The Formalization of Simple Graphs

Yozo Toda
Information Processing Center
Chiba University

Summary. A graph is simple when

- it is non-directed,
- there is at most one edge between two vertices,
- there is no loop of length one.

A formalization of simple graphs is given from scratch. There is already an article [9], dealing with the similar subject. It is not used as a startingpoint, because [9] formalizes directed non-empty graphs. Given a set of vertices, edge is defined as an (unordered) pair of different two vertices and graph as a pair of a set of vertices and a set of edges.

The following concepts are introduced:

- simple graph structure,
- the set of all simple graphs,
- equality relation on graphs.
- the notion of degrees of vertices; the number of edges connected to, or the number of adjacent vertices,
- the notion of subgraphs,
- path, cycle,
- complete and bipartite complete graphs,

Theorems proved in this articles include:

- the set of simple graphs satisfies a certain minimality condition,
- equivalence between two notions of degrees.

MML Identifier: SGRAPH1.

The terminology and notation used in this paper have been introduced in the following articles: [13], [1], [4], [6], [7], [2], [3], [8], [5], [11], [10], and [12].

1. Preliminaries

Let m, n be natural numbers. The functor $[m, n]_{\mathbb{N}}$ yields a finite subset of \mathbb{N} and is defined by:
(Def.1) $\quad[m, n]_{N}=\{i: i$ ranges over natural numbers, $m \leq i \wedge i \leq n\}$.
The following propositions are true:
(1) For all natural numbers m, n holds $[m, n]_{N}=\{i: i$ ranges over natural numbers, $m \leq i \wedge i \leq n\}$.
(2) Let m, n be natural numbers and let e be arbitrary. Then $e \in[m, n]_{\mathrm{N}}$ if and only if there exists a natural number i such that $e=i$ and $m \leq i$ and $i \leq n$.
(3) For all natural numbers m, n, k holds $k \in[m, n]_{\mathrm{N}}$ iff $m \leq k$ and $k \leq n$.
(4) For every natural number n holds $[1, n]_{\mathrm{N}}=\operatorname{Seg} n$.
(5) For all natural numbers m, n such that $1 \leq m$ holds $[m, n]_{N} \subseteq \operatorname{Seg} n$.
(6) For all natural numbers k, m, n such that $k<m$ holds $\operatorname{Seg} k \cap[m, n]_{\mathrm{N}}=$ \emptyset.
(7) For all natural numbers m, n such that $n<m$ holds $[m, n]_{\mathrm{N}}=\emptyset$.

Let A, B be sets and let f be a function from A into B. We say that f is onto if and only if:
(Def.2) $\quad \operatorname{rng} f=B$.
Let A, B be sets and let f be a function from A into B. We say that f is bijective if and only if:
(Def.3) $\quad f$ is one-to-one and onto.
One can prove the following proposition
(8) For every finite set z holds card $z=2$ iff there exist arbitrary x, y such that $x \in z$ and $y \in z$ and $x \neq y$ and $z=\{x, y\}$.
Let A be a set. The functor TwoElementSets (A) yields a set and is defined by:
(Def.4) TwoElementSets $(A)=\left\{z: z\right.$ ranges over finite elements of $2^{A}, \operatorname{card} z=$ $2\}$.
The following propositions are true:
(9) For every set A and for arbitrary e holds $e \in \operatorname{TwoElementSets}(A)$ iff there exists a finite subset z of A such that $e=z$ and card $z=2$.
(10) Let A be a set and let e be arbitrary. Then $e \in \operatorname{TwoElementSets}(A)$ if and only if the following conditions are satisfied:
(i) e is a finite subset of A, and
(ii) there exist arbitrary x, y such that $x \in A$ and $y \in A$ and $x \neq y$ and $e=\{x, y\}$.
(11) For every set A holds TwoElementSets $(A) \subseteq 2^{A}$.
(12) For every set A and for arbitrary e_{1}, e_{2} such that $\left\{e_{1}, e_{2}\right\} \in$ TwoElementSets (A) holds $e_{1} \in A$ and $e_{2} \in A$ and $e_{1} \neq e_{2}$.
(13) TwoElementSets $(\emptyset)=\emptyset$.
(14) For all sets t, u such that $t \subseteq u$ holds TwoElementSets $(t) \subseteq$ TwoElementSets (u).
(15) For every finite set A holds TwoElementSets (A) is finite.
(16) For every non trivial set A holds TwoElementSets (A) is non empty.
(17) For arbitrary a holds TwoElementSets $(\{a\})=\emptyset$.

