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The papers [20], [21], [7], [16], [22], [4], [5], [3], [8], [6], [1], [19], [18], [2], [12],
[13], [14], [15], [11], [17], [10], and [9] provide the notation and terminology for
this paper.

1. PRELIMINARIES

For simplicity we follow a convention: [ is a set, i, x are arbitrary, A, M are
many sorted sets indexed by I, f is a function, and F' is a many sorted function
of I.

The scheme MSSUBSET concerns a set A, a non-empty many sorted set B
indexed by A, a many sorted set C indexed by A, and a unary predicate P, and
states that:

If for every many sorted set X indexed by A holds X € Biff X € C
and P[X], then BCC
for all values of the parameters.

The following two propositions are true:

(1) Let X be a non empty set and let z, y be arbitrary. If x C y, then
{t : t ranges over elements of X, y C t} C {z : z ranges over elements of
X,z Cz}.

(2)  If there exists A such that A € M, then M is non-empty.

Let us consider I, F'; A. Then F «f A is a many sorted set indexed by I.

Let us consider I, let A, B be non-empty many sorted sets indexed by I,
let F' be a many sorted function from A into B, and let X be an element of A.
Then F' < X is an element of B.

One can prove the following propositions:
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(3) Let A, X be many sorted sets indexed by I, and let B be a non-empty
many sorted set indexed by I and let F' be a many sorted function from
Ainto B. If X € A, then F «¢ X € B.

(4) Let F, G be many sorted functions of I and let A be a many sorted set
indexed by I. If A € dom, G(k), then F' «p (G «¢ A) = (F o G) « A.

(5) If Fis “1-1”, then for all many sorted sets A, B indexed by I such that
A € domy, F(k) and B € dom,, F'(k) and F' «¢ A= F «f B holds A = B.

(6) Suppose dom, F(k) is non-empty and for all many sorted sets A, B
indexed by I such that A € dom, F(x) and B € dom, F(k) and F «
A=F < Bholds A= B. Then F is “1-1”.

(7) Let A, B be non-empty many sorted sets indexed by I and let F', G be
many sorted functions from A into B. If for every M such that M € A
holds F «¢ M = G «¢ M, then F = G.

Let us consider I, M. One can verify that there exists an element of 2
which is empty yielding and locally-finite.

2. PROPERTIES OF MANY SORTED CLOSURE OPERATORS

Let us consider 1, M.

(Def. 1) A many sorted function from 2™ into 2™ is called a set many sorted
operation in M.

Let us consider I, M, let O be a set many sorted operation in M, and let X
be an element of 2", Then O « X is an element of 2.

Let us consider I, M and let I; be a set many sorted operation in M. We
say that Iy is reflexive if and only if:

(Def. 2)  For every element X of 2™ holds X C I} < X.
We say that I; is monotonic if and only if:
(Def. 3)  For all elements X, Y of 2™ such that X CY holds Iy «¢ X C I <P Y.
We say that I is idempotent if and only if:
(Def. 4)  For every element X of 2™ holds I} «p X = I} «p (I < X).
We say that I is topological if and only if:
(Def. 5)  For all elements X, Y of 2M holds [} < (X UY) =1, «p X UL Y.
One can prove the following propositions:
(8) For every non-empty many sorted set M indexed by I and for every
element X of M holds X =idys «p X.
(9) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M. If X CY, then idy; «¢ X Cidy; <P Y.
(10) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M. If X UY is an element of M, then idy; «¢ (X UY) =
idy <P X Uidyy «P Y.
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(11) Let X be an element of 2V and let i, 2 be arbitrary. Suppose i € I
and z € (idom «P X)(i). Then there exists a locally-finite element Y of
2M such that Y C X and 2 € (idonm <P Y) (7).

Let us consider I, M. Note that there exists a set many sorted operation in
M which is reflexive monotonic idempotent and topological.

Next we state four propositions:
12)  idya is a reflexive set many sorted operation in A.
13)  idya is a monotonic set many sorted operation in A.
14)  idya is an idempotent set many sorted operation in A.
15)  id,a is a topological set many sorted operation in A.
In the sequel P, R will denote set many sorted operations in M and E, T
will denote elements of 2.
One can prove the following three propositions:

(16) If E= M and P is reflexive, then £ = P « E.

(17)  If P is reflexive and for every element X of 2™ holds P < X C X, then
P is idempotent.
(18) If P is monotonic, then P «p (ENT)C P« ENP « T.
Let us consider I, M. Observe that every set many sorted operation in M
which is topological is also monotonic.
One can prove the following proposition
(19) If P is topological, then P «p E\ P« T C P ¢ (E\T).
Let us consider I, M, R, P. Then P o R is a set many sorted operation in
M.
One can prove the following propositions:
(20) If P is reflexive and R is reflexive, then P o R is reflexive.
(21) If P is monotonic and R is monotonic, then P o R is monotonic.

