Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$

Agnieszka Sakowicz
Warsaw University
Białystok
Jarosław Gryko
Warsaw University
Białystok
Adam Grabowski
Warsaw University
Białystok

MML Identifier: TOPRNS_1.

The papers [12], [3], [4], [11], [8], [10], [1], [2], [5], [6], [9], and [7] provide the notation and terminology for this paper.

For simplicity we adopt the following rules: f denotes a function, N, n, m denote natural numbers, q, r, r_{1}, r_{2} denote real numbers, x is arbitrary, and w, w_{1}, w_{2}, g denote points of $\mathcal{E}_{\mathrm{T}}^{N}$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is a function from \mathbb{N} into the carrier of $\mathcal{E}_{\mathrm{T}}^{N}$.

In the sequel $s_{1}, s_{2}, s_{3}, s_{4}, s_{1}^{\prime}$ are sequences in $\mathcal{E}_{\mathrm{T}}^{N}$.
Next we state two propositions:
(1) $\quad f$ is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ if and only if $\operatorname{dom} f=\mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds $f(x)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
(2) $\quad f$ is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ iff $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
Let us consider N, s_{1}, n. Then $s_{1}(n)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is non-zero if:
(Def.1) rng it \subseteq (the carrier of $\mathcal{E}_{\mathrm{T}}^{N}$) $\backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{N}}\right\}$.
We now state several propositions:
(3) s_{1} is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_{1}(x) \neq 0_{\mathcal{E}_{T}^{N}}$.
(4) $\quad s_{1}$ is non-zero iff for every n holds $s_{1}(n) \neq 0_{\mathcal{E}_{\mathrm{T}}^{N}}$.
(5) For all N, s_{1}, s_{2} such that for every x such that $x \in \mathbb{N}$ holds $s_{1}(x)=$ $s_{2}(x)$ holds $s_{1}=s_{2}$.
(6) For all N, s_{1}, s_{2} such that for every n holds $s_{1}(n)=s_{2}(n)$ holds $s_{1}=s_{2}$.
(7) For every point w of $\mathcal{E}_{\mathrm{T}}^{N}$ there exists s_{1} such that rng $s_{1}=\{w\}$.

The scheme ExTopRealNSeq deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a point of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$, and states that:

There exists a sequence s_{1} in $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ such that for every n holds $s_{1}(n)=$ $\mathcal{F}(n)$
for all values of the parameters.
Let us consider N, s_{2}, s_{3}. The functor $s_{2}+s_{3}$ yielding a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is defined by:
(Def.2) For every n holds $\left(s_{2}+s_{3}\right)(n)=s_{2}(n)+s_{3}(n)$.
Let us consider r, N, s_{1}. The functor $r \cdot s_{1}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.3) For every n holds $\left(r \cdot s_{1}\right)(n)=r \cdot s_{1}(n)$.
Let us consider N, s_{1}. The functor $-s_{1}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined as follows:
(Def.4) For every n holds $\left(-s_{1}\right)(n)=-s_{1}(n)$.
Let us consider N, s_{2}, s_{3}. The functor $s_{2}-s_{3}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.5) $s_{2}-s_{3}=s_{2}+-s_{3}$.
Let us consider N and let x be a point of $\mathcal{E}_{\mathrm{T}}^{N}$. The functor $|x|$ yields a real number and is defined by:
(Def.6) There exists a finite sequence y of elements of \mathbb{R} such that $x=y$ and $|x|=|y|$.
Let us consider N, s_{1}. The functor $\left|s_{1}\right|$ yielding a sequence of real numbers is defined by:
(Def.7) For every n holds $\left|s_{1}\right|(n)=\left|s_{1}(n)\right|$.
We now state a number of propositions:
(8) $|r| \cdot|w|=|r \cdot w|$.
(9) $\left|r \cdot s_{1}\right|=|r|\left|s_{1}\right|$.
(10) $s_{2}+s_{3}=s_{3}+s_{2}$.
(11) $\left(s_{2}+s_{3}\right)+s_{4}=s_{2}+\left(s_{3}+s_{4}\right)$.
(12) $-s_{1}=(-1) \cdot s_{1}$.
(13) $r \cdot\left(s_{2}+s_{3}\right)=r \cdot s_{2}+r \cdot s_{3}$.
(14) $(r \cdot q) \cdot s_{1}=r \cdot\left(q \cdot s_{1}\right)$.
(15) $r \cdot\left(s_{2}-s_{3}\right)=r \cdot s_{2}-r \cdot s_{3}$.
(16) $s_{2}-\left(s_{3}+s_{4}\right)=s_{2}-s_{3}-s_{4}$.
(17) $1 \cdot s_{1}=s_{1}$.
(18) $\quad--s_{1}=s_{1}$.
(19) $s_{2}--s_{3}=s_{2}+s_{3}$.
(20) $s_{2}-\left(s_{3}-s_{4}\right)=\left(s_{2}-s_{3}\right)+s_{4}$.
(21) $s_{2}+\left(s_{3}-s_{4}\right)=\left(s_{2}+s_{3}\right)-s_{4}$.
(22) If $r \neq 0$ and s_{1} is non-zero, then $r \cdot s_{1}$ is non-zero.
(23) If s_{1} is non-zero, then $-s_{1}$ is non-zero.
(24) $\left|0_{\mathcal{E}_{\mathrm{T}}^{N}}\right|=0$.
(34) If $w_{1} \neq w_{2}$, then $\left|w_{1}-w_{2}\right|>0$.
(36) If $0 \leq\left|w_{1}\right|$ and $0 \leq r_{1}$ and $\left|w_{1}\right|<\left|w_{2}\right|$ and $r_{1}<r_{2}$, then $\left|w_{1}\right| \cdot r_{1}<$ $\left|w_{2}\right| \cdot r_{2}$.
(38) ${ }^{1} \quad-|w|<r$ and $r<|w|$ iff $|r|<|w|$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is bounded if:
(Def.8) There exists r such that for every n holds \mid it $(n) \mid<r$.
The following proposition is true
(39) For every n there exists r such that $0<r$ and for every m such that $m \leq n$ holds $\left|s_{1}(m)\right|<r$.
Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is convergent if:
(Def.9) There exists g such that for every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds \mid it $(m)-g \mid<r$.
Let us consider N, s_{1}. Let us assume that s_{1} is convergent. The functor $\lim s_{1}$ yields a point of $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.10) For every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds $\left|s_{1}(m)-\lim s_{1}\right|<r$.
The following propositions are true:
(40) Suppose s_{1} is convergent. Then $\lim s_{1}=g$ if and only if for every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds $\left|s_{1}(m)-g\right|<r$.
(41) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $s_{1}+s_{1}^{\prime}$ is convergent.
(42) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $\lim \left(s_{1}+s_{1}^{\prime}\right)=\lim s_{1}+$ $\lim s_{1}^{\prime}$.
(43) If s_{1} is convergent, then $r \cdot s_{1}$ is convergent.
(44) If s_{1} is convergent, then $\lim \left(r \cdot s_{1}\right)=r \cdot \lim s_{1}$.
(45) If s_{1} is convergent, then $-s_{1}$ is convergent.
(46) If s_{1} is convergent, then $\lim \left(-s_{1}\right)=-\lim s_{1}$.
(47) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $s_{1}-s_{1}^{\prime}$ is convergent.

[^0](48) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $\lim \left(s_{1}-s_{1}^{\prime}\right)=\lim s_{1}-$ $\lim s_{1}^{\prime}$.
$(50)^{2}$ If s_{1} is convergent, then s_{1} is bounded.
If s_{1} is convergent, then if $\lim s_{1} \neq 0_{\mathcal{E}_{\mathrm{T}}^{N}}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{\left|\lim s_{1}\right|}{2}<\left|s_{1}(m)\right|$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, $1(\mathbf{2}): 263-264,1990$.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received May 10, 1994

[^1]
[^0]: ${ }^{1}$ The proposition (37) has been removed.

[^1]: ${ }^{2}$ The proposition (49) has been removed.

