On the Many Sorted Closure Operator and the Many Sorted Closure System

Artur Korniłowicz Warsaw University Białystok

MML Identifier: CLOSURE1.

The papers [20], [21], [7], [16], [22], [4], [5], [3], [8], [6], [1], [19], [18], [2], [12], [13], [14], [15], [11], [17], [10], and [9] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we follow a convention: I is a set, i, x are arbitrary, A, M are many sorted sets indexed by I, f is a function, and F is a many sorted function of I.

The scheme MSSUBSET concerns a set \mathcal{A} , a non-empty many sorted set \mathcal{B} indexed by \mathcal{A} , a many sorted set \mathcal{C} indexed by \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

If for every many sorted set X indexed by \mathcal{A} holds $X \in \mathcal{B}$ iff $X \in \mathcal{C}$ and $\mathcal{P}[X]$, then $\mathcal{B} \subseteq \mathcal{C}$

for all values of the parameters.

The following two propositions are true:

- (1) Let X be a non empty set and let x, y be arbitrary. If $x \subseteq y$, then $\{t : t \text{ ranges over elements of } X, y \subseteq t\} \subseteq \{z : z \text{ ranges over elements of } X, x \subseteq z\}.$
- (2) If there exists A such that $A \in M$, then M is non-empty.

Let us consider I, F, A. Then $F \leftrightarrow A$ is a many sorted set indexed by I.

Let us consider I, let A, B be non-empty many sorted sets indexed by I, let F be a many sorted function from A into B, and let X be an element of A. Then $F \nleftrightarrow X$ is an element of B.

One can prove the following propositions:

C 1996 Warsaw University - Białystok ISSN 1426-2630

529

- (3) Let A, X be many sorted sets indexed by I, and let B be a non-empty many sorted set indexed by I and let F be a many sorted function from A into B. If $X \in A$, then $F \nleftrightarrow X \in B$.
- (4) Let F, G be many sorted functions of I and let A be a many sorted set indexed by I. If $A \in \operatorname{dom}_{\kappa} G(\kappa)$, then $F \nleftrightarrow (G \nleftrightarrow A) = (F \circ G) \nleftrightarrow A$.
- (5) If F is "1-1", then for all many sorted sets A, B indexed by I such that $A \in \operatorname{dom}_{\kappa} F(\kappa)$ and $B \in \operatorname{dom}_{\kappa} F(\kappa)$ and $F \nleftrightarrow A = F \nleftrightarrow B$ holds A = B.
- (6) Suppose $\dim_{\kappa} F(\kappa)$ is non-empty and for all many sorted sets A, B indexed by I such that $A \in \dim_{\kappa} F(\kappa)$ and $B \in \dim_{\kappa} F(\kappa)$ and $F \notin A = F \notin B$ holds A = B. Then F is "1-1".
- (7) Let A, B be non-empty many sorted sets indexed by I and let F, G be many sorted functions from A into B. If for every M such that $M \in A$ holds $F \nleftrightarrow M = G \nleftrightarrow M$, then F = G.

Let us consider I, M. One can verify that there exists an element of 2^M which is empty yielding and locally-finite.

2. PROPERTIES OF MANY SORTED CLOSURE OPERATORS

Let us consider I, M.

(Def. 1) A many sorted function from 2^M into 2^M is called a set many sorted operation in M.

Let us consider I, M, let O be a set many sorted operation in M, and let X be an element of 2^M . Then $O \nleftrightarrow X$ is an element of 2^M .

Let us consider I, M and let I_1 be a set many sorted operation in M. We say that I_1 is reflexive if and only if:

(Def. 2) For every element X of 2^M holds $X \subseteq I_1 \leftrightarrow X$.

We say that I_1 is monotonic if and only if:

- (Def. 3) For all elements X, Y of 2^M such that $X \subseteq Y$ holds $I_1 \leftrightarrow X \subseteq I_1 \leftrightarrow Y$. We say that I_1 is idempotent if and only if:
- (Def. 4) For every element X of 2^M holds $I_1 \leftrightarrow X = I_1 \leftrightarrow (I_1 \leftrightarrow X)$. We say that I_1 is topological if and only if:
- (Def. 5) For all elements X, Y of 2^M holds $I_1 \leftrightarrow (X \cup Y) = I_1 \leftrightarrow X \cup I_1 \leftrightarrow Y$. One can prove the following propositions:
 - (8) For every non-empty many sorted set M indexed by I and for every element X of M holds $X = id_M \nleftrightarrow X$.
 - (9) Let M be a non-empty many sorted set indexed by I and let X, Y be elements of M. If $X \subseteq Y$, then $\mathrm{id}_M \nleftrightarrow X \subseteq \mathrm{id}_M \nleftrightarrow Y$.
 - (10) Let M be a non-empty many sorted set indexed by I and let X, Y be elements of M. If $X \cup Y$ is an element of M, then $\mathrm{id}_M \nleftrightarrow (X \cup Y) = \mathrm{id}_M \nleftrightarrow X \cup \mathrm{id}_M \nleftrightarrow Y$.

