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Summary. In the first part of this article I have proved theorems
about boolean of many sorted sets which are corresponded to theorems
about boolean of sets, whereas the second part of this article contains
propositions about union of many sorted sets. Boolean as well as union
of many sorted sets are defined as boolean and union on every sorts.
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The terminology and notation used here are introduced in the following articles:
[11], [12], [13], [2], [3], [5], [9], [4], [1], [10], [7], [6], and [8].

1. Boolean of Many Sorted Sets

We follow a convention: I will denote a set, A, B, X, Y will denote many
sorted sets indexed by I, and x, y will be arbitrary.

Let us consider I, A. The functor 2A yielding a many sorted set indexed by
I is defined as follows:

(Def.1) For arbitrary i such that i ∈ I holds 2A(i) = 2A(i).

Let us consider I, A. Note that 2A is non-empty.
One can prove the following propositions:

(1) X = 2Y iff for every A holds A ∈ X iff A ⊆ Y.

(2) 2∅I = I 7−→ {∅}.

(3) 2I 7−→x = I 7−→ 2x.

(4) 2I 7−→{x} = I 7−→ {∅, {x}}.
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(5) ∅I ∈ 2A.

(6) If A ⊆ B, then 2A ⊆ 2B .

(7) 2A ∪ 2B ⊆ 2A∪B .

(8) If 2A∪2B = 2A∪B , then for arbitrary i such that i ∈ I holds A(i) ⊆ B(i)
or B(i) ⊆ A(i).

(9) 2A∩B = 2A ∩ 2B .

(10) 2A\B ⊆ (I 7−→ {∅}) ∪ (2A \ 2B).

(11) X ∈ 2A\B iff X ⊆ A and X misses B.

(12) 2A\B ∪ 2B\A ⊆ 2A−. B .

(13) X ∈ 2A−. B iff X ⊆ A ∪ B and X misses A ∩ B.

(14) If X ∈ 2A and Y ∈ 2A, then X ∪ Y ∈ 2A.

(15) If X ∈ 2A or Y ∈ 2A, then X ∩ Y ∈ 2A.

(16) If X ∈ 2A, then X \ Y ∈ 2A.

(17) If X ∈ 2A and Y ∈ 2A, then X−. Y ∈ 2A.

(18) [[X,Y ]] ⊆ 22X∪Y

.

(19) X ⊆ A iff X ∈ 2A.

(20) MSFuncs(A,B) ⊆ 2[[A,B]].

2. Union of Many Sorted Sets

Let us consider I, A. The functor
⋃

A yields a many sorted set indexed by
I and is defined as follows:

(Def.2) For arbitrary i such that i ∈ I holds (
⋃

A)(i) =
⋃

A(i).

Let us consider I. Observe that
⋃

(∅I) is empty yielding.
We now state a number of propositions:

(21) A ∈
⋃

X iff there exists Y such that A ∈ Y and Y ∈ X.

(22)
⋃

(∅I) = ∅I .

(23)
⋃

(I 7−→ x) = I 7−→
⋃

x.

(24)
⋃

(I 7−→ {x}) = I 7−→ x.

(25)
⋃

(I 7−→ {{x}, {y}}) = I 7−→ {x, y}.

(26) If X ∈ A, then X ⊆
⋃

A.

(27) If A ⊆ B, then
⋃

A ⊆
⋃

B.

(28)
⋃

(A ∪ B) =
⋃

A ∪
⋃

B.

(29)
⋃

(A ∩ B) ⊆
⋃

A ∩
⋃

B.

(30)
⋃

(2A) = A.

(31) A ⊆ 2
⋃

A.

(32) If
⋃

Y ⊆ A and X ∈ Y, then X ⊆ A.
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(33) Let Z be a many sorted set indexed by I and let A be a non-empty
many sorted set indexed by I. Suppose that for every many sorted set X

indexed by I such that X ∈ A holds X ⊆ Z. Then
⋃

A ⊆ Z.

(34) Let B be a many sorted set indexed by I and let A be a non-empty
many sorted set indexed by I. Suppose that for every many sorted set X

indexed by I such that X ∈ A holds X ∩ B = ∅I . Then
⋃

A ∩ B = ∅I .

(35) Let A, B be many sorted sets indexed by I. Suppose A ∪ B is non-
empty. Suppose that for all many sorted sets X, Y indexed by I such
that X 6= Y and X ∈ A ∪ B and Y ∈ A ∪ B holds X ∩ Y = ∅I . Then
⋃

(A ∩ B) =
⋃

A ∩
⋃

B.

(36) Let A, X be many sorted sets indexed by I and let B be a non-empty
many sorted set indexed by I. Suppose X ⊆

⋃
(A ∪ B) and for every

many sorted set Y indexed by I such that Y ∈ B holds Y ∩X = ∅I . Then
X ⊆

⋃
A.

(37) Let A be a locally-finite non-empty many sorted set indexed by I. Sup-
pose that for all many sorted sets X, Y indexed by I such that X ∈ A

and Y ∈ A holds X ⊆ Y or Y ⊆ X. Then
⋃

A ∈ A.
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