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Summary. A graph is simple when

• it is non-directed,
• there is at most one edge between two vertices,
• there is no loop of length one.

A formalization of simple graphs is given from scratch. There is already
an article [9], dealing with the similar subject. It is not used as a starting-
point, because [9] formalizes directed non-empty graphs. Given a set of
vertices, edge is defined as an (unordered) pair of different two vertices
and graph as a pair of a set of vertices and a set of edges.

The following concepts are introduced:

• simple graph structure,
• the set of all simple graphs,
• equality relation on graphs.
• the notion of degrees of vertices; the number of edges connected to,

or the number of adjacent vertices,
• the notion of subgraphs,
• path, cycle,
• complete and bipartite complete graphs,

Theorems proved in this articles include:

• the set of simple graphs satisfies a certain minimality condition,
• equivalence between two notions of degrees.

MML Identifier: SGRAPH1.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [1], [4], [6], [7], [2], [3], [8], [5], [11], [10], and [12].
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1. Preliminaries

Let m, n be natural numbers. The functor [m,n] � yields a finite subset of �
and is defined by:

(Def.1) [m,n] � = {i : i ranges over natural numbers, m ≤ i ∧ i ≤ n}.

The following propositions are true:

(1) For all natural numbers m, n holds [m,n] � = {i : i ranges over natural
numbers, m ≤ i ∧ i ≤ n}.

(2) Let m, n be natural numbers and let e be arbitrary. Then e ∈ [m,n] �
if and only if there exists a natural number i such that e = i and m ≤ i
and i ≤ n.

(3) For all natural numbers m, n, k holds k ∈ [m,n] � iff m ≤ k and k ≤ n.

(4) For every natural number n holds [1, n] � = Seg n.

(5) For all natural numbers m, n such that 1 ≤ m holds [m,n] � ⊆ Seg n.

(6) For all natural numbers k, m, n such that k < m holds Seg k∩[m,n] � =
∅.

(7) For all natural numbers m, n such that n < m holds [m,n] � = ∅.

Let A, B be sets and let f be a function from A into B. We say that f is
onto if and only if:

(Def.2) rng f = B.

Let A, B be sets and let f be a function from A into B. We say that f is
bijective if and only if:

(Def.3) f is one-to-one and onto.

One can prove the following proposition

(8) For every finite set z holds card z = 2 iff there exist arbitrary x, y such
that x ∈ z and y ∈ z and x 6= y and z = {x, y}.

Let A be a set. The functor TwoElementSets(A) yields a set and is defined
by:

(Def.4) TwoElementSets(A) = {z : z ranges over finite elements of 2A, card z =
2}.

The following propositions are true:

(9) For every set A and for arbitrary e holds e ∈ TwoElementSets(A) iff
there exists a finite subset z of A such that e = z and card z = 2.

(10) Let A be a set and let e be arbitrary. Then e ∈ TwoElementSets(A) if
and only if the following conditions are satisfied:

(i) e is a finite subset of A, and

(ii) there exist arbitrary x, y such that x ∈ A and y ∈ A and x 6= y and
e = {x, y}.

(11) For every set A holds TwoElementSets(A) ⊆ 2A.
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(12) For every set A and for arbitrary e1, e2 such that {e1, e2} ∈
TwoElementSets(A) holds e1 ∈ A and e2 ∈ A and e1 6= e2.

(13) TwoElementSets(∅) = ∅.

(14) For all sets t, u such that t ⊆ u holds TwoElementSets(t) ⊆
TwoElementSets(u).

(15) For every finite set A holds TwoElementSets(A) is finite.

(16) For every non trivial set A holds TwoElementSets(A) is non empty.

(17) For arbitrary a holds TwoElementSets({a}) = ∅.

Let a be a set.

(Def.5) φ(a) is an empty subset of TwoElementSets(a).

Let X be an empty set. Observe that every subset of X is empty.

In the sequel X will be a set.

2. Simple Graphs

We introduce simple graph structures which are systems

〈 SVertices, SEdges 〉,

where the SVertices constitute a set and the SEdges constitute a subset of
TwoElementSets(the SVertices).