(11) Let X be an element of 2^M and let i, x be arbitrary. Suppose $i \in I$ and $x \in (\mathrm{id}_{2^M} \leftrightarrow X)(i)$. Then there exists a locally-finite element Y of 2^M such that $Y \subseteq X$ and $x \in (\mathrm{id}_{2^M} \leftrightarrow Y)(i)$.

Let us consider I, M. Note that there exists a set many sorted operation in M which is reflexive monotonic idempotent and topological.

Next we state four propositions:

- (12) id_{2^A} is a reflexive set many sorted operation in A.
- (13) id_{2^A} is a monotonic set many sorted operation in A.
- (14) id_{2^A} is an idempotent set many sorted operation in A.
- (15) id_{2^A} is a topological set many sorted operation in A.

In the sequel P, R will denote set many sorted operations in M and E, T will denote elements of 2^M .

One can prove the following three propositions:

- (16) If E = M and P is reflexive, then $E = P \leftrightarrow E$.
- (17) If P is reflexive and for every element X of 2^M holds $P \nleftrightarrow X \subseteq X$, then P is idempotent.
- (18) If P is monotonic, then $P \nleftrightarrow (E \cap T) \subseteq P \nleftrightarrow E \cap P \nleftrightarrow T$.

Let us consider I, M. Observe that every set many sorted operation in M which is topological is also monotonic.

One can prove the following proposition

(19) If P is topological, then $P \leftrightarrow E \setminus P \leftrightarrow T \subseteq P \leftrightarrow (E \setminus T)$.

Let us consider I, M, R, P. Then $P \circ R$ is a set many sorted operation in M.

One can prove the following propositions:

- (20) If P is reflexive and R is reflexive, then $P \circ R$ is reflexive.
- (21) If P is monotonic and R is monotonic, then $P \circ R$ is monotonic.
- (22) If P is idempotent and R is idempotent and $P \circ R = R \circ P$, then $P \circ R$ is idempotent.
- (23) If P is topological and R is topological, then $P \circ R$ is topological.
- (24) If P is reflexive and $i \in I$ and f = P(i), then for every element x of $2^{M(i)}$ holds $x \subseteq f(x)$.
- (25) If P is monotonic and $i \in I$ and f = P(i), then for all elements x, y of $2^{M(i)}$ such that $x \subseteq y$ holds $f(x) \subseteq f(y)$.
- (26) If P is idempotent and $i \in I$ and f = P(i), then for every element x of $2^{M(i)}$ holds f(x) = f(f(x)).
- (27) If P is topological and $i \in I$ and f = P(i), then for all elements x, y of $2^{M(i)}$ holds $f(x \cup y) = f(x) \cup f(y)$.

3. On the Many Sorted Closure Operator and the Many Sorted Closure System

In the sequel S will be a 1-sorted structure.

Let us consider S. We consider many sorted closure system structures over S as extensions of many-sorted structure over S as systems

 $\langle \text{ sorts, a family } \rangle$,

where the sorts constitute a many sorted set indexed by the carrier of S and the family is a subset family of the sorts.

In the sequel M_1 will be a many-sorted structure over S.

Let us consider S and let I_1 be a many sorted closure system structure over S. We say that I_1 is additive if and only if:

(Def. 6) The family of I_1 is additive.

We say that I_1 is absolutely-additive if and only if:

(Def. 7) The family of I_1 is absolutely-additive.

We say that I_1 is multiplicative if and only if:

(Def. 8) The family of I_1 is multiplicative.

We say that I_1 is absolutely-multiplicative if and only if:

(Def. 9) The family of I_1 is absolutely-multiplicative.

