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Summary. This article is the first part of a paper proving the fun-
damental Urysohn’s Theorem concerning the existence of a real valued
continuous function on a normal topological space. The paper is divided
into four parts. In the first part, we prove some auxiliary theorems con-
cerning properties of natural numbers and prove two useful schemes about
recurrently defined functions; in the second part, we define a special set
of rational numbers, which we call dyadic, and prove some of its prop-
erties. The next part of the paper contains the definitions of T; space
and normal space, and we prove related theorems used in later parts of
the paper. The final part of this work is developed for proving the theo-
rem about the existence of some special family of subsets of a topological
space. This theorem is essential in proving Urysohn’s Lemma.

MML Identifier: URYSOHN1.

The notation and terminology used in this paper have been introduced in the
following articles: [24], [30], [9], [25], [23], [22], [31], [6], [7], [4], [2], [16], [3], [5]
g% [2?;7[2[2,]], [10], [13], [19], [32], [12], [18], [14], [15], [11], [20], [21], [8], [17],

1. PRELIMINARIES

The following propositions are true:

(1) 0#3and1#41.

(2) 0<iandi<l.

(3)  For every natural number n holds 1 < 2.
(4)  For every natural number n holds 0 < 2™.

In this article we present several logical schemes. The scheme
FuncEx2DChoice deals with a non empty set A, a non empty set 3, a non
empty set C, and a ternary predicate P, and states that:
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There exists a function F' from [ .4, B] into C such that for every
element z of A and for every element y of B holds P[z,y, F({x, y))]
provided the parameters meet the following requirement:
e For every element x of A and for every element y of B there exists
an element z of C such that Pz, vy, z].
The scheme RecExDN RD concerns a non empty set A, an element B of A,
and a ternary predicate P, and states that:
There exists a function F' from N into .4 such that F(0) = B and
for every element n of N holds Pln, F(n), F'(n + 1)]
provided the parameters satisfy the following condition:
e For every natural number n and for every element x of A there
exists an element y of A such that P[n,z,y].

2. DyADIC NUMBERS

The subset R of R is defined by:
(Def.1)  For every real number z holds z € R iff z < 0.
The subset R of R is defined by:
(Def.2)  For every real number z holds z € Ry iff 1 < z.
Let n be a natural number. The functor dyadic(n) yields a subset of R and
is defined by:
(Def.3)  For every real number x holds x € dyadic(n) iff there exists a natural
number 7 such that 0 <7 and i < 2" and z = 2%
The subset DYADIC of R is defined by:
(Def.4)  For every real number a holds a € DYADIC iff there exists a natural
number n such that a € dyadic(n).
The subset DOM of R is defined by:
(Def.5) DOM = R U DYADIC UR .

Let T be a topological space, let A be a non empty subset of R, let F' be a
function from A into 2the carrier of T "and let r be an element of A. Then F(r) is
a subset of the carrier of T'.

One can prove the following three propositions:

(5)  For every natural number n and for every real number = such that
x € dyadic(n) holds 0 < z and = < 1.

(6) dyadic(0) = {0,1}.

(7)  dyadic(1) = {0, 3,1}

Let n be a natural number. Note that dyadic(n) is non empty.
Next we state the proposition

(8)  For every natural number z and for every natural number n holds x"
is a natural number.
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Let z, n be natural numbers. Then z" is a natural number.
The following proposition is true

(9) Let n be a natural number. Then there exists a finite sequence F such
that dom F; = Seg(2" + 1) and for every natural number i such that

i € dom Fy holds Fi (i) = 2.
Let n be a natural number. The functor dyad(n) yielding a finite sequence
is defined by:
(Def.6)  domdyad(n) = Seg(2" + 1) and for every natural number i such that
i € domdyad(n) holds (dyad(n))(i) = 5.
We now state the proposition
(10)  For every natural number n holds domdyad(n) = Seg(2" + 1) and
rng dyad(n) = dyadic(n).
Let us note that DYADIC is non empty.
Let us observe that DOM is non empty.
One can prove the following propositions:

(11)  For every natural number n holds dyadic(n) C dyadic(n + 1).

(12)  For every natural number n holds 0 € dyadic(n) and 1 € dyadic(n).

(13)  For every natural number n and for every natural number ¢ such that
0 < and i < 2" holds 2+ € dyadic(n + 1) \ dyadic(n).

(14)  For every natural number n and for every natural number ¢ such that
0 <iand i < 2" holds 12,%—1% € dyadic(n + 1) \ dyadic(n).

(15)  For every natural number n holds 5 € dyadic(n + 1) \ dyadic(n).

