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The papers [22], [26], [21], [25], [13], [1], [14], [27], [4], [5], [2], [23], [3], [10], [24],
[19], [15], [18], [7], [9], [8], [20], [11], [12], [17], [16], and [6] provide the notation
and terminology for this paper.

1. SEGMENTS IN £%

For simplicity we adopt the following convention: P, Pi, P, will be subsets
of the carrier of 5%, fs f1, f2, g will be finite sequences of elements of E%, D, P1,
P2, q, q1, g2 will be points of 5%, r1, T2, 74, 5 will be real numbers, and i, j, k,
n will be natural numbers.

Next we state a number of propositions:

(1) If [ry, 7o) = [}, r%)], then r =} and ro =714,

(2) Ifi+j=lenf, then L(f,i) = L(Rev(f),]).

(3) Ifi+1<len(fn),then L(f | n,i)=L(f,17).

(4) Ifn<lenf and 1 <4, then L(fn,7) = L(f,n+1).

(5) Ifl1<iandi+1<lenf —mn, then L(f,,i) = L(f,n+1).

(6) Ifi+1<lenf, then L(f "~ g,i) = L(f,1).

(7) If1<i, then L(f ~g,len f+1i) = L(g,1).

(8) If f is non empty and ¢ is non empty, then L(f ~ g,lenf) =

L(ﬂ'lonffy 7['19)’

(9) Ifi+1<len(f —:p), then L(f —:p,i) = L(f,7).
(10) Ifpermgfandl<i+1,then L(f:—p,i+1)=L(f,i+p<rf).
(11) ﬁ(g(thc carrier of 8%)) = 0.
(12) Z((p) =0.
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(13)  If p € L(f), then there exists i such that 1 < i and i + 1 < len f and
p € L(f, ZZ
(14) If p € L(f), then there exists ¢ such that 1 < i and ¢ +1 < len f and
p € L(mif, miv1f). R
Ifl<iandi+1<lenf and p € L(m;f,mit1f), then p € L(f).
If 1 <iandi+1<lenf, then L(m;f,mit1f) C L(f).
If p € L(f, i), then p € L(f).
If len f > 2, then rng f C ./E(f)
If f is non empty, then L£(f "~ (p))
If f is non empty, then £({(p) ~ f)
L((p,q)) = L(p,q)-
L(f) = LRev(f)). ) )
If f1 is non empty and fo is non empty, then L£(f1 = f2) = L(f1) U
L(mien g, f1,m1f2) U L(f2).

(25) If g e rng f, then L(f) = L(f —: q) UL(f :— q).
(26) If pe L(f,n), then E( ) = (Ins(f ,D)).

= = = =
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L£(f) U L(mien 1,p)-
L(p,m f)UL(S).
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2. SPECIAL SEQUENCES IN £%

One can verify the following observations:
%  there exists a finite sequence of elements of 5%
* every finite sequence of elements of £2 is one-to-one unfolded s.n.c.
special and non trivial,
* every finite sequence of elements of £% which is one-to-one unfolded
s.n.c. special and non trivial has and
*  every finite sequence of elements of £3 is non empty.
Let us note that there exists a finite sequence of elements of £% which is
one-to-one unfolded s.n.c. special and non trivial.
We now state the proposition
(27) Iflen f <2, then f is unfolded.
Let f be an unfolded finite sequence of elements of £% and let us consider n.
Note that f [ n is unfolded and f|,, is unfolded.
One can prove the following proposition
(28) If p€rngf and f is unfolded, then f:— p is unfolded.
Let f be an unfolded finite sequence of elements of 5% and let us consider p.
Observe that f —: p is unfolded.
Next we state several propositions:

!The proposition (24) has been removed.
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(29) If f is unfolded, then Rev(f) is unfolded.
(30)  If g is unfolded and L(p,m19) N L(g,1) = {m1g}, then (p) ~ g is unfolded.
(31) If f is unfolded and k+1 = len f and L(f, k)N L(Tien £ f,0) = {Mien £f},
then f = (p) is unfolded.
(32)  Suppose f is unfolded and g is unfolded and k+1 = len f and L(f, k)N
L(mMentfim9) = {Menysf} and L(Men rf,m19) N L(g,1) = {m1g}. Then
f ™ g is unfolded.
(33) If f is unfolded and p € L(f,n), then Ins(f,n,p) is unfolded.
(34) Iflen f <2, then f is s.n.c..
Let f be a s.n.c. finite sequence of elements of £2 and let us consider n.
Observe that f [ n is s.n.c. and f},, is s.n.c..
Let f be a s.n.c. finite sequence of elements of 5% and let us consider p. Note
that f —:pis s.n.c..
We now state four propositions:
(35) Ifp€rngf and f is s.n.c., then f:— pis s.n.c..
(36) If fis s.n.c., then Rev(f) is s.n.c..
(37)  Suppose that
(i) fissmnc.,
(i) gissmn.c,
(i) L(f)NL(g) =0,
(iv)  for every i such that 1 < 7 and ¢ + 2 < lenf holds L(f,i) N
E(ﬂ'lonffy 7rlg) = @, and
(v)  for every ¢ such that 2 < ¢ and ¢ + 1
E(T"Ion ff7 7['19) = 0.
Then f ™ g is s.n.c..
(38) If f is unfolded and s.n.c. and p € L(f,n) and p ¢ rng f, then Ins(f, n,p)

is s.n.c..

