FORMALIZED MATHEMATICS

Volume 5, Number 1, 1996
Warsaw University - Bialystok

The Formalization of Simple Graphs

Yozo Toda
Information Processing Center
Chiba University

Summary. A graph is simple when

e it is non-directed,
e there is at most one edge between two vertices,
e there is no loop of length one.

A formalization of simple graphs is given from scratch. There is already
an article [9], dealing with the similar subject. It is not used as a starting-
point, because [9] formalizes directed non-empty graphs. Given a set of
vertices, edge is defined as an (unordered) pair of different two vertices
and graph as a pair of a set of vertices and a set of edges.

The following concepts are introduced:

simple graph structure,

the set of all simple graphs,

equality relation on graphs.

the notion of degrees of vertices; the number of edges connected to,
or the number of adjacent vertices,

the notion of subgraphs,

path, cycle,

complete and bipartite complete graphs,

Theorems proved in this articles include:

the set of simple graphs satisfies a certain minimality condition,
equivalence between two notions of degrees.

MML Identifier: SGRAPH1.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [1], [4], [6], [7], [2], [3], [8], [5], [11], [10], and [12].
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1. PRELIMINARIES

Let m, n be natural numbers. The functor [m, n]y yields a finite subset of N
and is defined by:
(Def.1)  [m,n]x = {i:1i ranges over natural numbers, m <1i A i < n}.
The following propositions are true:
(1)  For all natural numbers m, n holds [m, n]y = {7 : i ranges over natural
numbers, m <1i A i < n}.

(2)  Let m, n be natural numbers and let e be arbitrary. Then e € [m,n]y
if and only if there exists a natural number i such that e = ¢ and m < ¢
and 7 < n.

For all natural numbers m, n, k holds k € [m,n|y iff m < k and k < n.
For every natural number n holds [1,n|y = Segn.

For all natural numbers m, n such that 1 < m holds [m,n|y C Segn.
For all natural numbers k, m, n such that k& < m holds Seg kN[m, n]y =

(7)  For all natural numbers m, n such that n < m holds [m,n]y = 0.

Let A, B be sets and let f be a function from A into B. We say that f is
onto if and only if:
(Def.2) rngf = B.
Let A, B be sets and let f be a function from A into B. We say that f is
bijective if and only if:
(Def.3)  f is one-to-one and onto.
One can prove the following proposition
(8)  For every finite set z holds card z = 2 iff there exist arbitrary x, y such
that x € z and y € z and = # y and z = {x,y}.
Let A be a set. The functor TwoElementSets(A) yields a set and is defined
by:
(Def.4)  TwoElementSets(A) = {z : z ranges over finite elements of 24, card z =
2}.
The following propositions are true:
(9)  For every set A and for arbitrary e holds e € TwoElementSets(A) iff
there exists a finite subset z of A such that e = z and card z = 2.
(10) Let A be a set and let e be arbitrary. Then e € TwoElementSets(A) if
and only if the following conditions are satisfied:
(i) e is a finite subset of A, and
(ii)  there exist arbitrary z, y such that z € A and y € A and = # y and
e ={z,y}.
(11)  For every set A holds TwoElementSets(A) C 24.
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(12) For every set A and for arbitrary e;, es such that {e;,es} €
TwoElementSets(A) holds e; € A and es € A and e] # es.

(13)  TwoElementSets(0) = 0.

(14)  For all sets ¢, uw such that ¢ C wu holds TwoElementSets(f) C
TwoElementSets(u).

(15)  For every finite set A holds TwoElementSets(A) is finite.
(16)  For every non trivial set A holds TwoElementSets(A) is non empty.
(17)  For arbitrary a holds TwoElementSets({a}) = 0.

Let a be a set.

(Def.5)  ¢(a) is an empty subset of TwoElementSets(a).

Let X be an empty set. Observe that every subset of X is empty.
In the sequel X will be a set.

