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The notation and terminology used in this paper are introduced in the following
articles: [13], [2], [11], [17], [18], [33], [21], [32], [3], [34], [8], [9], [4], [14], [15],
[35], [36], [23], [31], [16], [30], [26], [24], [12], [29], [19], [27], [1], [7], [25], [6], [10],
[5], [22], [28], and [20].

1. Preliminaries

For simplicity we follow the rules: k, t, i, j, m, n are natural numbers, x is
arbitrary, A is a set, and D is a non empty set.

We now state two propositions:

(1) For every finite sequence p of elements of D and for every i holds p 
 i is
a finite sequence of elements of D.

(2) For every i and for every finite sequence p holds rng(p 
 i) ⊆ rng p.

Let D be a non empty set. A matrix over D is a tabular finite sequence of
elements of D∗.

Let K be a field. A matrix over K is a matrix over the carrier of K.
Let D be a non empty set, let us consider k, and let M be a matrix over D.

Then M 
 k is a matrix over D.
Next we state four propositions:

(3) For every finite sequence M of elements of D such that len M = n + 1
holds len(M 
 n+1 ) = n.

(4) Let M be a matrix over D of dimension n + 1 × m and let M1 be a
matrix over D. Then if n > 0, then widthM = width(M 
 n+1) and if
M1 = 〈M(n + 1)〉, then widthM = widthM1.

(5) For every matrix M over D of dimension n + 1 × m holds M 
 n+1 is a
matrix over D of dimension n × m.
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(6) For every finite sequence M of elements of D such that len M = n + 1
holds M = (M 
 len M ) � 〈M(len M)〉.

Let us consider D and let P be a finite sequence of elements of D. Then 〈P 〉
is a matrix over D of dimension 1 × len P.

2. More on Finite Sequence

One can prove the following propositions:

(7) For every set A and for every finite sequence F holds (Sgm(F −1 A)) �
Sgm(F −1 (rng F \ A)) is a permutation of domF.

(8) Let F be a finite sequence and let A be a subset of rng F. Suppose
F is one-to-one. Then there exists a permutation p of domF such that
(F − Ac) � (F − A) = F · p.

A function is finite sequence yielding if:

(Def.1) For every x such that x ∈ dom it holds it(x) is a finite sequence.

Let us observe that there exists a function which is finite sequence yielding.
Let F , G be finite sequence yielding functions. The functor F ⌢ G yields a

finite sequence yielding function and is defined by the conditions (Def.2).

(Def.2) (i) dom(F ⌢ G) = domF ∩ dom G, and
(ii) for arbitrary i such that i ∈ dom(F ⌢ G) and for all finite sequences

f , g such that f = F (i) and g = G(i) holds (F ⌢ G)(i) = f � g.

3. Matrices and Finite Sequences in Vector Space

For simplicity we adopt the following convention: K denotes a field, V de-
notes a vector space over K, a denotes an element of the carrier of K, W denotes
an element of the carrier of V , K1, K2, K3 denote linear combinations of V ,
and X denotes a subset of the carrier of V .

Next we state four propositions:

(9) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X

and
∑

K1 =
∑

K2, then K1 = K2.

(10) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X

and supportK3 ⊆ X and
∑

K1 =
∑

K2 +
∑

K3, then K1 = K2 + K3.

(11) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X

and a 6= 0K and
∑

K1 = a ·
∑

K2, then K1 = a · K2.

(12) For every basis b2 of V there exists a linear combination K4 of V such
that W =

∑
K4 and supportK4 ⊆ b2.

Let K be a field and let V be a vector space over K. We say that V is finite
dimensional if and only if:

(Def.3) There exists finite subset of the carrier of V which is a basis of V .



associated matrix of linear map 341

Let K be a field. Note that there exists a vector space over K which is strict
and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A
finite sequence of elements of the carrier of V is called an ordered basis of V if:

(Def.4) It is one-to-one and rng it is a basis of V .

For simplicity we adopt the following convention: p will denote a finite se-
quence, M1 will denote a matrix over D of dimension n × m, M2 will denote
a matrix over D of dimension k × m, V1, V2, V3 will denote finite dimensional
vector spaces over K, f , f1, f2 will denote maps from V1 into V2, g will denote
a map from V2 into V3, b1 will denote an ordered basis of V1, b2 will denote an
ordered basis of V2, b3 will denote an ordered basis of V3, b will denote a basis
of V1, v1, v2 will denote vectors of V2, v will denote an element of the carrier
of V1, p2, F will denote finite sequences of elements of the carrier of V1, p1, d

will denote finite sequences of elements of the carrier of K, and K4 will denote
a linear combination of V1.