Let X be a set. The functor SimpleGraphs(X) yields a non empty set and
is defined as follows:

(Def.6) SimpleGraphs(X) = {〈v, e〉 : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

Next we state the proposition

(19)1 〈∅, φ(∅)〉 ∈ SimpleGraphs(X).

Let X be a set. A strict simple graph structure is said to be a simple graph
of X if:

(Def.7) It is an element of SimpleGraphs(X).

Next we state two propositions:

(20) SimpleGraphs(X) = {〈v, e〉 : v ranges over finite subsets of X, e ranges
over finite subsets of TwoElementSets(v)}.

(21) Let g be arbitrary. Then g ∈ SimpleGraphs(X) if and only if there
exists a finite subset v of X and there exists a finite subset e of
TwoElementSets(v) such that g = 〈v, e〉.

1The proposition (18) has been removed.
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3. Equality Relation on Simple Graphs

One can prove the following propositions:

(23)2 For every simple graph g of X holds the SVertices of g ⊆ X and the
SEdges of g ⊆ TwoElementSets(the SVertices of g).

(24) For every simple graph g of X holds g = 〈the SVertices of g, the SEdges
of g〉.

(25) Let g be a simple graph of X and let e be arbitrary. Suppose e ∈ the
SEdges of g. Then there exist arbitrary v1, v2 such that v1 ∈ the SVertices
of g and v2 ∈ the SVertices of g and v1 6= v2 and e = {v1, v2}.

(26) Let g be a simple graph of X and let v1, v2 be arbitrary. Suppose
{v1, v2} ∈ the SEdges of g. Then v1 ∈ the SVertices of g and v2 ∈ the
SVertices of g and v1 6= v2.

(27) Let g be a simple graph of X. Then
(i) the SVertices of g is a finite subset of X, and
(ii) the SEdges of g is a finite subset of TwoElementSets(the SVertices of

g).

Let us consider X and let G, G′ be simple graphs of X. We say that G is
isomorphic to G′ if and only if the condition (Def.8) is satisfied.

(Def.8) There exists a function F1 from the SVertices of G into the SVertices
of G′ such that

(i) F1 is bijective, and
(ii) for all elements v1, v2 of the SVertices of G holds {v1, v2} ∈ the SEdges

of G iff {F1(v1), F1(v2)} ∈ the SEdges of G.

4. Properties of Simple Graphs

The scheme IndSimpleGraphs0 concerns a set A and a unary predicate P,
and states that:

For arbitrary G such that G ∈ SimpleGraphs(A) holds P[G]
provided the parameters satisfy the following conditions:

• P[〈∅, φ(∅)〉],
• Let g be a simple graph of A and let v be arbitrary. Suppose

g ∈ SimpleGraphs(A) and P[g] and v ∈ A and v /∈ the SVertices of
g. Then P[〈(the SVertices of g)∪{v}, φ((the SVertices of g)∪{v})〉],

• Let g be a simple graph of A and let e be arbitrary. Suppose P[g]
and e ∈ TwoElementSets(the SVertices of g) and e /∈ the SEdges of
g. Then there exists a subset s1 of TwoElementSets(the SVertices
of g) such that s1 = (the SEdges of g) ∪ {e} and P[〈the SVertices
of g, s1〉].

2The proposition (22) has been removed.
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We now state three propositions:

(28) Let g be a simple graph of X. Then g = 〈∅, φ(∅)〉 or there exists a set
v and there exists a subset e of TwoElementSets(v) such that v is non
empty and g = 〈v, e〉.

(30)3 Let V be a subset of X, and let E be a subset of TwoElementSets(V ),
and let n be arbitrary, and let E1 be a finite subset of TwoElementSets(V ∪
{n}). If 〈V,E〉 ∈ SimpleGraphs(X) and n ∈ X and n /∈ V, then 〈V ∪
{n}, E1〉 ∈ SimpleGraphs(X).

(31) Let V be a subset of X, and let E be a subset of TwoElementSets(V ),
and let v1, v2 be arbitrary. Suppose v1 ∈ V and v2 ∈ V and v1 6= v2

and 〈V,E〉 ∈ SimpleGraphs(X). Then there exists a finite subset v3

of TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈
SimpleGraphs(X).