Let a be a set.
(Def.5) $\quad \phi(a)$ is an empty subset of TwoElementSets (a).
Let X be an empty set. Observe that every subset of X is empty.
In the sequel X will be a set.

2. Simple Graphis

We introduce simple graph structures which are systems
\langle SVertices, SEdges 〉,
where the SVertices constitute a set and the SEdges constitute a subset of TwoElementSets(the SVertices).

Let X be a set. The functor SimpleGraphs (X) yields a non empty set and is defined as follows:
(Def.6) $\operatorname{SimpleGraphs}(X)=\{\langle v, e\rangle: v$ ranges over finite subsets of X, e ranges over finite subsets of TwoElementSets $(v)\}$.
Next we state the proposition
$(19)^{1}\langle\emptyset, \phi(\emptyset)\rangle \in \operatorname{SimpleGraphs}(X)$.
Let X be a set. A strict simple graph structure is said to be a simple graph of X if:
(Def.7) It is an element of SimpleGraphs (X).
Next we state two propositions:
(20) $\operatorname{SimpleGraphs}(X)=\{\langle v, e\rangle: v$ ranges over finite subsets of X, e ranges over finite subsets of TwoElementSets $(v)\}$.
(21) Let g be arbitrary. Then $g \in \operatorname{SimpleGraphs}(X)$ if and only if there exists a finite subset v of X and there exists a finite subset e of TwoElementSets (v) such that $g=\langle v, e\rangle$.

[^0]
3. Equality Relation on Simple Graphs

One can prove the following propositions:
$(23)^{2}$ For every simple graph g of X holds the SVertices of $g \subseteq X$ and the SEdges of $g \subseteq$ TwoElementSets(the SVertices of g).
(24) For every simple graph g of X holds $g=\langle$ the SVertices of g, the SEdges of $g\rangle$.
(25) Let g be a simple graph of X and let e be arbitrary. Suppose $e \in$ the SEdges of g. Then there exist arbitrary v_{1}, v_{2} such that $v_{1} \in$ the SVertices of g and $v_{2} \in$ the SVertices of g and $v_{1} \neq v_{2}$ and $e=\left\{v_{1}, v_{2}\right\}$.
(26) Let g be a simple graph of X and let v_{1}, v_{2} be arbitrary. Suppose $\left\{v_{1}, v_{2}\right\} \in$ the SEdges of g. Then $v_{1} \in$ the SVertices of g and $v_{2} \in$ the SVertices of g and $v_{1} \neq v_{2}$.
(27) Let g be a simple graph of X. Then
(i) the SVertices of g is a finite subset of X, and
(ii) the SEdges of g is a finite subset of TwoElementSets(the SVertices of g).

Let us consider X and let G, G^{\prime} be simple graphs of X. We say that G is isomorphic to G^{\prime} if and only if the condition (Def.8) is satisfied.
(Def.8) There exists a function F_{1} from the SVertices of G into the SVertices of G^{\prime} such that
(i) F_{1} is bijective, and
(ii) for all elements v_{1}, v_{2} of the SVertices of G holds $\left\{v_{1}, v_{2}\right\} \in$ the SEdges of G iff $\left\{F_{1}\left(v_{1}\right), F_{1}\left(v_{2}\right)\right\} \in$ the SEdges of G.

