On the Concept of the Triangulation

Beata Madras Warsaw University Białystok

MML Identifier: TRIANG_1.

The terminology and notation used in this paper have been introduced in the following articles: [22], [28], [11], [29], [31], [30], [27], [14], [2], [9], [10], [6], [19], [13], [5], [8], [25], [23], [3], [4], [12], [26], [15], [17], [18], [1], [21], [20], [24], [16], and [7].

1. Introduction

In this paper A will be a set and k, m, n will be natural numbers.

The scheme Regr1 concerns a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every k such that $k \leq \mathcal{A}$ holds $\mathcal{P}[k]$ provided the parameters meet the following conditions:

- \bullet $\mathcal{P}[\mathcal{A}],$
- For every k such that k < A and P[k+1] holds P[k].

Let n be a natural number. Observe that Seg(n+1) is non empty.

Let X be a non empty set and let R be an order in X. Note that $\langle X, R \rangle$ is non empty.

One can prove the following proposition

 $(1) \qquad \emptyset \mid^2 A = \emptyset.$

Let X be a set. Note that there exists a subset of Fin X which is non empty.

Let X be a non empty set. Note that there exists a subset of Fin X which is non empty and has non empty elements.

Let X be a non empty set and let F be a non empty subset of Fin X with non empty elements. Observe that there exists an element of F which is non empty.

A set has a non-empty element if:

(Def.1) There exists a non empty set X such that $X \in it$.

Let us mention that there exists a set which has a non-empty element.

Let X be a set with a non-empty element. Note that there exists an element of X which is non empty.

One can check that every set which has a non-empty element is non empty. Let X be a non empty set. Note that there exists a subset of Fin X which has a non-empty element.

Let X be a non empty set, let F be a subset of Fin X with a non-empty element, let R be an order in X, and let A be an element of F. Then $R \mid^2 A$ is an order in A.

The scheme SubFinite concerns a set \mathcal{A} , a subset \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the following conditions are satisfied:

- \mathcal{B} is finite,
- $\mathcal{P}[\emptyset_{\mathcal{A}}],$
- For every element x of \mathcal{A} and for every subset B of \mathcal{A} such that $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $\mathcal{P}[B]$ holds $\mathcal{P}[B \cup \{x\}]$.

We now state the proposition

(2) Let F be a non empty poset and let A be a subset of F. Suppose A is finite and $A \neq \emptyset$ and for all elements B, C of F such that $B \in A$ and $C \in A$ holds $B \leq C$ or $C \leq B$. Then there exists an element m of F such that $m \in A$ and for every element C of F such that $C \in A$ holds $m \leq C$.

Let X be a non empty set and let F be a subset of Fin X with a non-empty element. Observe that there exists an element of F which is finite and non empty.

Let A be a non empty poset and let a_1 , a_2 be elements of A. We introduce $a_2 \ge a_1$ as a synonym of $a_1 \le a_2$ We introduce $a_2 > a_1$ as a synonym of $a_1 < a_2$.

Let P be a non empty poset. Note that there exists a subset of P which is non empty and finite.

Let P be a non empty poset, let A be a non empty finite subset of P, and let x be an element of P. One can check that InitSegm(A, x) is finite.

The following proposition is true

(3) For all finite sets A, B such that $A \subseteq B$ and card $A = \operatorname{card} B$ holds A = B.

Let A, B be non empty sets, let f be a function from A into B, and let x be an element of A. Then f(x) is an element of B.

Let F be a non empty poset and let A be a non empty subset of F. We see that the element of A is an element of F.

Let X be a non empty set, let F be a subset of Fin X with a non-empty element, let A be a non empty element of F, and let R be an order in X. Let us assume that R linearly orders A. The functor $\operatorname{SgmX}(R, A)$ yields a finite sequence of elements of the carrier of $\langle A, R |^2 A \rangle$ and is defined by the conditions (Def.2).

- (Def.2) (i) $\operatorname{rng} \operatorname{SgmX}(R, A) = A$, and
 - (ii) for all natural numbers n, m and for all elements p, q of $\langle A, R |^2 A \rangle$ such that $n \in \text{dom SgmX}(R, A)$ and $m \in \text{dom SgmX}(R, A)$ and n < m and $p = \pi_n \text{SgmX}(R, A)$ and $q = \pi_m \text{SgmX}(R, A)$ holds p > q.

Next we state the proposition

- (4) Let X be a non empty set, and let F be a subset of Fin X with a non-empty element, and let A be a non empty element of F, and let R be an order in X, and let f be a finite sequence of elements of the carrier of $\langle X, R \rangle$. Suppose that
- (i) $\operatorname{rng} f = A$, and
- (ii) for all natural numbers n, m and for all elements p, q of $\langle X, R \rangle$ such that $n \in \text{dom } f$ and $m \in \text{dom } f$ and n < m and $p = \pi_n f$ and $q = \pi_m f$ holds p > q.

Then $f = \operatorname{SgmX}(R, A)$.

2. Abstract Complexes

Let C be a non empty poset. The functor symplexes (C) yields a subset of Fin (the carrier of C) and is defined by:

(Def.3) symplexes(C) = {A : A ranges over elements of Fin (the carrier of C), the internal relation of C linearly orders A}.