Let us consider K, let us consider V1, V2, and let us consider f1, f2. The
functor f1 + f2 yielding a map from V1 into V2 is defined as follows:

(Def.5) For every element v of the carrier of V1 holds (f1+f2)(v) = f1(v)+f2(v).

Let us consider K, let us consider V1, V2, let us consider f , and let a be an
element of the carrier of K. The functor a · f yielding a map from V1 into V2 is
defined as follows:

(Def.6) For every element v of the carrier of V1 holds (a · f)(v) = a · f(v).

The following propositions are true:

(13) Let a be an element of the carrier of V1, and let F be a finite sequence
of elements of the carrier of V1, and let G be a finite sequence of elements
of the carrier of K. Suppose len F = len G and for every k and for every
element v of the carrier of K such that k ∈ domF and v = G(k) holds
F (k) = v · a. Then

∑
F =

∑
G · a.

(14) Let a be an element of the carrier of V1, and let F be a finite sequence
of elements of the carrier of K, and let G be a finite sequence of elements
of the carrier of V1. If len F = len G and for every k such that k ∈ domF

holds G(k) = πkF · a, then
∑

G =
∑

F · a.

(15) If for every k such that k ∈ dom F holds πkF = 0(V1), then
∑

F = 0(V1).

Let us consider K, let us consider V1, and let us consider p1, p2. The functor
lmlt(p1, p2) yielding a finite sequence of elements of the carrier of V1 is defined
as follows:

(Def.7) lmlt(p1, p2) = (the left multiplication of V1)
◦(p1, p2).

Next we state the proposition

(16) If dom p1 = dom p2, then dom lmlt(p1, p2) = dom p1 and
dom lmlt(p1, p2) = dom p2.

Let us consider K, let us consider V1, and let M be a matrix over the carrier
of V1. The functor

∑
M yields a finite sequence of elements of the carrier of V1

and is defined as follows:
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(Def.8) len
∑

M = len M and for every k such that k ∈ dom
∑

M holds
πk

∑
M =

∑
Line(M,k).

The following propositions are true:

(17) For every matrix M over the carrier of V1 such that len M = 0 holds
∑ ∑

M = 0(V1).

(18) For every matrix M over the carrier of V1 of dimension m+1 × 0 holds
∑ ∑

M = 0(V1).

(19) For every element x of the carrier of V1 holds 〈〈x〉〉 = 〈〈x〉〉T.

(20) For every finite sequence p of elements of the carrier of V1 such that f

is linear holds f(
∑

p) =
∑

(f · p).

(21) Let a be a finite sequence of elements of the carrier of K and let p be
a finite sequence of elements of the carrier of V1. If len p = len a, then if
f is linear, then f · lmlt(a, p) = lmlt(a, f · p).

(22) Let a be a finite sequence of elements of the carrier of K. If len a =
len b2, then if g is linear, then g(

∑
lmlt(a, b2)) =

∑
lmlt(a, g · b2).

(23) Let F , F1 be finite sequences of elements of the carrier of V1, and let
K4 be a linear combination of V1, and let p be a permutation of domF.

If F1 = F · p, then K4 F1 = (K4 F ) · p.

(24) If F is one-to-one and supportK4 ⊆ rng F, then
∑

(K4 F ) =
∑

K4.

(25) Let A be a set and let p be a finite sequence of elements of the carrier
of V1. Suppose rng p ⊆ A. Suppose f1 is linear and f2 is linear and for
every v such that v ∈ A holds f1(v) = f2(v). Then f1(

∑
p) = f2(

∑
p).

(26) If f1 is linear and f2 is linear, then for every ordered basis b1 of V1 such
that len b1 > 0 holds if f1 · b1 = f2 · b1, then f1 = f2.

Let D be a non empty set. Observe that every matrix over D is finite sequence
yielding.

Let D be a non empty set and let F , G be matrices over D. Then F ⌢ G is
a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M1 be a matrix over
D of dimension n × k, and let M2 be a matrix over D of dimension m × k.
Then M1 � M2 is a matrix over D of dimension n + m × k.

One can prove the following propositions:

(27) Given i, and let M1 be a matrix over D of dimension n × k, and
let M2 be a matrix over D of dimension m × k. If i ∈ dom M1, then
Line(M1 � M2, i) = Line(M1, i).

(28) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = widthM2, then width(M1 �
M2) = widthM1 and width(M1 � M2) = widthM2.

(29) Given i, n, and let M1 be a matrix over D of dimension t × k, and
let M2 be a matrix over D of dimension m × k. If n ∈ dom M2 and
i = len M1 + n, then Line(M1 � M2, i) = Line(M2, n).
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(30) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = width M2, then for every i

such that i ∈ Seg widthM1 holds (M1 � M2) � ,i = ((M1) � ,i) � ((M2) � ,i).