4. Properties of Simple Graphs

The scheme IndSimpleGraphs0 concerns a set \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For arbitrary G such that $G \in \operatorname{SimpleGraphs}(\mathcal{A})$ holds $\mathcal{P}[G]$
provided the parameters satisfy the following conditions:

- $\mathcal{P}[\langle\emptyset, \phi(\emptyset)\rangle]$,
- Let g be a simple graph of \mathcal{A} and let v be arbitrary. Suppose $g \in \operatorname{SimpleGraphs}(\mathcal{A})$ and $\mathcal{P}[g]$ and $v \in \mathcal{A}$ and $v \notin$ the SVertices of g. Then $\mathcal{P}[\langle($ the SVertices of $g) \cup\{v\}, \phi(($ the SVertices of $g) \cup\{v\})\rangle]$,
- Let g be a simple graph of \mathcal{A} and let e be arbitrary. Suppose $\mathcal{P}[g]$ and $e \in$ TwoElementSets(the SVertices of g) and $e \notin$ the SEdges of g. Then there exists a subset s_{1} of TwoElementSets(the SVertices of g) such that $s_{1}=($ the SEdges of $g) \cup\{e\}$ and $\mathcal{P}[\langle$ the SVertices of $\left.\left.g, s_{1}\right\rangle\right]$.

[^1]We now state three propositions:
(28) Let g be a simple graph of X. Then $g=\langle\emptyset, \phi(\emptyset)\rangle$ or there exists a set v and there exists a subset e of TwoElementSets (v) such that v is non empty and $g=\langle v, e\rangle$.
$(30)^{3}$ Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let n be arbitrary, and let E_{1} be a finite subset of TwoElementSets $(V \cup$ $\{n\})$. If $\langle V, E\rangle \in \operatorname{SimpleGraphs}(X)$ and $n \in X$ and $n \notin V$, then $\langle V \cup$ $\left.\{n\}, E_{1}\right\rangle \in \operatorname{SimpleGraphs}(X)$.
(31) Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let v_{1}, v_{2} be arbitrary. Suppose $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\langle V, E\rangle \in \operatorname{SimpleGraphs}(X)$. Then there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in$ SimpleGraphs (X).
Let X be a set and let G_{1} be a set. We say that G_{1} is a set of simple graphs of X if and only if the conditions (Def.9) are satisfied.
(Def.9) (i) $\langle\emptyset, \phi(\emptyset)\rangle \in G_{1}$,
(ii) for every subset V of X and for every subset E of TwoElementSets(V) and for arbitrary n and for every finite subset E_{1} of TwoElementSets $(V \cup$ $\{n\})$ such that $\langle V, E\rangle \in G_{1}$ and $n \in X$ and $n \notin V$ holds $\left\langle V \cup\{n\}, E_{1}\right\rangle \in$ G_{1}, and
(iii) for every subset V of X and for every subset E of TwoElementSets (V) and for arbitrary v_{1}, v_{2} such that $\langle V, E\rangle \in G_{1}$ and $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\} \notin E$ there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in G_{1}$.
One can prove the following propositions:
(32) For arbitrary g_{1} such that g_{1} is a set of simple graphs of X holds $\langle\emptyset, \phi(\emptyset)\rangle \in g_{1}$.
(33) Let G_{1} be arbitrary. Suppose G_{1} is a set of simple graphs of X. Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let n be arbitrary, and let E_{1} be a finite subset of TwoElementSets $(V \cup\{n\})$. If $\langle V, E\rangle \in G_{1}$ and $n \in X$ and $n \notin V$, then $\left\langle V \cup\{n\}, E_{1}\right\rangle \in G_{1}$.
(34) Let G_{1} be arbitrary. Suppose G_{1} is a set of simple graphs of X. Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let v_{1}, v_{2} be arbitrary. Suppose $\langle V, E\rangle \in G_{1}$ and $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\} \notin E$. Then there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in G_{1}$.
(35) $\operatorname{SimpleGraphs}(X)$ is a set of simple graphs of X.
(36) For arbitrary O_{1} such that O_{1} is a set of simple graphs of X holds SimpleGraphs $(X) \subseteq O_{1}$.
(37) $\operatorname{SimpleGraphs}(X)$ is a set of simple graphs of X and for arbitrary O_{1} such that O_{1} is a set of simple graphs of X holds SimpleGraphs $(X) \subseteq O_{1}$.

