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Summary. The concepts of root tree, the set of successors of a
node in decorated tree and sets of subtrees are introduced.

MML Identifier: TREES 9.

The notation and terminology used here are introduced in the following papers:
[16], [17], [15], [3], [18], [12], [13], [9], [14], [11], [7], [2], [1], [4], [6], [8], [5], and
[10].

1. Root Tree and Successors of Node in Decorated Tree

One can check that every tree which is finite is also finite-order.
The following propositions are true:

(1) For every decorated tree t holds t
�
ε 
 = t.

(2) For every tree t and for all finite sequences p, q of elements of � such
that p � q ∈ t holds t

�
(p � q) = t

�
p

�
q.

(3) Let t be a decorated tree and let p, q be finite sequences of elements of
� . If p � q ∈ dom t, then t

�
(p � q) = t

�
p

�
q.

A decorated tree is root if:

(Def.1) dom it = the elementary tree of 0.

Let us note that every decorated tree which is root is also finite.
The following three propositions are true:

(4) For every decorated tree t holds t is root iff ε ∈ Leaves(dom t).

(5) For every tree t and for every element p of t holds t
�
p = the elementary

tree of 0 iff p ∈ Leaves(t).

1This article has been worked out during the visit of the author in Nagano in Summer 1994.
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(6) For every decorated tree t and for every node p of t holds t
�
p is root

iff p ∈ Leaves(dom t).

Let us mention that there exists a decorated tree which is root and there
exists a decorated tree which is finite and non root.

Let x be a set. Note that the root tree of x is finite and root.
A tree is finite-branching if:

(Def.2) For every element x of it holds succ x is finite.

Let us mention that every tree which is finite-order is also finite-branching.
Let us note that there exists a tree which is finite.
A decorated tree is finite-order if:

(Def.3) dom it is finite-order.

A decorated tree is finite-branching if:

(Def.4) dom it is finite-branching.

One can check that every decorated tree which is finite is also finite-order
and every decorated tree which is finite-order is also finite-branching.

Let us observe that there exists a decorated tree which is finite.
Let t be a finite-order decorated tree. One can verify that dom t is finite-

order.
Let t be a finite-branching decorated tree. Note that dom t is finite-branching.
Let t be a finite-branching tree and let p be an element of t. Note that succ p

is finite.
The scheme FinOrdSet concerns a unary functor F yielding a set and a finite

set A, and states that:
For every natural number n holds F(n) ∈ A iff n < cardA

provided the parameters have the following properties:
• For every set x such that x ∈ A there exists a natural number n

such that x = F(n),
• For all natural numbers i, j such that i < j and F(j) ∈ A holds

F(i) ∈ A,
• For all natural numbers i, j such that F(i) = F(j) holds i = j.
Let X be a set. One can verify that there exists a finite sequence of elements

of X which is one-to-one and empty.
The following proposition is true

(7) Let t be a finite-branching tree, and let p be an element of t, and let n
be a natural number. Then p � 〈n〉 ∈ succ p if and only if n < card succ p.

Let t be a finite-branching tree and let p be an element of t. The functor
Succ p yielding an one-to-one finite sequence of elements of t is defined by:

(Def.5) len Succ p = card succ p and rng Succ p = succ p and for every natural
number i such that i < len Succ p holds (Succ p)(i + 1) = p � 〈i〉.

Let t be a finite-branching decorated tree and let p be a finite sequence. Let
us assume that p ∈ dom t. The functor succ(t, p) yielding a finite sequence is
defined by:
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(Def.6) There exists an element q of dom t such that q = p and succ(t, p) =
t · Succ q.

One can prove the following two propositions:

(8) Let t be a finite-branching decorated tree. Then there exists a set
x and there exists a decorated tree yielding finite sequence p such that
t = x-tree(p).

(9) For every finite decorated tree t and for every node p of t holds t
�
p is

finite.

Let t be a finite decorated tree and let p be a node of t. Observe that t
�
p

is finite.
The following proposition is true

(10) For every finite tree t and for every element p of t such that t = t
�
p

holds p = ε.

Let D be a non empty set and let S be a non empty subset of FinTrees(D).
One can verify that every element of S is finite.

2. Set of Subtrees of Decorated Tree

Let t be a decorated tree. The functor Subtrees(t) yielding a constituted of
decorated trees non empty set is defined by:

(Def.7) Subtrees(t) = {t
�
p : p ranges over nodes of t}.

Let D be a non empty set and let t be a tree decorated with elements of D.
Then Subtrees(t) is a non empty subset of Trees(D).

Let D be a non empty set and let t be a finite tree decorated with elements
of D. Then Subtrees(t) is a non empty subset of FinTrees(D).

Let t be a finite decorated tree. One can verify that every element of
Subtrees(t) is finite.

In the sequel x denotes a set and t, t1, t2 denote decorated trees.
One can prove the following propositions:

(11) x ∈ Subtrees(t) iff there exists a node n of t such that x = t
�
n.

(12) t ∈ Subtrees(t).

(13) If t1 is finite and Subtrees(t1) = Subtrees(t2), then t1 = t2.