We say that I_1 is properly upper bound if and only if:

(Def. 10) The family of I_1 is properly upper bound. We say that I_1 is properly lower bound if and only if:

we say that T_1 is properly lower bound if and only if

(Def. 11) The family of I_1 is properly lower bound. Let us consider S, M_1 . The functor $MSFull(M_1)$ yields a many sorted closure system structure over S and is defined as follows:

(Def. 12) MSFull $(M_1) = \langle \text{the sorts of } M_1, 2^{\text{the sorts of } M_1} \rangle$.

Let us consider S, M_1 . One can check that $MSFull(M_1)$ is strict additive absolutely-additive multiplicative absolutely-multiplicative properly upper bound and properly lower bound.

Let us consider S and let M_1 be a non-empty many-sorted structure over S. One can check that $MSFull(M_1)$ is non-empty.

Let us consider S. Observe that there exists a many sorted closure system structure over S which is strict non-empty additive absolutely-additive multiplicative absolutely-multiplicative properly upper bound and properly lower bound.

Let us consider S and let C_1 be an additive many sorted closure system structure over S. Note that the family of C_1 is additive.

Let us consider S and let C_1 be an absolutely-additive many sorted closure system structure over S. Observe that the family of C_1 is absolutely-additive.

Let us consider S and let C_1 be a multiplicative many sorted closure system structure over S. One can verify that the family of C_1 is multiplicative. Let us consider S and let C_1 be an absolutely-multiplicative many sorted closure system structure over S. One can check that the family of C_1 is absolutelymultiplicative.

Let us consider S and let C_1 be a properly upper bound many sorted closure system structure over S. One can check that the family of C_1 is properly upper bound.

Let us consider S and let C_1 be a properly lower bound many sorted closure system structure over S. Note that the family of C_1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the carrier of S, and let F be a subset family of M. Observe that $\langle M, F \rangle$ is non-empty.

Let us consider S, M_1 and let F be an additive subset family of the sorts of M_1 . Observe that (the sorts of M_1 , F) is additive.

Let us consider S, M_1 and let F be an absolutely-additive subset family of the sorts of M_1 . One can check that (the sorts of M_1 , F) is absolutely-additive.

Let us consider S, M_1 and let F be a multiplicative subset family of the sorts of M_1 . Note that (the sorts of M_1 , F) is multiplicative.

Let us consider S, M_1 and let F be an absolutely-multiplicative subset family of the sorts of M_1 . Observe that (the sorts of M_1 , F) is absolutely-multiplicative.

Let us consider S, M_1 and let F be a properly upper bound subset family of the sorts of M_1 . One can verify that (the sorts of M_1 , F) is properly upper bound.

Let us consider S, M_1 and let F be a properly lower bound subset family of the sorts of M_1 . Observe that (the sorts of M_1 , F) is properly lower bound.

Let us consider S. Observe that every many sorted closure system structure over S which is absolutely-additive is also additive.

Let us consider S. One can check that every many sorted closure system structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every many sorted closure system structure over S which is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can verify that every many sorted closure system structure over S which is absolutely-additive is also properly lower bound.

Let us consider S. A many sorted closure system of S is an absolutelymultiplicative many sorted closure system structure over S.

Let us consider I, M. A many sorted closure operator of M is a reflexive monotonic idempotent set many sorted operation in M.

Let us consider I, M and let F be a many sorted function from M into M. The functor FixPoints(F) yielding a many sorted subset of M is defined by:

(Def. 13) For every *i* such that $i \in I$ holds $x \in (FixPoints(F))(i)$ iff there exists a function *f* such that f = F(i) and $x \in \text{dom } f$ and f(x) = x.

Let us consider I, let M be an empty yielding many sorted set indexed by I, and let F be a many sorted function from M into M. One can verify that FixPoints(F) is empty yielding.

Next we state a number of propositions:

