subset family of M and let J be a
set many sorted operation in M . Suppose that for every element X of
2M and for every non-empty subset family S1 of M such that for every
many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y holds
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J � X =
⋂

S1. Then J is reflexive and monotonic.

(37) Let D be an absolutely-multiplicative subset family of M and let J be
a set many sorted operation in M . Suppose that for every element X of
2M and for every non-empty subset family S1 of M such that for every
many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y holds
J � X =

⋂
S1. Then J is idempotent.

(38) Let D be a many sorted closure system of S and let J be a set many
sorted operation in the sorts of D. Suppose that for every element X of
2the sorts of D and for every non-empty subset family S1 of the sorts of D

such that for every many sorted set Y indexed by the carrier of S holds
Y ∈ S1 iff Y ∈ the family of D and X ⊆ Y holds J � X =

⋂
S1. Then J

is a many sorted closure operator of the sorts of D.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let C be a many sorted closure operator of A. The functor ClSys(C) yielding a
many sorted closure system of S is defined as follows:

(Def. 14) There exists a subset family D of A such that D = FixPoints(C) and
ClSys(C) = 〈A,D〉.

Let us consider S, let A be a many sorted set indexed by the carrier of S,
and let C be a many sorted closure operator of A. One can verify that ClSys(C)
is strict.

Let us consider S, let A be a non-empty many sorted set indexed by the
carrier of S, and let C be a many sorted closure operator of A. Note that
ClSys(C) is non-empty.

Let us consider S and let D be a many sorted closure system of S. The
functor ClOp(D) yielding a many sorted closure operator of the sorts of D is
defined by the condition (Def. 15).

(Def. 15) Let X be an element of 2the sorts of D and let S1 be a non-empty subset
family of the sorts of D. Suppose that for every many sorted set Y indexed
by the carrier of S holds Y ∈ S1 iff Y ∈ the family of D and X ⊆ Y. Then
(ClOp(D)) � X =

⋂
S1.

The following two propositions are true:

(39) Let A be a many sorted set indexed by the carrier of S and let J be a
many sorted closure operator of A. Then ClOp(ClSys(J)) = J.

(40) For every many sorted closure system D of S holds ClSys(ClOp(D)) =
the many sorted closure system structure of D.
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[3] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–
676, 1990.



536 artur korni lowicz
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