(22) If P is idempotent and R is idempotent and Po R = Ro P, then Po R
is idempotent.

(23) If P is topological and R is topological, then P o R is topological.

(24) If P is reflexive and ¢ € I and f = P(i), then for every element x of
2M@) holds = C f(x).

(25) If P is monotonic and ¢ € I and f = P(i), then for all elements x, y of
2M() such that = C y holds f(x) C f(y).

(26) If P is idempotent and i € I and f = P(i), then for every element x of
2M0) holds f(z) = £((x).

(27)  If P is topological and i € I and f = P(i), then for all elements z, y of
2M) holds f(zUy) = f(x) U f(y).
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3. ON THE MANY SORTED CLOSURE OPERATOR AND THE MANY SORTED
CLOSURE SYSTEM

In the sequel S will be a 1-sorted structure.

Let us consider S. We consider many sorted closure system structures over
S as extensions of many-sorted structure over S as systems

( sorts, a family ),
where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a subset family of the sorts.

In the sequel M; will be a many-sorted structure over S.

Let us consider S and let I7 be a many sorted closure system structure over
S. We say that I is additive if and only if:

(Def. 6)  The family of I; is additive.
We say that I is absolutely-additive if and only if:
(Def. 7)  The family of I; is absolutely-additive.
We say that [ is multiplicative if and only if:
(Def. 8)  The family of I; is multiplicative.
We say that [ is absolutely-multiplicative if and only if:
(Def. 9)  The family of I; is absolutely-multiplicative.
We say that Iy is properly upper bound if and only if:
(Def. 10)  The family of I; is properly upper bound.
We say that I is properly lower bound if and only if:
(Def. 11)  The family of I; is properly lower bound.

Let us consider S, Mj. The functor MSFull(M;) yields a many sorted closure
system structure over S and is defined as follows:

(Def. 12)  MSFull(M;) = (the sorts of My, 2the sorts of My,

Let us consider S, M;. One can check that MSFull(M;) is strict addi-
tive absolutely-additive multiplicative absolutely-multiplicative properly upper
bound and properly lower bound.

Let us consider S and let M7 be a non-empty many-sorted structure over S.
One can check that MSFull(M;) is non-empty.

Let us consider S. Observe that there exists a many sorted closure system
structure over S which is strict non-empty additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound.

Let us consider S and let C7 be an additive many sorted closure system
structure over S. Note that the family of C'; is additive.

Let us consider S and let C7 be an absolutely-additive many sorted closure
system structure over S. Observe that the family of C is absolutely-additive.

Let us consider S and let C'; be a multiplicative many sorted closure system
structure over S. One can verify that the family of C; is multiplicative.
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Let us consider S and let C'; be an absolutely-multiplicative many sorted clo-
sure system structure over S. One can check that the family of C'; is absolutely-
multiplicative.

Let us consider S and let Cy be a properly upper bound many sorted closure
system structure over S. One can check that the family of C is properly upper
bound.

Let us consider S and let C be a properly lower bound many sorted closure
system structure over S. Note that the family of C; is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F' be a subset family of M. Observe that (M, F') is non-
empty.

Let us consider S, M7 and let F' be an additive subset family of the sorts of
M. Observe that (the sorts of M7, F) is additive.

Let us consider S, M; and let F' be an absolutely-additive subset family of
the sorts of Mj. One can check that (the sorts of My, F') is absolutely-additive.

Let us consider S, M7 and let F' be a multiplicative subset family of the sorts
of Mj. Note that (the sorts of M7, F') is multiplicative.

Let us consider S, M7 and let F' be an absolutely-multiplicative subset family
of the sorts of M;. Observe that (the sorts of M, F) is absolutely-multiplicative.

Let us consider S, M7 and let F' be a properly upper bound subset family
of the sorts of M;. One can verify that (the sorts of Mj, F') is properly upper
bound.

Let us consider S, M7 and let F' be a properly lower bound subset family of
the sorts of M. Observe that (the sorts of M;, F') is properly lower bound.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-additive is also additive.

Let us consider S. One can check that every many sorted closure system
structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-multiplicative is also properly upper bound.

Let us consider S. Omne can verify that every many sorted closure system
structure over S which is absolutely-additive is also properly lower bound.

Let us consider S. A many sorted closure system of S is an absolutely-
multiplicative many sorted closure system structure over S.

Let us consider I, M. A many sorted closure operator of M is a reflexive
monotonic idempotent set many sorted operation in M.