(14) For every node n of t holds Subtrees(t
�
n) ⊆ Subtrees(t).

Let t be a decorated tree. The functor FixedSubtrees(t) yields a non empty
subset of [: dom t, Subtrees(t) :] and is defined as follows:

(Def.8) FixedSubtrees(t) = {〈〈p, t
�
p〉〉 : p ranges over nodes of t}.

Next we state three propositions:

(15) x ∈ FixedSubtrees(t) iff there exists a node n of t such that x = 〈〈n,
t

�
n〉〉.

(16) 〈〈ε, t〉〉 ∈ FixedSubtrees(t).

(17) If FixedSubtrees(t1) = FixedSubtrees(t2), then t1 = t2.
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Let t be a decorated tree and let C be a set. The functor C -Subtrees(t)
yielding a subset of Subtrees(t) is defined as follows:

(Def.9) C -Subtrees(t) = {t
�
p : p ranges over nodes of t, p /∈ Leaves(dom t) ∨

t(p) ∈ C}.

In the sequel C denotes a set.
We now state two propositions:

(18) x ∈ C -Subtrees(t) iff there exists a node n of t such that x = t
�
n but

n /∈ Leaves(dom t) or t(n) ∈ C.

(19) C -Subtrees(t) is empty iff t is root and t(ε) /∈ C.

Let t be a finite decorated tree and let C be a set. The functor C-Immedia-
teSubtrees(t) yields a function from C -Subtrees(t) into (Subtrees(t))∗ and is
defined by the condition (Def.10).

(Def.10) Let d be a decorated tree. Suppose d ∈ C -Subtrees(t). Let p be a finite
sequence of elements of Subtrees(t). If p = (C -ImmediateSubtrees(t))(d),
then d = d(ε)-tree(p).

3. Set of Subtrees of Set of Decorated Tree

Let X be a constituted of decorated trees non empty set. The functor
Subtrees(X) yielding a constituted of decorated trees non empty set is defined
by:

(Def.11) Subtrees(X) = {t
�
p : t ranges over elements of X, p ranges over nodes

of t}.

Let D be a non empty set and let X be a non empty subset of Trees(D).
Then Subtrees(X) is a non empty subset of Trees(D).

Let D be a non empty set and let X be a non empty subset of FinTrees(D).
Then Subtrees(X) is a non empty subset of FinTrees(D).

In the sequel X, Y will be non empty constituted of decorated trees sets.
We now state three propositions:

(20) x ∈ Subtrees(X) iff there exists an element t of X and there exists a
node n of t such that x = t

�
n.

(21) If t ∈ X, then t ∈ Subtrees(X).

(22) If X ⊆ Y, then Subtrees(X) ⊆ Subtrees(Y ).

Let t be a decorated tree. Observe that {t} is non empty and constituted of
decorated trees.

Next we state two propositions:

(23) Subtrees({t}) = Subtrees(t).

(24) Subtrees(X) =
⋃
{Subtrees(t) : t ranges over elements of X}.

Let X be a constituted of decorated trees non empty set and let C be a set.
The functor C -Subtrees(X) yields a subset of Subtrees(X) and is defined as
follows:
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(Def.12) C -Subtrees(X) = {t
�
p : t ranges over elements of X, p ranges over

nodes of t, p /∈ Leaves(dom t) ∨ t(p) ∈ C}.

We now state four propositions:

(25) x ∈ C -Subtrees(X) iff there exists an element t of X and there exists
a node n of t such that x = t

�
n but n /∈ Leaves(dom t) or t(n) ∈ C.

(26) C -Subtrees(X) is empty iff for every element t of X holds t is root and
t(ε) /∈ C.

(27) C -Subtrees({t}) = C -Subtrees(t).

(28) C -Subtrees(X) =
⋃
{C -Subtrees(t) : t ranges over elements of X}.

Let X be a non empty constituted of decorated trees set. Let us assume that
every element of X is finite. Let C be a set. The functor C -ImmediateSubtrees(X)
yields a function from C -Subtrees(X) into (Subtrees(X))∗ and is defined by the
condition (Def.13).

(Def.13) Let d be a decorated tree. Suppose d ∈ C -Subtrees(X). Let
p be a finite sequence of elements of Subtrees(X). If p =
(C -ImmediateSubtrees(X))(d), then d = d(ε)-tree(p).

Let t be a tree. Observe that there exists an element of t which is empty.
We now state four propositions:

(29) For every finite decorated tree t and for every element p of dom t holds
len succ(t, p) = len Succp and dom succ(t, p) = dom Succ p.

(30) For every finite tree yielding finite sequence p and for every empty

element n of
︷︸︸︷
p holds card succn = len p.

(31) Let t be a finite decorated tree, and let x be a set, and let p be a
decorated tree yielding finite sequence. Suppose t = x-tree(p). Let n be
an empty element of dom t. Then succ(t, n) = the roots of p.

(32) For every finite decorated tree t and for every node p of t and for every
node q of t

�
p holds succ(t, p � q) = succ(t

�
p, q).
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[13] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[14] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Zinaida Trybulec and Halina Świe
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