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The notation and terminology used in this paper are introduced in the following
articles: [13], [2), [11], [17], [18], [33], [21], [32], [3]. [34], [8], [9], [4]. [14], [15];

[35], [36], [23], [31], [16], [30], [26], [24], [12], [29], [19], [27], [1], [7]’7 [25]7 [6]: [10],
(5], [22], [28], and [20].

1. PRELIMINARIES

For simplicity we follow the rules: k, ¢, ¢, j, m, n are natural numbers, x is
arbitrary, A is a set, and D is a non empty set.
We now state two propositions:

(1)  For every finite sequence p of elements of D and for every i holds py; is
a finite sequence of elements of D.
(2)  For every i and for every finite sequence p holds rng(p;;) C rngp.

Let D be a non empty set. A matrix over D is a tabular finite sequence of
elements of D*.

Let K be a field. A matrix over K is a matrix over the carrier of K.

Let D be a non empty set, let us consider k, and let M be a matrix over D.
Then M), is a matrix over D.

Next we state four propositions:
(3)  For every finite sequence M of elements of D such that len M =n + 1
holds len(M;p+1) = n.
(4) Let M be a matrix over D of dimension n + 1 x m and let M; be a
matrix over D. Then if n > 0, then width M = width(M,,4+1) and if
M, = (M(n+ 1)), then width M = width M;.

For every matrix M over D of dimension n 4+ 1 x m holds M,41 is a
matrix over D of dimension n X m.
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(6) For every finite sequence M of elements of D such that len M =n + 1
holds M = (Mypennr) ™ (M (len M)).

Let us consider D and let P be a finite sequence of elements of D. Then (P)
is a matrix over D of dimension 1 x len P.

2. MORE ON FINITE SEQUENCE

One can prove the following propositions:
(7)  For every set A and for every finite sequence F holds (Sgm(F ~! A)) ~
Sgm(F ~! (rng '\ A)) is a permutation of dom F.
(8) Let F be a finite sequence and let A be a subset of rng F. Suppose
F' is one-to-one. Then there exists a permutation p of dom F' such that
(F—A)"~(F—A)=F-p.
A function is finite sequence yielding if:
(Def.1)  For every x such that x € domit holds it(x) is a finite sequence.
Let us observe that there exists a function which is finite sequence yielding.
Let F', G be finite sequence yielding functions. The functor F' — G yields a
finite sequence yielding function and is defined by the conditions (Def.2).
(Def.2) (i) dom(F ~ G) =dom FNdomG, and
(ii)  for arbitrary i such that ¢ € dom(F — G) and for all finite sequences
f, g such that f = F(i) and g = G(¢) holds (F ~ G)(i) = f " g.

3. MATRICES AND FINITE SEQUENCES IN VECTOR SPACE

For simplicity we adopt the following convention: K denotes a field, V' de-
notes a vector space over K, a denotes an element of the carrier of K, W denotes
an element of the carrier of V, K, Ko, K3 denote linear combinations of V,
and X denotes a subset of the carrier of V.

Next we state four propositions:

(9) If X is linearly independent and support K1 C X and support Ko C X

and ZKI = ZKQ, then Kl = KQ.

(10) If X is linearly independent and support K1 C X and support Ky C X
and support K3 C X and Y>> K1 =) Ko + Y K3, then K1 = Ko + Kj.

(11)  If X is linearly independent and support K; C X and support Ko C X
and a #0g and > K1 =a- Y Ky, then K1 =a- Ks.

(12)  For every basis by of V' there exists a linear combination K4 of V' such
that W = > K4 and support K4 C bs.

Let K be a field and let V' be a vector space over K. We say that V is finite
dimensional if and only if:

(Def.3)  There exists finite subset of the carrier of V' which is a basis of V.
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Let K be a field. Note that there exists a vector space over K which is strict
and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A
finite sequence of elements of the carrier of V is called an ordered basis of V' if:

(Def.4) Tt is one-to-one and rngit is a basis of V.

For simplicity we adopt the following convention: p will denote a finite se-
quence, M7 will denote a matrix over D of dimension n x m, My will denote
a matrix over D of dimension k x m, V7, Va, V3 will denote finite dimensional
vector spaces over K, f, f1, fo will denote maps from V7 into Vs, g will denote
a map from V5 into V3, b; will denote an ordered basis of Vi, by will denote an
ordered basis of V5, bg will denote an ordered basis of V3, b will denote a basis
of Vi, v1, vg will denote vectors of V5, v will denote an element of the carrier
of Vi, pa, F will denote finite sequences of elements of the carrier of V7, pq, d
will denote finite sequences of elements of the carrier of K, and K4 will denote
a linear combination of V7.