Let X be a set and let G1 be a set. We say that G1 is a set of simple graphs
of X if and only if the conditions (Def.9) are satisfied.

(Def.9) (i) 〈∅, φ(∅)〉 ∈ G1,
(ii) for every subset V of X and for every subset E of TwoElementSets(V )

and for arbitrary n and for every finite subset E1 of TwoElementSets(V ∪
{n}) such that 〈V,E〉 ∈ G1 and n ∈ X and n /∈ V holds 〈V ∪ {n}, E1〉 ∈
G1, and

(iii) for every subset V of X and for every subset E of TwoElementSets(V )
and for arbitrary v1, v2 such that 〈V,E〉 ∈ G1 and v1 ∈ V and
v2 ∈ V and v1 6= v2 and {v1, v2} /∈ E there exists a finite subset v3

of TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈ G1.

One can prove the following propositions:

(32) For arbitrary g1 such that g1 is a set of simple graphs of X holds
〈∅, φ(∅)〉 ∈ g1.

(33) Let G1 be arbitrary. Suppose G1 is a set of simple graphs of X. Let V
be a subset of X, and let E be a subset of TwoElementSets(V ), and let n
be arbitrary, and let E1 be a finite subset of TwoElementSets(V ∪ {n}).
If 〈V,E〉 ∈ G1 and n ∈ X and n /∈ V, then 〈V ∪ {n}, E1〉 ∈ G1.

(34) Let G1 be arbitrary. Suppose G1 is a set of simple graphs of X. Let
V be a subset of X, and let E be a subset of TwoElementSets(V ), and
let v1, v2 be arbitrary. Suppose 〈V,E〉 ∈ G1 and v1 ∈ V and v2 ∈ V
and v1 6= v2 and {v1, v2} /∈ E. Then there exists a finite subset v3 of
TwoElementSets(V ) such that v3 = E ∪ {{v1, v2}} and 〈V, v3〉 ∈ G1.

(35) SimpleGraphs(X) is a set of simple graphs of X.

(36) For arbitrary O1 such that O1 is a set of simple graphs of X holds
SimpleGraphs(X) ⊆ O1.

(37) SimpleGraphs(X) is a set of simple graphs of X and for arbitrary O1

such that O1 is a set of simple graphs of X holds SimpleGraphs(X) ⊆ O1.

3The proposition (29) has been removed.
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5. Subgraphs

Let X be a set and let G be a simple graph of X. A simple graph of X is
called a subgraph of G if:

(Def.10) The SVertices of it ⊆ the SVertices of G and the SEdges of it ⊆ the
SEdges of G.

6. Degree of Vertices

Let X be a set, let G be a simple graph of X, and let v be arbitrary. Let us
assume that v ∈ the SVertices of G. The functor degree(G, v) yielding a natural
number is defined by:

(Def.11) There exists a finite set X such that for arbitrary z holds z ∈ X iff
z ∈ the SEdges of G and v ∈ z and degree(G, v) = card X.

One can prove the following propositions:

(38) Let G be a simple graph of X and let v be arbitrary. Suppose v ∈ the
SVertices of G. Then there exists a finite set Y such that for arbitrary z
holds z ∈ Y iff z ∈ the SEdges of G and v ∈ z and degree(G, v) = card Y.

(39) Let X be a non empty set, and let G be a simple graph of X, and
let v be arbitrary. Suppose v ∈ the SVertices of G. Then there exists a
finite set w1 such that w1 = {w : w ranges over elements of X, w ∈ the
SVertices of G ∧ {v,w} ∈ the SEdges of G} and degree(G, v) = card w1.

(40) Let X be a non empty set, and let g be a simple graph of X, and let v
be arbitrary. Suppose v ∈ the SVertices of g. Then there exists a finite
set V1 such that V1 = the SVertices of g and degree(g, v) < card V1.

(41) Let g be a simple graph of X and let v, e be arbitrary. Suppose v ∈ the
SVertices of g and e ∈ the SEdges of g and degree(g, v) = 0. Then v /∈ e.

