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Summary. The aim of the paper is to define some basic notions
of restrictions of finite sequences.

MML Identifier: FINSEQ_5.

The notation and terminology used in this paper are introduced in the following
1[32]1per81 [12], [15], [11], [14], [9], [2], [16}, [5], [6], 3], [13], [1], [4], [7], [10], and
8].
In this paper ¢, j, k, k1, k2, n are natural numbers.
The following propositions are true:
(1) If i <n,then (n —1i)+ 1 is a natural number.
(2) If i€ Segn, then (n —i) + 1 € Segn.
(3)  For every function f and for arbitrary z, y such that f ~! {y} = {z}
holds = € dom f and y € rng f and f(x) = y.
(4)  For every function f holds f is one-to-one iff for arbitrary x such that
x € dom f holds f ~' {f(x)} = {z}.
(5) For every function f and for arbitrary yi, y2 such that f is one-to-one
and y; € rng f and yo € tng f and £~ {y1} = f ~! {y2} holds y; = vo.
Let x be arbitrary. Note that (x) is non empty.
Let us note that every set which is empty is also trivial.
Let x be arbitrary. Note that (x) is trivial. Let y be arbitrary. Observe that
(x,y) is non trivial.
One can verify that there exists a finite sequence which is one-to-one and
non empty.
Next we state three propositions:
(6) For every non empty finite sequence f holds 1 € dom f and len f €
dom f.
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(7)  For every non empty finite sequence f there exists ¢ such that i +1 =
len f.
(8)  For arbitrary = and for every finite sequence f holds len({z) =~ f) =
1+ len f.
The scheme domSeqLambda concerns a natural number 4 and a unary functor
F yielding arbitrary, and states that:
There exists a finite sequence p such that lenp = A and for every
k such that k& € dom p holds p(k) = F(k)
for all values of the parameters.
We now state four propositions:
(9) For every set X such that X C Segn and 1 < i and i < j and j <
len Sgm X and k; = (Sgm X)(7) and k2 = (Sgm X)(j) holds ky < k.
(10)  For every finite sequence f and for arbitrary p, ¢ such that p € rng f
and g€erg fand p«r f =q «P f holds p=gq.
(11)  For all finite sequences f, g such that n+ 1 € dom f and g = f | Segn
holds f I Seg(n+1) =g~ (f(n+1)).
(12)  For every one-to-one finite sequence f such that i € dom f holds f(i) «p
f=1
We adopt the following rules: D is a non empty set, p, ¢ are elements of D,
and f, g are finite sequences of elements of D.
Let us consider D. One can verify that there exists a finite sequence of
elements of D which is one-to-one and non empty.
One can prove the following propositions:
(13) If dom f = domg and for every ¢ such that i € dom f holds 7; f = m;g,
then f =g.
(14) If len f = leng and for every k such that 1 < k and k < len f holds
mf = mrg, then f = g.
) Iflenf =1, then f = (mf).
) m(p) " f)=p
18)Y len(f [ i) <len f.
) len(f ) <.
)  dom(f i) C dom f.
21) mg(f 1) C g f.
Let us consider D, f. Observe that f | 0 is empty.
Next we state three propositions:
(22) Iflenf <i,then f]i=f.
(23) If fis non empty, then f | 1= (mf).
(24) Ifi+1=lenf, then f=(f14)" (Mentf)-
Let us consider ¢, D and let f be an one-to-one finite sequence of elements
of D. One can verify that f | i is one-to-one.

!The proposition (17) has been removed.
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The following propositions are true:
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Let us consider 7, D and let f be an one-to-one finite sequence of elements

If i <len f, then (f ~g)li=f11.
(f~g)llenf = f.

If perngf, then (f —p)~(p)=flpf.
len(f};) <len f.

If i € dom(f}n,), then n+ i € dom f.

If i € dom(f},), then m; f, = m4if.
fio=f.

If f is non empty, then f = (w1 f) ~ (f1).
If i +1=len f, then f; = (Men ¢ f)-

If j+1=1and i€ dom f, then (m;f) ~ (fii) = fi;-
If len f <4, then f|; is empty.

g (fin) C g .

of D. Note that f|; is one-to-one.
The following propositions are true:
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Let us consider D, f and let p be arbitrary. The functor f —: p yielding a

If f is one-to-one, then rng(f | n) misses rng(f,).
If pcrngf, then f —p= fl,ef.

(f - g)Llenf—H' =91i-

(f " Dpens =9

If p € tng f, then 7y ¢ f = p.