Let us consider K, let us consider Vi, V5, and let us consider fi, fo. The
functor f1 + fo yielding a map from V7 into V5 is defined as follows:

(Def.5)  For every element v of the carrier of V1 holds (f1+ f2)(v) = fi1(v)+ fa(v).

Let us consider K, let us consider V7, V3, let us consider f, and let a be an
element of the carrier of K. The functor a - f yielding a map from V; into Va is
defined as follows:

(Def.6)  For every element v of the carrier of V7 holds (a- f)(v) = a- f(v).
The following propositions are true:

(13)  Let a be an element of the carrier of Vi, and let F' be a finite sequence
of elements of the carrier of V7, and let G be a finite sequence of elements
of the carrier of K. Suppose len F' = len G and for every k and for every
element v of the carrier of K such that & € dom F' and v = G(k) holds
F(k)=v-a. Then > F =% G-a.

(14)  Let a be an element of the carrier of Vi, and let F' be a finite sequence
of elements of the carrier of K, and let G be a finite sequence of elements
of the carrier of V;. If len F' = len G and for every k such that k € dom F’
holds G(k) = 7 F - a, then > G =>_F - a.

(15)  If for every k such that k € dom F holds 7, F' = Oy, then >° F' = O(y,).

Let us consider K, let us consider Vi, and let us consider py, po. The functor
Imlt(p1, p2) yielding a finite sequence of elements of the carrier of V; is defined
as follows:

(Def.7)  lmlt(p1, p2) = (the left multiplication of V1)°(p1, p2).
Next we state the proposition

(16) If domp; = dompy, then domlmlt(p;,p2) = domp; and
dom Imlt(py, p2) = dom po.
Let us consider K, let us consider V7, and let M be a matrix over the carrier

of V1. The functor Y~ M yields a finite sequence of elements of the carrier of V;
and is defined as follows:
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(Def.8) lenY M = lenM and for every k such that & € dom ) M holds
>, M =3 Line(M, k).
The following propositions are true:
(17)  For every matrix M over the carrier of V; such that len M = 0 holds

222 M =0).
(18)  For every matrix M over the carrier of V; of dimension m+ 1 x 0 holds
Z Z M - 0(V1)‘

(19)  For every element z of the carrier of V holds ((z)) = ((z))T.

(20)  For every finite sequence p of elements of the carrier of V; such that f
is linear holds f(3>"p) = > (f - p).

(21)  Let a be a finite sequence of elements of the carrier of K and let p be
a finite sequence of elements of the carrier of V. If lenp = lena, then if
f is linear, then f - lmlt(a,p) = lmlt(a, f - p).

(22) Let a be a finite sequence of elements of the carrier of K. If lena =
len by, then if g is linear, then ¢(3" lmlt(a, b2)) = Y lmlt(a, g - b2).

(23) Let F, Fy be finite sequences of elements of the carrier of Vi, and let
K4 be a linear combination of V7, and let p be a permutation of dom F.
If 1 =F-p, then K4 I = (K4F) - P.

(24) If F is one-to-one and support K4 C rng F, then > (K4 F) = > Kjy.

(25) Let A be a set and let p be a finite sequence of elements of the carrier
of V1. Suppose rngp C A. Suppose fi is linear and f5 is linear and for
every v such that v € A holds f1(v) = fa(v). Then f1(3p) = f2(>°p).

(26)  If fi is linear and fs is linear, then for every ordered basis by of V; such
that len by > 0 holds if fy - b1 = fo - b1, then f1 = fo.

Let D be anon empty set. Observe that every matrix over D is finite sequence
yielding.

Let D be a non empty set and let F', G be matrices over D. Then F — G is
a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M7 be a matrix over
D of dimension n x k, and let My be a matrix over D of dimension m x k.
Then M ~ Ms is a matrix over D of dimension n +m x k.

One can prove the following propositions:

(27)  Given 4, and let M; be a matrix over D of dimension n x k, and
let My be a matrix over D of dimension m x k. If i € dom M7, then
Line(M; ~ My, i) = Line(Mj,1).

(28)  Let Mj be a matrix over D of dimension n x k and let My be a matrix
over D of dimension m x k. If width M; = width My, then width(M; ~
Mg) = width M1 and Wldth(Ml - Mg) = width Mg.