IN

leng holds L(g,i) N

Let us observe that € caprier of £2) 18 special.
Next we state two propositions:
(39)  (p) is special.
(40)  If p; = g1 or p2 = g2, then (p,q) is special.
Let f be a special finite sequence of elements of 5% and let us consider n.
Note that f [ n is special and f|, is special.
We now state the proposition
(41) If p e rng f and f is special, then f :— p is special.
Let f be a special finite sequence of elements of 5% and let us consider p.
Observe that f —: p is special.
The following four propositions are true:
(42)  If f is special, then Rev(f) is special.
(44)% If f is special and p € L(f,n), then Ins(f,n,p) is special.

2The proposition (43) has been removed.
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(45) Ifgerngfandl+#q« fandgq« f#lenf and f is unfolded and
s.a.c., then L(f —q¢)NL(f :—q) = {q}.
(46) If p # g and if p1 = g1 or p2 = g2, then (p,q)
a S-sequence in R? is a finite sequence of elements of 5%.
The following propositions are true:

47)  For every S-sequence f in R? holds Rev(f)

(

(48)  For every S-sequence f in R? such that i € dom f holds 7;f € Z( f).

(49) Ifp# q and if p1 = g1 or p2 = g2, then L(p,q)

(50)  For every S-sequence f in R? such that p € rng f and p «f f # 1 holds
f—p

(51)  For every S-sequence f in R? such that p € rng f and p < f # len f
holds f:—p

(52)  For every S-sequence f in R? such that p € £(f,i) and p ¢ rng f holds
Ins(f,1,p)

3. SPECIAL POLYGONS IN &2

Let us mention that there exists a subset of the carrier of £2 and every subset
of the carrier of £2 is non empty.
The following proposition is true
(53) If P is a special polygonal arc joining p; and pe, then P is a special
polygonal arc joining ps and p;.
Let us consider py, pa, P. We say that p; and py split P if and only if the
conditions (Def.1) are satisfied.
(Def.1) (i) p1 # pe, and
(ii)  there exist S-sequences f1, f2 in R? such Ehat p1=m f1and p1 = w1 fo
and py = Men s, /1 and py = Tien f, fo and L(f1) N L(f2) = {p1,p2} and
P =L(fi)VL(f2)

We now state four propositions:

(54)  If p; and po split P, then py and p; split P.

(55)  If p; and py split P and g € P and g # p1, then p; and ¢ split P.

(56)  If p; and po split P and g € P and q # p2, then ¢ and py split P.

(57) If p; and pg split P and ¢; € P and ¢ € P and q1 # g2, then ¢ and ¢

split P.
Let us observe that a subset of the carrier of £2 is special polygon if:
(Def.2)  There exist p1, p2 such that p; and py split it.

We introduce special polygonal as a synonym of special polygon.
Let us consider r1, 7o, 7}, 75. The functor [.ri,r2,7],75.] yields a subset of
the carrier of £2 and is defined by the condition (Def.3).
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(Def.3) [.1”1,7’2,7‘&,7’5.] = {p ipr=riAp2 < Té ANp2 > Tll Vpr <raApr >ri A
p2 =1y Vp1 <12 Apr>r1 Apa =11 Vpr=ryApz <1y Apz >l
One can prove the following propositions:
(68)  If r; <7 and r] < rh, then [.ry,ro, 7, 75.] = L([r1, 7], [r1,5]) U L([r1,
Té]’ [7“2, Té]) U (E([T% T‘é], [7“2, T‘i]) U ‘C([T27 Tll]v [7‘1, Tll]))
(59)  If r; < rg and 7} < 7, then [.rq, 79,71, 75.] is special polygonal.
(60) Og2 =1[.0,1,0,1.].
(61) Og2 is special polygonal.
One can verify the following observations:
*  there exists a subset of the carrier of 5% which is special polygonal,
*  every subset of the carrier of £2 which is special polygonal is also non
empty, and
*  every subset of the carrier of £% which is special polygonal is also non
trivial.

A special polygon in R? is a special polygonal subset of the carrier of £3.
We now state four propositions:

(62) If P is then P is compact.

(63)  Every special polygon in R? is compact.

(64) If P is special polygonal, then for all p;, ps such that p; # py and
p1 € P and po € P holds p; and po split P.

(65) Suppose P is special polygonal. Given pj, pa. Suppose p; # p2 and
p1 € P and py € P. Then there exist P, P, such that

) P is a special polygonal arc joining p; and po,

) Py is a special polygonal arc joining p; and po,

(iii) PNk = {pl,pg}, and

) P=P UP,.
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