- (28) For every many sorted function F from M into M holds $A \in M$ and $F \nleftrightarrow A = A$ iff $A \in FixPoints(F)$.
- (29) FixPoints(id_A) = A.
- (30) Let A be a many sorted set indexed by the carrier of S, and let J be a reflexive monotonic set many sorted operation in A, and let D be a subset family of A. If D = FixPoints(J), then $\langle A, D \rangle$ is a many sorted closure system of S.
- (31) Let D be a properly upper bound subset family of M and let X be an element of 2^M . Then there exists a non-empty subset family S_1 of M such that for every many sorted set Y indexed by I holds $Y \in S_1$ if and only if the following conditions are satisfied:
 - (i) $Y \in D$, and
 - (ii) $X \subseteq Y$.
- (32) Let D be a properly upper bound subset family of M, and let X be an element of 2^M , and let S_1 be a non-empty subset family of M. Suppose that for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$. Let i be arbitrary and let D_1 be a non empty set. If $i \in I$ and $D_1 = D(i)$, then $S_1(i) = \{z : z \text{ ranges over elements of } D_1, X(i) \subseteq z\}$.
- (33) Let D be a properly upper bound subset family of M. Then there exists a set many sorted operation J in M such that for every element X of 2^M and for every non-empty subset family S_1 of M if for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$, then $J \leftrightarrow X = \bigcap S_1$.
- (34) Let D be a properly upper bound subset family of M, and let A be an element of 2^M , and let J be a set many sorted operation in M. Suppose that
 - (i) $A \in D$, and
 - (ii) for every element X of 2^M and for every non-empty subset family S_1 of M such that for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$ holds $J \nleftrightarrow X = \bigcap S_1$. Then $J \nleftrightarrow A = A$.
- (35) Let D be an absolutely-multiplicative subset family of M, and let A be an element of 2^M , and let J be a set many sorted operation in M. Suppose that
 - (i) $J \leftrightarrow A = A$, and
 - (ii) for every element X of 2^M and for every non-empty subset family S_1 of M such that for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$ holds $J \nleftrightarrow X = \bigcap S_1$. Then $A \in D$.
- (36) Let D be a properly upper bound subset family of M and let J be a set many sorted operation in M. Suppose that for every element X of 2^M and for every non-empty subset family S_1 of M such that for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$ holds

 $J \leftrightarrow X = \bigcap S_1$. Then J is reflexive and monotonic.

- (37) Let D be an absolutely-multiplicative subset family of M and let J be a set many sorted operation in M. Suppose that for every element X of 2^M and for every non-empty subset family S_1 of M such that for every many sorted set Y indexed by I holds $Y \in S_1$ iff $Y \in D$ and $X \subseteq Y$ holds $J \leftrightarrow X = \bigcap S_1$. Then J is idempotent.
- (38) Let D be a many sorted closure system of S and let J be a set many sorted operation in the sorts of D. Suppose that for every element X of $2^{\text{the sorts of } D}$ and for every non-empty subset family S_1 of the sorts of Dsuch that for every many sorted set Y indexed by the carrier of S holds $Y \in S_1$ iff $Y \in$ the family of D and $X \subseteq Y$ holds $J \nleftrightarrow X = \bigcap S_1$. Then Jis a many sorted closure operator of the sorts of D.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and let C be a many sorted closure operator of A. The functor ClSys(C) yielding a many sorted closure system of S is defined as follows:

(Def. 14) There exists a subset family D of A such that D = FixPoints(C) and $\text{ClSys}(C) = \langle A, D \rangle$.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and let C be a many sorted closure operator of A. One can verify that ClSys(C) is strict.

Let us consider S, let A be a non-empty many sorted set indexed by the carrier of S, and let C be a many sorted closure operator of A. Note that ClSys(C) is non-empty.

Let us consider S and let D be a many sorted closure system of S. The functor ClOp(D) yielding a many sorted closure operator of the sorts of D is defined by the condition (Def. 15).

(Def. 15) Let X be an element of $2^{\text{the sorts of } D}$ and let S_1 be a non-empty subset family of the sorts of D. Suppose that for every many sorted set Y indexed by the carrier of S holds $Y \in S_1$ iff $Y \in$ the family of D and $X \subseteq Y$. Then $(\operatorname{ClOp}(D)) \nleftrightarrow X = \bigcap S_1$.

The following two propositions are true:

- (39) Let A be a many sorted set indexed by the carrier of S and let J be a many sorted closure operator of A. Then ClOp(ClSys(J)) = J.
- (40) For every many sorted closure system D of S holds ClSys(ClOp(D)) = the many sorted closure system structure of D.

References

- Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547– 552, 1991.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.

- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Artur Korniłowicz. Certain facts about families of subsets of many sorted sets. Formalized Mathematics, 5(3):451–456, 1996.
- [10] Artur Korniłowicz. Definitions and basic properties of boolean & union of many sorted sets. Formalized Mathematics, 5(2):279–281, 1996.
- [11] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269-272, 1996.
- [12] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
- [13] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60, 1996.
- [15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
- [18] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [19] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received February 7, 1996