On the Group of Automorphisms of Universal Algebra & Many Sorted Algebra

Artur Korniłowicz Warsaw University Białystok

Summary. The aim of the article is to check the compatibility of the automorphisms of universal algebras introduced in [8] and the corresponding concept for many sorted algebras introduced in [9].

MML Identifier: AUTALG_1.

The notation and terminology used in this paper have been introduced in the following articles: [2], [17], [20], [21], [5], [6], [4], [14], [16], [11], [13], [18], [19], [1], [10], [3], [8], [12], [15], [9], and [7].

1. On the Group of Automorphisms of Universal Algebra

In this paper U_1 denotes a universal algebra and f, g denote functions from U_1 into U_1 .

One can prove the following proposition

(1) $id_{\text{(the carrier of }U_1)}$ is an isomorphism of U_1 and U_1 .

Let us consider U_1 . The functor UAAut(U_1) yields a non empty set of functions from the carrier of U_1 to the carrier of U_1 and is defined by the conditions (Def.1).

- (Def.1) (i) Every element of $UAAut(U_1)$ is a function from U_1 into U_1 , and
 - (ii) for every function h from U_1 into U_1 holds $h \in UAAut(U_1)$ iff h is an isomorphism of U_1 and U_1 .

Next we state several propositions:

(2) UAAut $(U_1) \subseteq (\text{the carrier of } U_1)^{\text{the carrier of } U_1}$.

- (3) For every f holds $f \in UAAut(U_1)$ iff f is an isomorphism of U_1 and U_1 .
- (4) $\operatorname{id}_{(\operatorname{the carrier of } U_1)} \in \operatorname{UAAut}(U_1).$
- (5) For all f, g such that f is an element of $UAAut(U_1)$ and $g = f^{-1}$ holds g is an isomorphism of U_1 and U_1 .
- (6) For every element f of $UAAut(U_1)$ holds $f^{-1} \in UAAut(U_1)$.
- (7) For all elements f_1 , f_2 of $UAAut(U_1)$ holds $f_1 \cdot f_2 \in UAAut(U_1)$.

Let us consider U_1 . The functor UAAutComp(U_1) yields a binary operation on UAAut(U_1) and is defined as follows:

(Def.2) For all elements x, y of UAAut (U_1) holds (UAAutComp (U_1)) $(x, y) = y \cdot x$.

Let us consider U_1 . The functor UAAutGroup (U_1) yielding a group is defined by:

- (Def.3) $UAAutGroup(U_1) = \langle UAAut(U_1), UAAutComp(U_1) \rangle.$
 - Let us consider U_1 . Note that UAAutGroup(U_1) is strict.

The following propositions are true:

- (8) Let x, y be elements of the carrier of UAAutGroup (U_1) and let f, g be elements of UAAut (U_1) . If x = f and y = g, then $x \cdot y = g \cdot f$.
- (9) $id_{\text{(the carrier of } U_1)} = 1_{\text{UAAutGroup}(U_1)}.$
- (10) For every element f of $UAAut(U_1)$ and for every element g of the carrier of $UAAutGroup(U_1)$ such that f = g holds $f^{-1} = g^{-1}$.

2. Some Properties of Many Sorted Functions

In the sequel I is a set and A, B, C are many sorted sets indexed by I. Let us consider I, A, B. We say that A is transformable to B if and only if: (Def.4) For arbitrary i such that $i \in I$ holds if $B(i) = \emptyset$, then $A(i) = \emptyset$.

Let us observe that the predicate introduced above is reflexive.

Next we state several propositions:

- (11) If A is transformable to B and B is transformable to C, then A is transformable to C.
- (12) For arbitrary x and for every many sorted set A indexed by $\{x\}$ holds $A = \{x\} \longmapsto A(x)$.
- (13) For all function yielding functions F, G, H holds $(H \circ G) \circ F = H \circ (G \circ F)$.
- (14) Let A, B be non-empty many sorted sets indexed by I and let F be a many sorted function from A into B. If F is "1-1" and "onto", then F^{-1} is "1-1" and "onto".
- (15) Let A, B be non-empty many sorted sets indexed by I and let F be a many sorted function from A into B. If F is "1-1" and "onto", then $(F^{-1})^{-1} = F$.

- (16) For all function yielding functions F, G such that F is "1-1" and G is "1-1" holds $G \circ F$ is "1-1".
- (17) Let B, C be non-empty many sorted sets indexed by I, and let F be a many sorted function from A into B, and let G be a many sorted function from B into C. If F is "onto" and G is "onto", then $G \circ F$ is "onto".
- (18) Let A, B, C be non-empty many sorted sets indexed by I, and let F be a many sorted function from A into B, and let G be a many sorted function from B into C. Suppose F is "1-1" and "onto" and G is "1-1" and "onto". Then $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$.
- (19) Let A, B be non-empty many sorted sets indexed by I, and let F be a many sorted function from A into B, and let G be a many sorted function from B into A. If F is "1-1" and "onto" and $G \circ F = \mathrm{id}_A$, then $G = F^{-1}$.
 - 3. On the Group of Automorphisms of Many Sorted Algebra

In the sequel S will be a non void non empty many sorted signature and U_2 , U_3 will be non-empty algebras over S.

Let us consider I, A, B. The functor MSFuncs(A, B) yields a many sorted set indexed by I and is defined as follows:

- (Def.5) For arbitrary i such that $i \in I$ holds $(MSFuncs(A, B))(i) = B(i)^{A(i)}$. One can prove the following propositions:
 - (20) Let h be a many sorted set indexed by I. If h = MSFuncs(A, B), then for arbitrary i such that $i \in I$ holds $h(i) = B(i)^{A(i)}$.
 - (21) Let A, B be many sorted sets indexed by I. Suppose A is transformable to B. Let x be arbitrary. If $x \in \prod \mathrm{MSFuncs}(A, B)$, then x is a many sorted function from A into B.
 - (22) Let A, B be many sorted sets indexed by I. Suppose A is transformable to B. Let g be a many sorted function from A into B. Then $g \in \prod MSFuncs(A, B)$.
 - (23) For all many sorted sets A, B indexed by I such that A is transformable to B holds MSFuncs(A, B) is non-empty.