(31) Let M1 be a matrix over the carrier of V1 of dimension n × k and
let M2 be a matrix over the carrier of V1 of dimension m × k. Then
∑

(M1 � M2) = (
∑

M1) � ∑
M2.

(32) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = widthM2, then (M1 � M2)

T =
(M1

T) ⌢ M2
T.

(33) For all matrices M1, M2 over the carrier of V1 holds (the addition of
V1)

◦(
∑

M1,
∑

M2) =
∑

(M1
⌢ M2).

Let D be a non empty set, let F be a binary operation on D, and let P1,
P2 be finite sequences of elements of D. Then F ◦(P1, P2) is a finite sequence of
elements of D.

Next we state several propositions:

(34) Let P1, P2 be finite sequences of elements of the carrier of V1. If len P1 =
len P2, then

∑
((the addition of V1)

◦(P1, P2)) =
∑

P1 +
∑

P2.

(35) For all matrices M1, M2 over the carrier of V1 such that len M1 = len M2

holds
∑ ∑

M1 +
∑ ∑

M2 =
∑ ∑

(M1
⌢ M2).

(36) For every finite sequence P of elements of the carrier of V1 holds
∑ ∑

〈P 〉 =
∑ ∑

(〈P 〉T).

(37) For every n and for every matrix M over the carrier of V1 such that
len M = n holds

∑ ∑
M =

∑ ∑
(MT).

(38) Let M be a matrix over the carrier of K of dimension n × m. Suppose
n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of
K. Suppose len p = n and len d = m and for every j such that j ∈ dom d

holds πjd =
∑

(p • M � ,j). Let b, c be finite sequences of elements of the
carrier of V1. Suppose len b = m and len c = n and for every i such
that i ∈ dom c holds πic =

∑
lmlt(Line(M, i), b). Then

∑
lmlt(p, c) =

∑
lmlt(d, b).

4. Decomposition of a Vector in Basis

Let K be a field, let V be a finite dimensional vector space over K, let b1 be
an ordered basis of V , and let W be an element of the carrier of V . The functor
W → b1 yielding a finite sequence of elements of the carrier of K is defined by
the conditions (Def.9).

(Def.9) (i) len(W → b1) = len b1, and
(ii) there exists a linear combination K4 of V such that W =

∑
K4 and

supportK4 ⊆ rng b1 and for every k such that 1 ≤ k and k ≤ len(W → b1)
holds πk(W → b1) = K4(πkb1).
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The following four propositions are true:

(39) If v1 → b2 = v2 → b2, then v1 = v2.

(40) v =
∑

lmlt(v → b1, b1).

(41) If len d = len b1, then d =
∑

lmlt(d, b1) → b1.

(42) Let a be a finite sequence of elements of the carrier of K. Suppose
len a = len b2. Let j be a natural number. Suppose j ∈ dom b3. Let d be
a finite sequence of elements of the carrier of K. Suppose len d = len b2

and for every k such that k ∈ dom b2 holds d(k) = πj(g(πkb2) → b3). If
len b2 > 0 and len b3 > 0, then πj(

∑
lmlt(a, g · b2) → b3) =

∑
(a • d).

5. Associated Matrix of Linear Map

Let K be a field, let V1, V2 be finite dimensional vector spaces over K, let
f be a function from the carrier of V1 into the carrier of V2, let b1 be a finite
sequence of elements of the carrier of V1, and let b2 be an ordered basis of V2.
The functor AutMt(f, b1, b2) yielding a matrix over K is defined as follows:

(Def.10) len AutMt(f, b1, b2) = len b1 and for every k such that k ∈ dom b1 holds
πk AutMt(f, b1, b2) = f(πkb1) → b2.

One can prove the following propositions:

(43) If len b1 = 0, then AutMt(f, b1, b2) = ε.

(44) If len b1 > 0, then widthAutMt(f, b1, b2) = len b2.

(45) If f1 is linear and f2 is linear, then if AutMt(f1, b1, b2) =
AutMt(f2, b1, b2) and len b1 > 0, then f1 = f2.

(46) If f is linear and g is linear and len b1 > 0 and len b2 > 0 and len b3 > 0,
then AutMt(g · f, b1, b3) = AutMt(f, b1, b2) · AutMt(g, b2, b3).

(47) AutMt(f1 + f2, b1, b2) = AutMt(f1, b1, b2) + AutMt(f2, b1, b2).

(48) If a 6= 0K , then AutMt(a · f, b1, b2) = a · AutMt(f, b1, b2).
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