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The papers [22], [26], [21], [25], [13], [1], [14], [27], [4], [5], [2], [23], [3], [10], [24],
[19], [15], [18], [7], [9], [8], [20], [11], [12], [17], [16], and [6] provide the notation
and terminology for this paper.

1. Segments in E2
T

For simplicity we adopt the following convention: P , P1, P2 will be subsets
of the carrier of E2

T, f , f1, f2, g will be finite sequences of elements of E 2
T, p, p1,

p2, q, q1, q2 will be points of E2
T, r1, r2, r′1, r′2 will be real numbers, and i, j, k,

n will be natural numbers.
Next we state a number of propositions:

(1) If [r1, r2] = [r′1, r
′
2], then r1 = r′1 and r2 = r′2.

(2) If i + j = len f, then L(f, i) = L(Rev(f), j).

(3) If i + 1 ≤ len(f
�
n), then L(f

�
n, i) = L(f, i).

(4) If n ≤ len f and 1 ≤ i, then L(f 
 n , i) = L(f, n + i).

(5) If 1 ≤ i and i + 1 ≤ len f − n, then L(f 
 n , i) = L(f, n + i).

(6) If i + 1 ≤ len f, then L(f � g, i) = L(f, i).

(7) If 1 ≤ i, then L(f � g, len f + i) = L(g, i).

(8) If f is non empty and g is non empty, then L(f � g, len f) =
L(πlen ff, π1g).

(9) If i + 1 ≤ len(f −: p), then L(f −: p, i) = L(f, i).

(10) If p ∈ rng f and 1 ≤ i + 1, then L(f :− p, i + 1) = L(f, i + p � f).

(11) L̃(ε(the carrier of E2

T
)) = ∅.

(12) L̃(〈p〉) = ∅.
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(13) If p ∈ L̃(f), then there exists i such that 1 ≤ i and i + 1 ≤ len f and
p ∈ L(f, i).

(14) If p ∈ L̃(f), then there exists i such that 1 ≤ i and i + 1 ≤ len f and
p ∈ L(πif, πi+1f).

(15) If 1 ≤ i and i + 1 ≤ len f and p ∈ L(πif, πi+1f), then p ∈ L̃(f).

(16) If 1 ≤ i and i + 1 ≤ len f, then L(πif, πi+1f) ⊆ L̃(f).

(17) If p ∈ L(f, i), then p ∈ L̃(f).

(18) If len f ≥ 2, then rng f ⊆ L̃(f).

(19) If f is non empty, then L̃(f � 〈p〉) = L̃(f) ∪ L(πlen ff, p).

(20) If f is non empty, then L̃(〈p〉 � f) = L(p, π1f) ∪ L̃(f).

(21) L̃(〈p, q〉) = L(p, q).

(22) L̃(f) = L̃(Rev(f)).

(23) If f1 is non empty and f2 is non empty, then L̃(f1 � f2) = L̃(f1) ∪

L(πlen f1
f1, π1f2) ∪ L̃(f2).

(25)1 If q ∈ rng f, then L̃(f) = L̃(f −: q) ∪ L̃(f :− q).

(26) If p ∈ L(f, n), then L̃(f) = L̃(Ins(f, n, p)).

2. Special Sequences in E2
T

One can verify the following observations:

∗ there exists a finite sequence of elements of E 2
T

∗ every finite sequence of elements of E 2
T is one-to-one unfolded s.n.c.

special and non trivial,

∗ every finite sequence of elements of E 2
T which is one-to-one unfolded

s.n.c. special and non trivial has and

∗ every finite sequence of elements of E 2
T is non empty.

Let us note that there exists a finite sequence of elements of E 2
T which is

one-to-one unfolded s.n.c. special and non trivial.
We now state the proposition

(27) If len f ≤ 2, then f is unfolded.

Let f be an unfolded finite sequence of elements of E 2
T and let us consider n.

Note that f
�
n is unfolded and f 
 n is unfolded.

One can prove the following proposition

(28) If p ∈ rng f and f is unfolded, then f :− p is unfolded.

Let f be an unfolded finite sequence of elements of E 2
T and let us consider p.

Observe that f −: p is unfolded.
Next we state several propositions:

1The proposition (24) has been removed.
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(29) If f is unfolded, then Rev(f) is unfolded.

(30) If g is unfolded and L(p, π1g)∩L(g, 1) = {π1g}, then 〈p〉 � g is unfolded.

(31) If f is unfolded and k +1 = len f and L(f, k)∩L(πlen ff, p) = {πlen ff},
then f � 〈p〉 is unfolded.

(32) Suppose f is unfolded and g is unfolded and k +1 = len f and L(f, k)∩
L(πlen ff, π1g) = {πlen ff} and L(πlen ff, π1g) ∩ L(g, 1) = {π1g}. Then
f � g is unfolded.

(33) If f is unfolded and p ∈ L(f, n), then Ins(f, n, p) is unfolded.

(34) If len f ≤ 2, then f is s.n.c..

Let f be a s.n.c. finite sequence of elements of E 2
T and let us consider n.

Observe that f
�
n is s.n.c. and f 
 n is s.n.c..

Let f be a s.n.c. finite sequence of elements of E 2
T and let us consider p. Note

that f −: p is s.n.c..
We now state four propositions:

(35) If p ∈ rng f and f is s.n.c., then f :− p is s.n.c..

(36) If f is s.n.c., then Rev(f) is s.n.c..

(37) Suppose that
(i) f is s.n.c.,
(ii) g is s.n.c.,

(iii) L̃(f) ∩ L̃(g) = ∅,
(iv) for every i such that 1 ≤ i and i + 2 ≤ len f holds L(f, i) ∩

L(πlen ff, π1g) = ∅, and
(v) for every i such that 2 ≤ i and i + 1 ≤ len g holds L(g, i) ∩

L(πlen ff, π1g) = ∅.
Then f � g is s.n.c..

