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The papers [7], [10], [9], [1], [2], [4], [3], [6], [5], and [8] provide the terminology
and notation for this paper.

The following two propositions are true:

(1) Let A, B be non empty sets and let R1, R2 be relations between A and
B. Suppose that for every element x of A and for every element y of B
holds 〈〈x, y〉〉 ∈ R1 iff 〈〈x, y〉〉 ∈ R2. Then R1 = R2.

(2) Let X, Y be non empty sets, and let f be a function from X into Y ,
and let A be a subset of X. Suppose that for all elements x1, x2 of X
such that x1 ∈ A and f(x1) = f(x2) holds x2 ∈ A. Then f −1 f◦A = A.

Let T , S be topological spaces. We say that T and S are homeomorphic if
and only if:

(Def.1) There exists map from T into S which is a homeomorphism.

Let T , S be topological spaces and let f be a map from T into S. We say
that f is open if and only if:

(Def.2) For every subset A of T such that A is open holds f ◦A is open.

Let T be a topological space. The functor Indiscernibility(T ) yielding an
equivalence relation of the carrier of T is defined by the condition (Def.3).

(Def.3) Let p, q be points of T . Then 〈〈p, q〉〉 ∈ Indiscernibility(T ) if and only if
for every subset A of T such that A is open holds p ∈ A iff q ∈ A.

Let T be a topological space. The functor T/ Indiscernibility T yields a non empty
partition of the carrier of T and is defined as follows:

(Def.4) T/ Indiscernibility T = Classes Indiscernibility(T ).

Let T be a topological space. The functor T0-reflex(T ) yields a topological
space and is defined as follows:

(Def.5) T0-reflex(T ) = the decomposition space of T/ Indiscernibility T .
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Let T be a topological space. The functor T0-map(T ) yielding a continuous
map from T into T0-reflex(T ) is defined as follows:

(Def.6) T0-map(T ) = the projection onto T/ Indiscernibility T .

One can prove the following propositions:

(3) For every topological space T and for every point p of T holds p ∈
(T0-map(T ))(p).

(4) For every topological space T holds domT0-map(T ) = the carrier of T
and rngT0-map(T ) ⊆ the carrier of T0-reflex(T ).

(5) Let T be a topological space. Then the carrier of T0-reflex(T ) =
T/ Indiscernibility T and the topology of T0-reflex(T ) = {A : A ranges over
subsets of T/ Indiscernibility T ,

⋃
A ∈ the topology of T}.

(6) For every topological space T and for every subset V of T0-reflex(T )
holds V is open iff

⋃
V ∈ the topology of T .

(7) Let T be a topological space and let C be arbitrary. Then C is a
point of T0-reflex(T ) if and only if there exists a point p of T such that
C = [p]Indiscernibility(T ).

(8) For every topological space T and for every point p of T holds
(T0-map(T ))(p) = [p]Indiscernibility(T ).

(9) For every topological space T and for all points p, q of T holds
(T0-map(T ))(q) = (T0-map(T ))(p) iff 〈〈q, p〉〉 ∈ Indiscernibility(T ).

(10) Let T be a topological space and let A be a subset of T . Suppose
A is open. Let p, q be points of T . If p ∈ A and (T0-map(T ))(p) =
(T0-map(T ))(q), then q ∈ A.

(11) Let T be a topological space and let A be a subset of T . Suppose A is
open. Let C be a subset of T . If C ∈ T/ Indiscernibility T and C meets A,
then C ⊆ A.

(12) For every topological space T holds T0-map(T ) is open.

A topological structure is discernible if it satisfies the condition (Def.7).

(Def.7) Let x, y be points of it. Suppose x 6= y. Then there exists a subset V
of it such that V is open but x ∈ V and y /∈ V or y ∈ V and x /∈ V.

Let us note that there exists a topological space which is discernible.

A T0-space is a discernible topological space.

One can prove the following propositions:

(13) For every topological space T holds T0-reflex(T ) is a T0-space.

(14) Let T , S be topological spaces. Given a map h from T0-reflex(S) into
T0-reflex(T ) such that h is a homeomorphism and T0-map(T ) and h ·
T0-map(S) are fiberwise equipotent. Then T and S are homeomorphic.

(15) Let T be a topological space, and let T0 be a T0-space, and let f be
a continuous map from T into T0, and let p, q be points of T . If 〈〈p,
q〉〉 ∈ Indiscernibility(T ), then f(p) = f(q).
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(16) Let T be a topological space, and let T0 be a T0-space, and let f be
a continuous map from T into T0, and let p be a point of T . Then
f◦([p]Indiscernibility(T )) = {f(p)}.

(17) Let T be a topological space, and let T0 be a T0-space, and let f be a
continuous map from T into T0. Then there exists a continuous map h
from T0-reflex(T ) into T0 such that f = h · T0-map(T ).
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