2. SIMPLE GRAPHS

We introduce simple graph structures which are systems
( SVertices, SEdges ),

where the SVertices constitute a set and the SEdges constitute a subset of
TwoElementSets(the SVertices).

Let X be a set. The functor SimpleGraphs(X) yields a non empty set and
is defined as follows:

(Def.6)  SimpleGraphs(X) = {(v, e) : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

Next we state the proposition
(19)Y (0, ¢(0)) € SimpleGraphs(X).
Let X be a set. A strict simple graph structure is said to be a simple graph
of X if:
(Def.7) It is an element of SimpleGraphs(X).
Next we state two propositions:

(20)  SimpleGraphs(X) = {(v, e) : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

(21) Let g be arbitrary. Then g € SimpleGraphs(X) if and only if there
exists a finite subset v of X and there exists a finite subset e of
TwoElementSets(v) such that g = (v, e).

!The proposition (18) has been removed.
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3. EQUALITY RELATION ON SIMPLE GRAPHS

One can prove the following propositions:

(23)2 For every simple graph g of X holds the SVertices of ¢ C X and the
SEdges of g C TwoElementSets(the SVertices of g).

(24)  For every simple graph g of X holds g = (the SVertices of g, the SEdges
of g).

(25) Let g be a simple graph of X and let e be arbitrary. Suppose e € the
SEdges of g. Then there exist arbitrary vy, v such that v; € the SVertices
of g and vg € the SVertices of g and vy # vy and e = {v1, va}.

(26) Let g be a simple graph of X and let vy, v be arbitrary. Suppose
{v1,v2} € the SEdges of g. Then v; € the SVertices of g and vy € the
SVertices of g and vy # vs.

(27)  Let g be a simple graph of X. Then

(i)  the SVertices of g is a finite subset of X, and

(ii)  the SEdges of g is a finite subset of TwoElementSets(the SVertices of
9)-

Let us consider X and let G, G’ be simple graphs of X. We say that G is

isomorphic to G’ if and only if the condition (Def.8) is satisfied.
(Def.8)  There exists a function Fj from the SVertices of G into the SVertices

of G’ such that

(i)  Fy is bijective, and

(ii)  for all elements vy, ve of the SVertices of G holds {v1,v2} € the SEdges
of G iff {Fy(v1), F1(v2)} € the SEdges of G.

4. PROPERTIES OF SIMPLE GRAPHS

The scheme IndSimpleGraphs0 concerns a set A and a unary predicate P,
and states that:
For arbitrary G such that G € SimpleGraphs(.A) holds P[G]
provided the parameters satisfy the following conditions:
o PO, (1)),
e Let g be a simple graph of A and let v be arbitrary. Suppose
g € SimpleGraphs(A) and P[g] and v € A and v ¢ the SVertices of
g. Then P[((the SVertices of g)U{v}, ¢((the SVertices of g)U{v}))],
e Let g be a simple graph of A and let e be arbitrary. Suppose P|¢]
and e € TwoElementSets(the SVertices of g) and e ¢ the SEdges of
g. Then there exists a subset s; of TwoElementSets(the SVertices
of g) such that s; = (the SEdges of g) U {e} and P[(the SVertices
of 9, 51>]‘

2The proposition (22) has been removed.
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We now state three propositions:

(28)  Let g be a simple graph of X. Then g = (0, $())) or there exists a set
v and there exists a subset e of TwoElementSets(v) such that v is non
empty and g = (v, e).

(30)3 Let V be a subset of X, and let E be a subset of TwoElementSets(V),
and let n be arbitrary, and let E; be a finite subset of TwoElementSets(V'U
{n}). If (V,E) € SimpleGraphs(X) and n € X and n ¢ V, then (V U
{n}, E1) € SimpleGraphs(X).