If i € dom f, then (m;f) < f <.
Ifperng(fli),thenper (f1i)=p«r f.

If i € dom f and f is one-to-one, then (m;f) «f f = i.

finite sequence of elements of D is defined as follows:

(Def.1)

f—p=flpe [

One can prove the following propositions:
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Let us consider D, p and let f be an one-to-one finite sequence of elements

If p € rng f, then len(f —:p) = p «r f.

If p€rng f and i € Seg(p «f f), then 7;(f —: p) = m; f.
If p € rng f, then 71 (f —: p) = 71 f.

If p € rng f, then mpor(f —:p) = p.

Ifgemgfandp ermgfand g« f <p <P f, then q € rng(f —: p).

If p € rng f, then f —: p is non empty.
rng(f —:p) C g f.

of D. Observe that f —: p is one-to-one.
Let us consider D, f, p. The functor f :— p yielding a finite sequence of
elements of D is defined by:

(Def.2)

fi=p={p" (flpepf)'
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We now state three propositions:
(52) If p € rng f, then there exists i such that i+1 =p « f and f:—p = f;.
(53) Ifperngf, thenlen(f:—p)=(lenf—p«r f)+1.
(54) Ifpermgfand j+ 1€ dom(f:—p), then j+p«r f € dom f.
Let us consider D, p, f. One can check that f:— p is non empty.
Next we state several propositions:
55) Ifperngfand j+1 € dom(f:—p), then mj11(f:—p) = Tjipesf
56) m(f:—p)=p.
If p € rng f, then Ten(f:—p) (f:=p)= 7Tlenff'
5 If p € rng f, then rng(f :— p) C rng f.
59) If p € rng f and f is one-to-one, then f:— p is one-to-one.
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Let f be a finite sequence. The functor Rev(f) yielding a finite sequence is
defined by:

(Def.3)  lenRev(f) = len f and for every i such that ¢ € domRev(f) holds

(Rev(f))(@) = f((en f — i) + 1).
One can prove the following propositions:

(60)  For every finite sequence f holds dom f = domRev(f) and g f =

rng Rev(f).

(61)  For every finite sequence f such that i € dom f holds (Rev(f))(i) =

f((len f —d) +1).

(62)  For every finite sequence f and for all natural numbers 4, j such that

i €dom f and i+ j =len f + 1 holds j € dom Rev(f).
Let f be an empty finite sequence. Observe that Rev(f) is empty.
Next we state three propositions:

(63)  For arbitrary x holds Rev({x)) = (z).

(64)  For arbitrary x1, o holds Rev({x1,x2)) = (x2, x1).

(65)  For every non empty finite sequence f holds f(1) = (Rev(f))(len f) and

f(en f) = (Rev(f))(1).
Let f be an one-to-one finite sequence. Note that Rev(f) is one-to-one.
The following two propositions are true:
(66) For every finite sequence f and for arbitrary x holds Rev(f = (z)) =
(x) ~ Rev(f).

(67)  For all finite sequences f, g holds Rev(f ~ g) = (Rev(g)) ~ Rev(f).
Let us consider D, f. Then Rev(f) is a finite sequence of elements of D.
We now state two propositions:

(68) If f is non empty, then m1 f = men  Rev(f) and men ¢ f = 71 Rev(f).

(69) Ifiedomf and i+ j=Ien f+ 1, then m;f = m; Rev(f).

Let us consider D, f, p, n. The functor Ins(f,n,p) yielding a finite sequence
of elements of D is defined as follows:

(Defd)  Ins(f,n,p) = (f 7)™ (p) ™ (fin)-
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One can prove the following propositions:

(70)
(71)
(72)
(73)

Ins(f,0,p) = (p) "~ f-
If len f < n, then Ins(f,n,p) = f ~ (p).
lenIns(f,n,p) =len f + 1.

rng Ins(f,n,p) = {p} Urng f.

Let us consider D, f, n, p. Observe that Ins(f,n,p) is non empty.
The following propositions are true:
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p € rngIns(f,n,p).

If i € dom(f | n), then 7; Ins(f,n,p) = m; f.

If n <len f, then 7,41 Ins(f,n,p) = p.

If n+1<iandi<lenf, then w11 Ins(f,n,p) = m f.

If 1 <n and f is non empty, then w1 Ins(f,n,p) = 71 f.

If f is one-to-one and p ¢ rng f, then Ins(f,n,p) is one-to-one.
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