(29) Given i, n, and let M; be a matrix over D of dimension ¢ x k, and
let M5 be a matrix over D of dimension m x k. If n € dom My and
i = len My + n, then Line(M; ~ Ma, i) = Line(Ma, n).
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(30) Let Mj be a matrix over D of dimension n X k and let My be a matrix
over D of dimension m x k. If width M; = width M>, then for every i
such that i € Seg width M7 holds (M1 - MQ)\],Z‘ = ((Ml)[m') - ((MQ)DJ').

(31) Let M; be a matrix over the carrier of V; of dimension n x k and
let My be a matrix over the carrier of V7 of dimension m x k. Then
YoMy~ M) = (32 M) ™ 32 M.

(32) Let M; be a matrix over D of dimension n x k and let My be a matrix
over D of dimension m x k. If width M = width My, then (M;~ M)T =
(M)~ M,T.

(33)  For all matrices My, My over the carrier of V; holds (the addition of
V1)° (30 My, > M) = >2(My — Ma).

Let D be a non empty set, let F' be a binary operation on D, and let P,
P, be finite sequences of elements of D. Then F'°(P;, P») is a finite sequence of
elements of D.

Next we state several propositions:

(34) Let Py, P, be finite sequences of elements of the carrier of V;. Iflen P, =
len Py, then Y ((the addition of V1)°(Py, P»)) =Y. Pi + Y P.

(35)  For all matrices My, My over the carrier of V; such that len My = len M,
holds 33 My + 33 My = 5 (My — My).

(36) For every finite sequence P of elements of the carrier of V; holds
Y 3UP) = X ((P)T).

(37)  For every n and for every matrix M over the carrier of V; such that
len M =n holds .- M =SS (M™).

(38) Let M be a matrix over the carrier of K of dimension n x m. Suppose
n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of
K. Suppose lenp = n and lend = m and for every j such that j € domd
holds 7jd = Y_(p ® Mp ;). Let b, c be finite sequences of elements of the
carrier of V7. Suppose lenb = m and lenc = n and for every i such
that ¢ € dome holds mic = > Imlt(Line(M,),b). Then Y lmlt(p,c) =
> Imlt(d, b).

4. DECOMPOSITION OF A VECTOR IN BASIS

Let K be a field, let V be a finite dimensional vector space over K, let b1 be
an ordered basis of V', and let W be an element of the carrier of V. The functor
W — by yielding a finite sequence of elements of the carrier of K is defined by
the conditions (Def.9).

(Def.9) (i) len(W — b1) = lenby, and
(ii)  there exists a linear combination K4 of V such that W = " K, and
support K4 C rng by and for every k such that 1 < k and k < len(W — by)

holds 7 (W — b1) = K4(mb1).
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The following four propositions are true:
(39) If v1 — by = v9 — by, then v1 = vs.
(40) v = 1mlt(v — by,by).
(41) Iflend = lenby, then d = 3 lmlt(d, by) — b;.
(42) Let a be a finite sequence of elements of the carrier of K. Suppose
lena = len by. Let j be a natural number. Suppose j € dombs. Let d be
a finite sequence of elements of the carrier of K. Suppose lend = len b
and for every k such that k& € dombs holds d(k) = m;(g(mib2) — b3). If
lenby > 0 and lenbs > 0, then 7;(3° Imlt(a, g - ba) — b3) = > (a e d).

5. ASSOCIATED MATRIX OF LINEAR MAP

Let K be a field, let V1, V5 be finite dimensional vector spaces over K, let
f be a function from the carrier of V7 into the carrier of V5, let b1 be a finite
sequence of elements of the carrier of V7, and let by be an ordered basis of V5.
The functor AutMt(f, by, b2) yielding a matrix over K is defined as follows:

(Def.10)  len AutMt(f, b1, bs) = lenb; and for every k such that k¥ € domb; holds

Tk AutMt(f, by, bg) = f(ﬂ'kbl) — bo.
One can prove the following propositions:
(43) If lenby =0, then AutMt(f,by,b9) = €.
(44)  If lenb; > 0, then width AutMt(f, by, ba) = len bs.

(45) If f1 is linear and f, is linear, then if AutMt(fy,b1,b2) =
AutMt(fa,b1,b2) and lenby > 0, then f1 = fo.

(46)  If f is linear and ¢ is linear and lenb; > 0 and len by > 0 and lenbs > 0,
then AutMt(g - f,b1,b3) = AutMt(f, b1, ba) - AutMt(g, b2, bs).

(47)  AutMt(f1 + fa,b1,b2) = AutMt(f1,b1,b2) + AutMt(fo, by, ba).
(48) If a # Ok, then AutMt(a - f,b1,b2) = a - AutMt(f, by, be).
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