(31) Let V be a subset of X, and let E be a subset of TwoElementSets(V),
and let vy, vy be arbitrary. Suppose v1 € V and vy € V and v; # v
and (V,E) € SimpleGraphs(X). Then there exists a finite subset vs
of TwoElementSets(V) such that vs = E U {{vi,v2}} and (V,vs3) €
SimpleGraphs(X).

Let X be a set and let G be a set. We say that (g1 is a set of simple graphs
of X if and only if the conditions (Def.9) are satisfied.

(Def9) () (0, 6(0)) € Gy,

(ii) for every subset V' of X and for every subset E of TwoElementSets(V')
and for arbitrary n and for every finite subset £ of TwoElementSets(V U
{n}) such that (V,FE) € Gy and n € X and n ¢ V holds (V U{n}, E) €
G, and

(iii)  for every subset V of X and for every subset E of TwoElementSets(V')
and for arbitrary vi, vy such that (V,E) € G; and vy € V and
vy € V and v; # ve and {v1,v2} ¢ FE there exists a finite subset v3
of TwoElementSets(V') such that v3 = E'U {{vy,v2}} and (V,v3) € Gy.

One can prove the following propositions:

(32) For arbitrary g¢; such that g; is a set of simple graphs of X holds
(@,90(0)) € 9.

(33) Let Gy be arbitrary. Suppose G is a set of simple graphs of X. Let V
be a subset of X, and let E be a subset of TwoElementSets(V'), and let n
be arbitrary, and let E; be a finite subset of TwoElementSets(V U {n}).
If (V,E) € Gy andn € X and n ¢ V, then (V U{n}, Ey) € G;.

(34) Let G; be arbitrary. Suppose G is a set of simple graphs of X. Let
V' be a subset of X, and let E be a subset of TwoElementSets(V'), and
let v1, vy be arbitrary. Suppose (V,E) € G; and v;1 € V and vy € V
and vy # vy and {v1,v2} ¢ E. Then there exists a finite subset v3 of
TwoElementSets(V') such that v3 = EU {{v1,v2}} and (V,v3) € G1.

(35)  SimpleGraphs(X) is a set of simple graphs of X.

(36) For arbitrary O; such that O; is a set of simple graphs of X holds
SimpleGraphs(X) C O;.

(37)  SimpleGraphs(X) is a set of simple graphs of X and for arbitrary O4
such that Oy is a set of simple graphs of X holds SimpleGraphs(X) C O;.

3The proposition (29) has been removed.
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5. SUBGRAPHS

Let X be a set and let G be a simple graph of X. A simple graph of X is
called a subgraph of G if:

(Def.10)  The SVertices of it C the SVertices of G and the SEdges of it C the
SEdges of G.

6. DEGREE OF VERTICES

Let X be a set, let G be a simple graph of X, and let v be arbitrary. Let us
assume that v € the SVertices of G. The functor degree(G, v) yielding a natural
number is defined by:

(Def.11)  There exists a finite set X such that for arbitrary z holds z € X iff
z € the SEdges of G and v € z and degree(G,v) = card X.

One can prove the following propositions:

(38) Let G be a simple graph of X and let v be arbitrary. Suppose v € the
SVertices of G. Then there exists a finite set Y such that for arbitrary z
holds z € Y iff z € the SEdges of G and v € z and degree(G,v) = card Y.

(39) Let X be a non empty set, and let G be a simple graph of X, and
let v be arbitrary. Suppose v € the SVertices of G. Then there exists a
finite set w; such that wy = {w : w ranges over elements of X, w € the
SVertices of G A {v,w} € the SEdges of G} and degree(G,v) = card w;.

(40) Let X be a non empty set, and let g be a simple graph of X, and let v
be arbitrary. Suppose v € the SVertices of g. Then there exists a finite
set V; such that V; = the SVertices of g and degree(g,v) < card V;.

(41)  Let g be a simple graph of X and let v, e be arbitrary. Suppose v € the
SVertices of g and e € the SEdges of g and degree(g,v) = 0. Then v ¢ e.