Let us consider I, A, B. Let us assume that A is transformable to B. A non empty set is said to be a set of manysorted functions from A into B if:

(Def.6) For arbitrary x such that $x \in \text{it holds } x$ is a many sorted function from A into B.

Let us consider I, A. Note that MSFuncs(A, A) is non-empty.

Let us consider S, U_2 , U_3 . A set of many sorted functions from U_2 into U_3 is a set of many sorted functions from the sorts of U_2 into the sorts of U_3 .

Let I be a set and let D be a many sorted set indexed by I. Note that there exists a set of many sorted functions from D into D which is non empty.

We now state four propositions:

- (24) id_A is "onto".
- (25) $id_A is "1-1".$
- (26) $id_{\text{(the sorts of } U_2)}$ is an isomorphism of U_2 and U_2 .
- (27) $id_{\text{(the sorts of } U_2)} \in \prod MSFuncs(\text{the sorts of } U_2, \text{ the sorts of } U_2).$

Let us consider S, U_2 . The functor $MSAAut(U_2)$ yielding a set of manysorted functions from the sorts of U_2 into the sorts of U_2 is defined by the conditions (Def.7).

- (Def.7) (i) Every element of $MSAAut(U_2)$ is a many sorted function from U_2 into U_2 , and
 - (ii) for every many sorted function h from U_2 into U_2 holds $h \in MSAAut(U_2)$ iff h is an isomorphism of U_2 and U_2 .

One can prove the following propositions:

- (28) For every many sorted function F from U_2 into U_2 holds $F \in MSAAut(U_2)$ iff F is an isomorphism of U_2 and U_2 .
- (29) For every element f of MSAAut (U_2) holds $f \in \prod$ MSFuncs(the sorts of U_2 , the sorts of U_2).
- (30) MSAAut $(U_2) \subseteq \prod$ MSFuncs(the sorts of U_2 , the sorts of U_2).
- (31) $\operatorname{id}_{\text{(the sorts of } U_2)} \in \operatorname{MSAAut}(U_2).$
- (32) For every element f of $MSAAut(U_2)$ holds $f^{-1} \in MSAAut(U_2)$.
- (33) For all elements f_1 , f_2 of MSAAut (U_2) holds $f_1 \circ f_2 \in MSAAut(U_2)$.
- (34) For every many sorted function F from $MSAlg(U_1)$ into $MSAlg(U_1)$ and for every element f of $UAAut(U_1)$ such that $F = \{0\} \mapsto f$ holds $F \in MSAAut(MSAlg(U_1))$.

Let us consider S, U_2 . The functor MSAAutComp(U_2) yields a binary operation on MSAAut(U_2) and is defined as follows:

(Def.8) For all elements x, y of MSAAut (U_2) holds (MSAAutComp (U_2)) $(x, y) = y \circ x$.

Let us consider S, U_2 . The functor MSAAutGroup(U_2) yields a group and is defined by:

- (Def.9) $MSAAutGroup(U_2) = \langle MSAAut(U_2), MSAAutComp(U_2) \rangle.$
 - Let us consider S, U_2 . Observe that MSAAutGroup(U_2) is strict.

The following three propositions are true:

- (35) Let x, y be elements of the carrier of MSAAutGroup (U_2) and let f, g be elements of MSAAut (U_2) . If x = f and y = g, then $x \cdot y = g \circ f$.
- (36) $\operatorname{id}_{\text{(the sorts of } U_2)} = 1_{MSAAutGroup(U_2)}.$
- (37) For every element f of MSAAut (U_2) and for every element g of MSAAutGroup (U_2) such that f = g holds $f^{-1} = g^{-1}$.

4. On the Relationship of Automorphisms of 1-sorted and Many Sorted Algebras

Next we state several propositions:

- (38) Let U_4 , U_5 be universal algebras. Suppose U_4 and U_5 are similar. Let F be a many sorted function from $MSAlg(U_4)$ into $(MSAlg(U_5) \text{ over } MSSign(U_4))$. Then F(0) is a function from U_4 into U_5 .
- (39) For every element f of $UAAut(U_1)$ holds $\{0\} \mapsto f$ is a many sorted function from $MSAlg(U_1)$ into $MSAlg(U_1)$.
- (40) Let h be a function. Suppose dom $h = \text{UAAut}(U_1)$ and for arbitrary x such that $x \in \text{UAAut}(U_1)$ holds $h(x) = \{0\} \longmapsto x$. Then h is a homomorphism from UAAutGroup (U_1) to MSAAutGroup(MSAlg (U_1)).
- (41) Let h be a homomorphism from UAAutGroup (U_1) to MSAAutGroup $(MSAlg(U_1))$. Suppose that for arbitrary x such that $x \in UAAut(U_1)$ holds $h(x) = \{0\} \longmapsto x$. Then h is an isomorphism.
- (42) UAAutGroup(U_1) and MSAAutGroup(MSAlg(U_1)) are isomorphic.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [3] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Adam Grabowski. The correspondence between homomorphisms of universal algebra & many sorted algebra. Formalized Mathematics, 5(2):211–214, 1996.
- [8] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Formalized Mathematics, 4(1):109–113, 1993.
- [9] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [10] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
- [11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [12] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [15] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [16] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- [18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.

- [19] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
- [20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received December 13, 1994