(38) If f is unfolded and s.n.c. and p ∈ L(f, n) and p /∈ rng f, then Ins(f, n, p)
is s.n.c..

Let us observe that ε(the carrier of E2

T
) is special.

Next we state two propositions:

(39) 〈p〉 is special.

(40) If p1 = q1 or p2 = q2, then 〈p, q〉 is special.

Let f be a special finite sequence of elements of E 2
T and let us consider n.

Note that f
�
n is special and f 
 n is special.

We now state the proposition

(41) If p ∈ rng f and f is special, then f :− p is special.

Let f be a special finite sequence of elements of E 2
T and let us consider p.

Observe that f −: p is special.
The following four propositions are true:

(42) If f is special, then Rev(f) is special.

(44)2 If f is special and p ∈ L(f, n), then Ins(f, n, p) is special.

2The proposition (43) has been removed.
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(45) If q ∈ rng f and 1 6= q � f and q � f 6= len f and f is unfolded and

s.n.c., then L̃(f −: q) ∩ L̃(f :− q) = {q}.

(46) If p 6= q and if p1 = q1 or p2 = q2, then 〈p, q〉

a S-sequence in � 2 is a finite sequence of elements of E2
T.

The following propositions are true:

(47) For every S-sequence f in � 2 holds Rev(f)

(48) For every S-sequence f in � 2 such that i ∈ dom f holds πif ∈ L̃(f).

(49) If p 6= q and if p1 = q1 or p2 = q2, then L(p, q)

(50) For every S-sequence f in � 2 such that p ∈ rng f and p � f 6= 1 holds
f −: p

(51) For every S-sequence f in � 2 such that p ∈ rng f and p � f 6= len f
holds f :− p

(52) For every S-sequence f in � 2 such that p ∈ L(f, i) and p /∈ rng f holds
Ins(f, i, p)

3. Special Polygons in E2
T

Let us mention that there exists a subset of the carrier of E 2
T and every subset

of the carrier of E2
T is non empty.

The following proposition is true

(53) If P is a special polygonal arc joining p1 and p2, then P is a special
polygonal arc joining p2 and p1.

Let us consider p1, p2, P . We say that p1 and p2 split P if and only if the
conditions (Def.1) are satisfied.

(Def.1) (i) p1 6= p2, and
(ii) there exist S-sequences f1, f2 in � 2 such that p1 = π1f1 and p1 = π1f2

and p2 = πlen f1
f1 and p2 = πlen f2

f2 and L̃(f1) ∩ L̃(f2) = {p1, p2} and

P = L̃(f1) ∪ L̃(f2).

We now state four propositions:

(54) If p1 and p2 split P , then p2 and p1 split P .

(55) If p1 and p2 split P and q ∈ P and q 6= p1, then p1 and q split P .

(56) If p1 and p2 split P and q ∈ P and q 6= p2, then q and p2 split P .

(57) If p1 and p2 split P and q1 ∈ P and q2 ∈ P and q1 6= q2, then q1 and q2

split P .

Let us observe that a subset of the carrier of E 2
T is special polygon if:

(Def.2) There exist p1, p2 such that p1 and p2 split it.

We introduce special polygonal as a synonym of special polygon.
Let us consider r1, r2, r′1, r′2. The functor [.r1, r2, r

′
1, r

′
2.] yields a subset of

the carrier of E2
T and is defined by the condition (Def.3).
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(Def.3) [.r1, r2, r
′
1, r

′
2.] = {p : p1 = r1 ∧ p2 ≤ r′2 ∧ p2 ≥ r′1 ∨ p1 ≤ r2 ∧ p1 ≥ r1 ∧

p2 = r′2 ∨ p1 ≤ r2 ∧ p1 ≥ r1 ∧ p2 = r′1 ∨ p1 = r2 ∧ p2 ≤ r′2 ∧ p2 ≥ r′1}.

One can prove the following propositions:

(58) If r1 < r2 and r′1 < r′2, then [.r1, r2, r
′
1, r

′
2.] = L([r1, r

′
1], [r1, r

′
2]) ∪ L([r1,

r′2], [r2, r
′
2]) ∪ (L([r2, r

′
2], [r2, r

′
1]) ∪ L([r2, r

′
1], [r1, r

′
1])).

(59) If r1 < r2 and r′1 < r′2, then [.r1, r2, r
′
1, r

′
2.] is special polygonal.

(60) � E2 = [.0, 1, 0, 1.].

(61) � E2 is special polygonal.

One can verify the following observations:

∗ there exists a subset of the carrier of E 2
T which is special polygonal,

∗ every subset of the carrier of E2
T which is special polygonal is also non

empty, and

∗ every subset of the carrier of E2
T which is special polygonal is also non

trivial.

A special polygon in � 2 is a special polygonal subset of the carrier of E 2
T.

We now state four propositions:

(62) If P is then P is compact.

(63) Every special polygon in � 2 is compact.

(64) If P is special polygonal, then for all p1, p2 such that p1 6= p2 and
p1 ∈ P and p2 ∈ P holds p1 and p2 split P .

(65) Suppose P is special polygonal. Given p1, p2. Suppose p1 6= p2 and
p1 ∈ P and p2 ∈ P. Then there exist P1, P2 such that

(i) P1 is a special polygonal arc joining p1 and p2,
(ii) P2 is a special polygonal arc joining p1 and p2,
(iii) P1 ∩ P2 = {p1, p2}, and
(iv) P = P1 ∪ P2.
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