Let us consider I, M and let F' be a many sorted function from M into M.
The functor FixPoints(F') yielding a many sorted subset of M is defined by:

(Def. 13)  For every i such that i € I holds = € (FixPoints(F'))(4) iff there exists
a function f such that f = F(i) and z € dom f and f(z) = x.
Let us consider I, let M be an empty yielding many sorted set indexed by
I, and let F' be a many sorted function from M into M. One can verify that
FixPoints(F) is empty yielding.
Next we state a number of propositions:
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(28)  For every many sorted function F' from M into M holds A € M and
F ¢ A= Aiff A€ FixPoints(F).

(29) FixPoints(id4) = A.

(30)  Let A be a many sorted set indexed by the carrier of S, and let J be a
reflexive monotonic set many sorted operation in A, and let D be a subset
family of A. If D = FixPoints(J), then (A, D) is a many sorted closure
system of S.

(31) Let D be a properly upper bound subset family of M and let X be an
element of 2M. Then there exists a non-empty subset family S; of M
such that for every many sorted set Y indexed by I holds Y € S if and
only if the following conditions are satisfied:

(i) YeD,and
(i) X CY.

(32) Let D be a properly upper bound subset family of M, and let X be an
element of 2™ and let S; be a non-empty subset family of M. Suppose
that for every many sorted set Y indexed by I holds Y € S; iff Y € D
and X C Y. Let i be arbitrary and let D1 be a non empty set. If i € I and
D, = D(i), then Si(i) = {z : z ranges over elements of Dy, X (i) C z}.

(33) Let D be a properly upper bound subset family of M. Then there
exists a set many sorted operation J in M such that for every element X
of 2M and for every non-empty subset family S; of M if for every many
sorted set Y indexed by I holds Y € S; iff Y € D and X C Y, then
J £ X =51

(34) Let D be a properly upper bound subset family of M, and let A be an
element of 2™ and let J be a set many sorted operation in M. Suppose
that

(i) AeD,and

(ii)  for every element X of 2/ and for every non-empty subset family Sy
of M such that for every many sorted set Y indexed by I holds Y € S
iff Y e Dand X CY holds J «¢ X =) 51.
Then J <2 A = A.

(35) Let D be an absolutely-multiplicative subset family of M, and let A
be an element of 2 and let J be a set many sorted operation in M.
Suppose that

(i) J« A=A, and

(ii)  for every element X of 2M and for every non-empty subset family S;
of M such that for every many sorted set Y indexed by I holds Y € 53
iff Y e Dand X CY holds J «¢ X =) 51.
Then A € D.

(36) Let D be a properly upper bound subset family of M and let J be a
set many sorted operation in M. Suppose that for every element X of
2M and for every non-empty subset family S; of M such that for every
many sorted set Y indexed by I holds Y € S;iff Y € D and X C Y holds
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J ¢ X = 5]. Then J is reflexive and monotonic.

(37)  Let D be an absolutely-multiplicative subset family of M and let J be
a set many sorted operation in M. Suppose that for every element X of
2M and for every non-empty subset family S; of M such that for every
many sorted set Y indexed by I holds Y € §1iff Y € D and X C Y holds
J «¢ X = 5;. Then J is idempotent.

(38) Let D be a many sorted closure system of S and let J be a set many
sorted operation in the sorts of D. Suppose that for every element X of
gthe sorts of D an1q for every non-empty subset family S; of the sorts of D
such that for every many sorted set Y indexed by the carrier of S holds
Y € S;iff Y € the family of D and X C Y holds J «# X =()S1. Then J
is a many sorted closure operator of the sorts of D.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let C' be a many sorted closure operator of A. The functor ClSys(C') yielding a
many sorted closure system of S is defined as follows:

(Def. 14)  There exists a subset family D of A such that D = FixPoints(C') and
ClSys(C) = (A, D).

Let us consider S, let A be a many sorted set indexed by the carrier of S,
and let C' be a many sorted closure operator of A. One can verify that ClSys(C')
is strict.

Let us consider S, let A be a non-empty many sorted set indexed by the
carrier of S, and let C be a many sorted closure operator of A. Note that
ClSys(C) is non-empty.

Let us consider S and let D be a many sorted closure system of S. The

functor ClOp(D) yielding a many sorted closure operator of the sorts of D is
defined by the condition (Def. 15).

(Def. 15)  Let X be an element of 2th¢ sors of D and let S; be a non-empty subset
family of the sorts of D. Suppose that for every many sorted set Y indexed
by the carrier of S holds Y € S7 iff Y € the family of D and X C Y. Then
(ClOp(D)) «¢ X =N S1.

The following two propositions are true:

(39) Let A be a many sorted set indexed by the carrier of S and let J be a
many sorted closure operator of A. Then ClOp(ClSys(J)) = J.

(40)  For every many sorted closure system D of S holds CISys(ClOp(D)) =
the many sorted closure system structure of D.
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