(42)  Let g be a simple graph of X, and let v be arbitrary, and let v4 be a finite
set. Suppose vy = the SVertices of g and v € vy and 1 + degree(g,v) =
card vg. Let w be an element of vy. If v # w, then there exists arbitrary
e such that e € the SEdges of g and e = {v, w}.

7. PATH AND CYCLE

Let X be a set, let g be a simple graph of X, let v1, v2 be elements of the
SVertices of g, and let p be a finite sequence of elements of the SVertices of g.
We say that p is a path of v; and v9 if and only if the conditions (Def.12) are
satisfied.
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(Def12) () p(1) = vy,
(ii)  p(lenp) = vy,
(iii)  for every natural number i such that 1 < ¢ and ¢ < lenp holds
{p(i),p(i + 1)} € the SEdges of g, and
(iv)  for all natural numbers 4, j such that 1 < i and i < lenp and i < j
and j <lenp holds p(i) # p(j) and {p(i), p(i + 1)} # {p(5), p(7 + 1)}
Let X be a set, let g be a simple graph of X, and let vy, vo be elements of the
SVertices of g. The functor Paths(vy,v9) yields a subset of (the SVertices of g)*
and is defined by:
(Def.13)  Paths(vi,va) = {s2 : sa ranges over elements of (the SVertices of g)*,
s9 is a path of v; and wvy}.
One can prove the following three propositions:

(43) Let g be a simple graph of X and let vy, vy be elements of the
SVertices of g. Then Paths(vi,ve2) = {sy : sy ranges over elements of
(the SVertices of g)*, so is a path of v; and vs}.

(44)  Let g be a simple graph of X, and let vy, vo be elements of the SVertices
of g, and let e be arbitrary. Then e € Paths(vy,v9) if and only if there
exists an element sy of (the SVertices of g)* such that e = s and ss is a
path of v1 and vs.

(45)  Let g be a simple graph of X, and let vy, vy be elements of the SVertices
of g, and let e be an element of (the SVertices of g)*. If e is a path of v;
and vy, then e € Paths(vy, v9).

Let X be a set, let g be a simple graph of X, and let p be arbitrary. We say
that p is a cycle of g if and only if:

(Def.14)  There exists an element v of the SVertices of g such that p € Paths(v, v).

8. SOME FAMOUS GRAPHS

Let n, m be natural numbers. The functor K, , yielding a simple graph of
N is defined by the condition (Def.16).

(Def.16)* There exists a subset ez of TwoElementSets(Seg(m -+ n)) such that
es = {{i,j} : i ranges over elements of N, j ranges over elements of N,
ieSegm A je[m+1,m+n]y} and Ky, = (Seg(m + n), es).

Let n be a natural number. The functor K,, yields a simple graph of N and
is defined by the condition (Def.17).

(Def.17)  There exists a finite subset e3 of TwoElementSets(Seg n) such that e3 =
{{i,7} : i ranges over elements of N, j ranges over elements of N, i €
Segn A j€Segn A i#j}and K, = (Segn,es).

The simple graph TriangleGraph of N is defined by:

(Def.18)  TriangleGraph = K3 .

“The definition (Def.15) has been removed.
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One can prove the following propositions:

(46)
(47)
(48)

(49)

[1]
2]

3]

[4]
[5]

(6]
[7]
[8]
[10]
[11]
[12]

[13]

There exists a subset ez of TwoElementSets(Seg3) such that ez =
{{1,2},{2,3},{3,1}} and TriangleGraph = (Seg 3, e3).

The SVertices of TriangleGraph = Seg3 and the SEdges of
TriangleGraph = {{1,2},{2,3},{3,1}}.

{1,2} € the SEdges of TriangleGraph and {2,3} € the SEdges of
TriangleGraph and {3,1} € the SEdges of TriangleGraph.

(1) ~(2) = (3) = (1) is a cycle of TriangleGraph.
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