[^2]
5. Subgraphs

Let X be a set and let G be a simple graph of X. A simple graph of X is called a subgraph of G if:
(Def.10) The SVertices of it \subseteq the SVertices of G and the SEdges of it \subseteq the SEdges of G.

6. Degree of Vertices

Let X be a set, let G be a simple graph of X, and let v be arbitrary. Let us assume that $v \in$ the SVertices of G. The functor degree (G, v) yielding a natural number is defined by:
(Def.11) There exists a finite set X such that for arbitrary z holds $z \in X$ iff $z \in$ the SEdges of G and $v \in z$ and degree $(G, v)=\operatorname{card} X$.
One can prove the following propositions:
(38) Let G be a simple graph of X and let v be arbitrary. Suppose $v \in$ the SVertices of G. Then there exists a finite set Y such that for arbitrary z holds $z \in Y$ iff $z \in$ the SEdges of G and $v \in z$ and degree $(G, v)=\operatorname{card} Y$.
(39) Let X be a non empty set, and let G be a simple graph of X, and let v be arbitrary. Suppose $v \in$ the SVertices of G. Then there exists a finite set w_{1} such that $w_{1}=\{w: w$ ranges over elements of $X, w \in$ the SVertices of $G \wedge\{v, w\} \in$ the SEdges of $G\}$ and degree $(G, v)=\operatorname{card} w_{1}$.
(40) Let X be a non empty set, and let g be a simple graph of X, and let v be arbitrary. Suppose $v \in$ the SVertices of g. Then there exists a finite set V_{1} such that $V_{1}=$ the SVertices of g and degree $(g, v)<\operatorname{card} V_{1}$.
(41) Let g be a simple graph of X and let v, e be arbitrary. Suppose $v \in$ the SVertices of g and $e \in$ the SEdges of g and degree $(g, v)=0$. Then $v \notin e$.
(42) Let g be a simple graph of X, and let v be arbitrary, and let v_{4} be a finite set. Suppose $v_{4}=$ the SVertices of g and $v \in v_{4}$ and $1+\operatorname{degree}(g, v)=$ card v_{4}. Let w be an element of v_{4}. If $v \neq w$, then there exists arbitrary e such that $e \in$ the SEdges of g and $e=\{v, w\}$.