Let C be a non empty poset. Note that symplexes(C) has a non-empty element.

In the sequel C denotes a non empty poset.

Next we state three propositions:

- (5) For every element x of C holds $\{x\} \in \text{symplexes}(C)$.
- (6) $\emptyset \in \text{symplexes}(C)$.
- (7) For arbitrary x, s such that $x \subseteq s$ and $s \in \text{symplexes}(C)$ holds $x \in \text{symplexes}(C)$.

Let us consider C. Observe that every element of symplexes(C) is finite. One can prove the following propositions:

- (8) For every non empty poset C and for every non empty element A of symplexes (C) holds SgmX (the internal relation of C, A) is one-to-one.
- (9) Let C be a non empty poset and let A be a non empty element of symplexes (C). If $\overline{\overline{A}} = n$, then len SgmX (the internal relation of C, A) = n.
- (10) Let C be a non empty poset and let A be a non empty element of symplexes (C). If $\overline{\overline{A}} = n$, then dom SgmX (the internal relation of C, $A) = \operatorname{Seg} n$.

Let C be a non empty poset. One can verify that there exists an element of symplexes (C) which is non empty.

3. Triangulations

A set sequence is a many sorted set indexed by \mathbb{N} .

A set sequence is lower non-empty if:

(Def.4) For every n such that it(n) is non empty and for every m such that m < n holds it(m) is non empty.

Let us observe that there exists a set sequence which is lower non-empty.

Let X be a set sequence. The functor FuncsSeq(X) yields a set sequence and is defined by:

(Def.5) For every natural number n holds $(FuncsSeq(X))(n) = X(n)^{X(n+1)}$.

Let X be a lower non-empty set sequence and let n be a natural number. Observe that $(\operatorname{FuncsSeq}(X))(n)$ is non empty.

Let us consider n and let f be an element of $(\operatorname{Seg}(n+1))^{\operatorname{Seg} n}$. The functor ${}^{@}f$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:

(Def.6) ${}^{@}f = f$.

The set sequence NatEmbSeq is defined by:

(Def.7) For every natural number n holds (NatEmbSeq) $(n) = \{f : f \text{ ranges over elements of } (\text{Seg}(n+1))^{\text{Seg } n}, {}^{@}f \text{ is increasing} \}.$

Let us consider n. Observe that (NatEmbSeq)(n) is non empty.

Let n be a natural number. Note that every element of NatEmbSeq(n) is function-like and relation-like.

Let X be a set sequence.

(Def.8) A many sorted function from NatEmbSeq into FuncsSeq(X) is called a triangulation of X.

We consider triangulation structures as systems

(a skeleton sequence, a faces assignment),

where the skeleton sequence is a set sequence and the faces assignment is a many sorted function from NatEmbSeq into FuncsSeq(the skeleton sequence).

Let T be a triangulation structure. We say that T is lower non-empty if and only if:

(Def.9) The skeleton sequence of T is lower non-empty.

Let us note that there exists a triangulation structure which is lower nonempty and strict.

Let T be a lower non-empty triangulation structure. Note that the skeleton sequence of T is lower non-empty.

Let S be a lower non-empty set sequence and let F be a many sorted function from NatEmbSeq into FuncsSeq(S). Note that $\langle S, F \rangle$ is lower non-empty.

4. Relationship Between Abstract Complexes and Triangulations

Let T be a triangulation structure and let n be a natural number. A symplex of T and n is an element of (the skeleton sequence of T)(n).

Let n be a natural number. A face of n is an element of (NatEmbSeq)(n).

Let T be a lower non-empty triangulation structure, let n be a natural number, let x be a symplex of T and n+1, and let f be a face of n. Let us assume that (the skeleton sequence of T) $(n+1) \neq \emptyset$. The functor face(x, f) yields a symplex of T and n and is defined by:

(Def.10) For all functions F, G such that F = (the faces assignment of T)(n) and G = F(f) holds face(x, f) = G(x).

Let C be a non empty poset. The functor Triang(C) yielding a lower non-empty strict triangulation structure is defined by the conditions (Def.11).

- (Def.11) (i) (The skeleton sequence of Triang(C))(0) = $\{\emptyset\}$,
 - (ii) for every natural number n such that n > 0 holds (the skeleton sequence of Triang(C)) $(n) = \{SgmX(the internal relation of <math>C, A) : A \text{ ranges over non empty elements of symplexes}(C), <math>\overline{\overline{A}} = n\}$, and
 - (iii) for every natural number n and for every face f of n and for every element s of (the skeleton sequence of $\operatorname{Triang}(C)$)(n+1) such that $s \in$ (the skeleton sequence of $\operatorname{Triang}(C)$)(n+1) and for every non empty element A of $\operatorname{symplexes}(C)$ such that $\operatorname{SgmX}(\text{the internal relation of } C, A) = s$ holds $\operatorname{face}(s, f) = \operatorname{SgmX}(\text{the internal relation of } C, A) \cdot f$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129, 1990.
- [4] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265–267, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [12] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [15] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105–109, 1991.
- [16] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Formalized Mathematics, 4(1):109–113, 1993.
- [17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [18] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [19] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [20] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
- [21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [24] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [26] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Formalized Mathematics, 1(2):387–393, 1990.
- [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [28] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [31] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received October 28, 1995