(42) Let g be a simple graph of X, and let v be arbitrary, and let v4 be a finite
set. Suppose v4 = the SVertices of g and v ∈ v4 and 1 + degree(g, v) =
card v4. Let w be an element of v4. If v 6= w, then there exists arbitrary
e such that e ∈ the SEdges of g and e = {v,w}.

7. Path and Cycle

Let X be a set, let g be a simple graph of X, let v1, v2 be elements of the
SVertices of g, and let p be a finite sequence of elements of the SVertices of g.
We say that p is a path of v1 and v2 if and only if the conditions (Def.12) are
satisfied.
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(Def.12) (i) p(1) = v1,
(ii) p(len p) = v2,
(iii) for every natural number i such that 1 ≤ i and i < len p holds

{p(i), p(i + 1)} ∈ the SEdges of g, and
(iv) for all natural numbers i, j such that 1 ≤ i and i < len p and i < j

and j < len p holds p(i) 6= p(j) and {p(i), p(i + 1)} 6= {p(j), p(j + 1)}.

Let X be a set, let g be a simple graph of X, and let v1, v2 be elements of the
SVertices of g. The functor Paths(v1, v2) yields a subset of (the SVertices of g)∗

and is defined by:

(Def.13) Paths(v1, v2) = {s2 : s2 ranges over elements of (the SVertices of g)∗,
s2 is a path of v1 and v2}.

One can prove the following three propositions:

(43) Let g be a simple graph of X and let v1, v2 be elements of the
SVertices of g. Then Paths(v1, v2) = {s2 : s2 ranges over elements of
(the SVertices of g)∗, s2 is a path of v1 and v2}.

(44) Let g be a simple graph of X, and let v1, v2 be elements of the SVertices
of g, and let e be arbitrary. Then e ∈ Paths(v1, v2) if and only if there
exists an element s2 of (the SVertices of g)∗ such that e = s2 and s2 is a
path of v1 and v2.

(45) Let g be a simple graph of X, and let v1, v2 be elements of the SVertices
of g, and let e be an element of (the SVertices of g)∗. If e is a path of v1

and v2, then e ∈ Paths(v1, v2).

Let X be a set, let g be a simple graph of X, and let p be arbitrary. We say
that p is a cycle of g if and only if:

(Def.14) There exists an element v of the SVertices of g such that p ∈ Paths(v, v).

8. Some Famous Graphs

Let n, m be natural numbers. The functor Km,n yielding a simple graph of
� is defined by the condition (Def.16).

(Def.16) 4 There exists a subset e3 of TwoElementSets(Seg(m + n)) such that
e3 = {{i, j} : i ranges over elements of � , j ranges over elements of � ,
i ∈ Seg m ∧ j ∈ [m + 1,m + n] � } and Km,n = 〈Seg(m + n), e3〉.

Let n be a natural number. The functor Kn yields a simple graph of � and
is defined by the condition (Def.17).

(Def.17) There exists a finite subset e3 of TwoElementSets(Seg n) such that e3 =
{{i, j} : i ranges over elements of � , j ranges over elements of � , i ∈
Seg n ∧ j ∈ Seg n ∧ i 6= j} and Kn = 〈Seg n, e3〉.

The simple graph TriangleGraph of � is defined by:

(Def.18) TriangleGraph = K3 .

4The definition (Def.15) has been removed.
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One can prove the following propositions:

(46) There exists a subset e3 of TwoElementSets(Seg 3) such that e3 =
{{1, 2}, {2, 3}, {3, 1}} and TriangleGraph = 〈Seg 3, e3〉.

(47) The SVertices of TriangleGraph = Seg 3 and the SEdges of
TriangleGraph = {{1, 2}, {2, 3}, {3, 1}}.

(48) {1, 2} ∈ the SEdges of TriangleGraph and {2, 3} ∈ the SEdges of
TriangleGraph and {3, 1} ∈ the SEdges of TriangleGraph.

(49) 〈1〉 � 〈2〉 � 〈3〉 � 〈1〉 is a cycle of TriangleGraph.
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