Let n be a natural number and let z be an element of dyadic(n). The functor
axis(z,n) yields a natural number and is defined by:

_axis(z,n)
One can prove the following propositions:

(16)  For every natural number n and for every element x of dyadic(n) holds
x = % and 0 < axis(z,n) and axis(z,n) < 2".
(17)  For every natural number n and for every element x of dyadic(n) holds

i -1 i 1
ax1s(;,ln) <zand x < ax1s(;c;1n)+

(18)  For every natural number n and for every element x of dyadic(n) holds
axis(z,n)—1 < axis(z,n)+1

2n 2n

(19)  For every natural number n there exists a natural number £k such that
n==k-2orn==~kF-2+1.

(20) Let m be a natural number and let = be an element of dyadic(n +
1). If z ¢ dyadic(n), then a’ils(zfij[l)_l € dyadic(n) and % €
dyadic(n).

(21)  For every natural number n and for all elements x1, x2 of dyadic(n)
such that z1 < z9 holds axis(x1,n) < axis(za,n).
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(22)  For every natural number n and for all elements x1, x2 of dyadic(n)
such that z; < xo holds 1 < aXlS(x;;")_l and ams(gln’")ﬂ < x9.

(23)  Let n be a natural number and let =1, x2 be elements of dyadic(n + 1).

If 1 < 29 and x; ¢ dyadic(n) and x9 ¢ dyadic(n), then w <

axis(za,n+1)—1

3. NORMAL SPACES

Let T be a topological space and let x be a point of T'. A subset of the carrier
of T is said to be a neighbourhood of z in T if:

(Def.8)  There exists a subset A of the carrier of 7" such that A is open and
z € Aand A Cit.
One can prove the following propositions:
(24) Let T be a topological space and let A be a subset of the carrier of T

Then A is open if and only if for every point z of T such that z € A there
exists a neighbourhood B of x in T such that B C A.

(25) Let T be a topological space, and let A be a subset of the carrier of
T, and let = be a point of T. If A is open and x € A, then A is a
neighbourhood of x in 7.

(26) Let T be a topological space and let A be a subset of the carrier of
T. Suppose that for every point x of 1" such that x € A holds A is a
neighbourhood of  in T'. Then A is open.

Let T be a topological space. We say that T is a T space if and only if the
condition (Def.9) is satisfied.

(Def.9)  Let p, ¢ be points of T'. Suppose p # q. Then there exist subsets W, V
of the carrier of T such that W is open and V is open and p € W and
g¢WandgeV andp ¢ V.

Next we state the proposition

(27)  For every topological space T holds T is a T space iff for every point
p of T holds {p} is closed.

Let T be a topological space, let F' be a map from T into R, and let = be a
point of T. Then F(x) is a real number.
The following four propositions are true:

(28) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T. Suppose A # () and A is open and B is open
and A C B. Then there exists a subset C' of the carrier of T such that
C # () and C is open and A C C and C C B.

(29) Let T be a topological space. Then T is a T3 space if and only if for
every subset A of the carrier of T" and for every point p of T such that A
is open and p € A there exists a subset B of the carrier of T such that
p € B and B is open and B C A.
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(30) Let T be a topological space. Suppose T is a T4 space and a T space.
Let A be a subset of the carrier of T'. Suppose A is open and A 7&_(2) Then
there exists a subset B of the carrier of T such that B # () and B C A.

(31) Let T be a topological space. Suppose T' is a T4 space. Let A be a
subset of the carrier of T. Suppose A is open and A # (). Let B be a
subset of the carrier of T'. Suppose B is closed and B # () and B C A.
Then there exists a subset C' of the carrier of 1" such that C' is open and
B C(C and C C A.

4. SOME INCREASING FAMILY OF SETS IN NORMAL SPACE

Let T be a topological space and let A, B, C be subsets of the carrier of T.
We say that C' is between A and B if and only if:
(Def.10)  C # 0 and C is open and A C C and C C B.
One can prove the following proposition
(32) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T. Suppose A # () and A is closed and B is
closed and AN B = (). Let n be a natural number and let G be a function
from dyadic(n) into 2the carrier of T Gyuppose that for all elements 71, ro of
dyadic(n) such that 71 < ro holds G(r1) is open and G(rsz) is open and
G(r1) € G(ry) and A C G(0) and B = Qp \ G(1). Then there exists a
function F from dyadic(n+1) into 2the cartier of T gych that for all elements
r1, ro, r of dyadic(n + 1) if r; < 79, then F'(r1) is open and F'(ry) is open
and F(r1) C F(rg) and A C F(0) and B = Qr\ F(1) and if r € dyadic(n),
then F(r) = G(r).
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