7. Path and Cycle

Let X be a set, let g be a simple graph of X, let v_{1}, v_{2} be elements of the SVertices of g, and let p be a finite sequence of elements of the SVertices of g. We say that p is a path of v_{1} and v_{2} if and only if the conditions (Def.12) are satisfied.
(Def.12) (i) $\quad p(1)=v_{1}$,
(ii) $p(\operatorname{len} p)=v_{2}$,
(iii) for every natural number i such that $1 \leq i$ and $i<\operatorname{len} p$ holds $\{p(i), p(i+1)\} \in$ the SEdges of g, and
(iv) for all natural numbers i, j such that $1 \leq i$ and $i<\operatorname{len} p$ and $i<j$ and $j<\operatorname{len} p$ holds $p(i) \neq p(j)$ and $\{p(i), p(i+1)\} \neq\{p(j), p(j+1)\}$.
Let X be a set, let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g. The functor $\operatorname{Paths}\left(v_{1}, v_{2}\right)$ yields a subset of (the SVertices of $\left.g\right)^{*}$ and is defined by:
(Def.13) Paths $\left(v_{1}, v_{2}\right)=\left\{s_{2}: s_{2} \text { ranges over elements of (the SVertices of } g\right)^{*}$, s_{2} is a path of v_{1} and $\left.v_{2}\right\}$.
One can prove the following three propositions:
(43) Let g be a simple graph of X and let v_{1}, v_{2} be elements of the SVertices of g. Then $\operatorname{Paths}\left(v_{1}, v_{2}\right)=\left\{s_{2}: s_{2}\right.$ ranges over elements of (the SVertices of $g)^{*}, s_{2}$ is a path of v_{1} and $\left.v_{2}\right\}$.
(44) Let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g, and let e be arbitrary. Then $e \in \operatorname{Paths}\left(v_{1}, v_{2}\right)$ if and only if there exists an element s_{2} of (the SVertices of $\left.g\right)^{*}$ such that $e=s_{2}$ and s_{2} is a path of v_{1} and v_{2}.
(45) Let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g, and let e be an element of (the SVertices of $g)^{*}$. If e is a path of v_{1} and v_{2}, then $e \in \operatorname{Paths}\left(v_{1}, v_{2}\right)$.
Let X be a set, let g be a simple graph of X, and let p be arbitrary. We say that p is a cycle of g if and only if:
(Def.14) There exists an element v of the SVertices of g such that $p \in \operatorname{Paths}(v, v)$.

8. Some Famous Graphs

Let n, m be natural numbers. The functor $\mathrm{K}_{m, n}$ yielding a simple graph of \mathbb{N} is defined by the condition (Def.16).
(Def.16) ${ }^{4}$ There exists a subset e_{3} of TwoElementSets $(\operatorname{Seg}(m+n))$ such that $e_{3}=\{\{i, j\}: i$ ranges over elements of \mathbb{N}, j ranges over elements of \mathbb{N}, $\left.i \in \operatorname{Seg} m \wedge j \in[m+1, m+n]_{\mathcal{N}}\right\}$ and $\mathrm{K}_{m, n}=\left\langle\operatorname{Seg}(m+n), e_{3}\right\rangle$.
Let n be a natural number. The functor K_{n} yields a simple graph of \mathbb{N} and is defined by the condition (Def.17).
(Def.17) There exists a finite subset e_{3} of TwoElementSets(Seg n) such that $e_{3}=$ $\{\{i, j\}: i$ ranges over elements of \mathbb{N}, j ranges over elements of $\mathbb{N}, i \in$ $\operatorname{Seg} n \wedge j \in \operatorname{Seg} n \wedge i \neq j\}$ and $\mathrm{K}_{n}=\left\langle\operatorname{Seg} n, e_{3}\right\rangle$.
The simple graph TriangleGraph of \mathbb{N} is defined by:
(Def.18) TriangleGraph $=\mathrm{K}_{3}$.

[^3]One can prove the following propositions:
(46) There exists a subset e_{3} of TwoElementSets(Seg 3) such that $e_{3}=$ $\{\{1,2\},\{2,3\},\{3,1\}\}$ and TriangleGraph $=\left\langle\operatorname{Seg} 3, e_{3}\right\rangle$.
(47) The SVertices of TriangleGraph $=\operatorname{Seg} 3$ and the SEdges of TriangleGraph $=\{\{1,2\},\{2,3\},\{3,1\}\}$.
$\{1,2\} \in$ the SEdges of TriangleGraph and $\{2,3\} \in$ the SEdges of TriangleGraph and $\{3,1\} \in$ the SEdges of TriangleGraph.
$\langle 1\rangle \wedge\langle 2\rangle \wedge\langle 3\rangle \wedge\langle 1\rangle$ is a cycle of TriangleGraph.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[11] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[13] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received September 8, 1994

[^0]: ${ }^{1}$ The proposition (18) has been removed.

[^1]: ${ }^{2}$ The proposition (22) has been removed.

[^2]: ${ }^{3}$ The proposition (29) has been removed.

[^3]: ${ }^{4}$ The definition (Def.15) has been removed.

