Projective Planes

Michał Muzalewski Warsaw University Białystok

Summary. The line of points a, b, denoted by $a \cdot b$ and the point of lines A, B denoted by $A \cdot B$ are defined. A few basic theorems related to these notions are proved. An inspiration for such approach comes from so called Leibniz program. Let us recall that the Leibniz program is a program of algebraization of geometry using purely geometric notions. Leibniz formulated his program in opposition to algebraization method developed by Descartes.

MML Identifier: PROJPL_1.

The terminology and notation used in this paper are introduced in the papers [2] and [1].

1. Projective Spaces

In this paper G will denote a projective incidence structure.

Let us consider G. A point of G is an element of the points of G. A line of G is an element of the lines of G.

We adopt the following rules: $a, a_1, a_2, b, b_1, b_2, c, d, p, q, r$ will be points of G and A, B, M, N, P, Q, R will be lines of G.

Let us consider G, a, P. We introduce $a \nmid P$ as an antonym of $a \mid P$. Let us consider G, a, b, P. The predicate a, $b \nmid P$ is defined as follows:

(Def.1) $a \nmid P$ and $b \nmid P$.

Let us consider G, a, P, Q. The predicate $a \mid P, Q$ is defined as follows: (Def.2) $a \mid P$ and $a \mid Q$.

Let us consider G, a, P, Q, R. The predicate $a \mid P, Q, R$ is defined as follows: (Def.3) $a \mid P$ and $a \mid Q$ and $a \mid R$.

We now state the proposition

C 1996 Warsaw University - Białystok ISSN 0777-4028

- (1) (i) If $a, b \mid P$, then $b, a \mid P$,
- (ii) if $a, b, c \mid P$, then $a, c, b \mid P$ and $b, a, c \mid P$ and $b, c, a \mid P$ and $c, a, b \mid P$ and $c, b, a \mid P$,
- (iii) if $a \mid P, Q$, then $a \mid Q, P$, and
- (iv) if $a \mid P, Q, R$, then $a \mid P, R, Q$ and $a \mid Q, P, R$ and $a \mid Q, R, P$ and $a \mid R, P, Q$ and $a \mid R, Q, P$.

A projective incidence structure is configuration if:

(Def.4) For all points p, q of it and for all lines P, Q of it such that $p \mid P$ and $q \mid P$ and $p \mid Q$ and $q \mid Q$ holds p = q or P = Q.

We now state three propositions:

- (2) G is configuration iff for all p, q, P, Q such that $p,q \mid P$ and $p,q \mid Q$ holds p = q or P = Q.
- (3) G is configuration iff for all p, q, P, Q such that $p \mid P, Q$ and $q \mid P, Q$ holds p = q or P = Q.
- (4) The following statements are equivalent
- (i) G is a projective space defined in terms of incidence,
- (ii) G is configuration and for all p, q there exists P such that $p, q \mid P$ and there exist p, P such that $p \nmid P$ and for every P there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$ and for all a, b, c, d, p, M, N, P, Q such that $a, b, p \mid M$ and $c, d, p \mid N$ and $a, c \mid P$ and $b, d \mid Q$ and $p \nmid P$ and $p \nmid Q$ and $M \neq N$ there exists q such that $q \mid P, Q$.

An incidence projective plane is a 2-dimensional projective space defined in terms of incidence.

Let us consider G, a, b, c. We say that a, b and c are collinear if and only if: (Def.5) There exists P such that $a, b, c \mid P$.

We introduce a, b, c form a triangle as an antonym of a, b and c are collinear. Next we state two propositions:

- (5) a, b and c are collinear iff there exists P such that $a \mid P$ and $b \mid P$ and $c \mid P$.
- (6) a, b, c form a triangle iff for every P holds $a \nmid P$ or $b \nmid P$ or $c \nmid P$.

Let us consider G, a, b, c, d. We say that a, b, c, d form a quadrangle if and only if the conditions (Def.6) are satisfied.

(Def.6) (i) a, b, c form a triangle,

- (ii) b, c, d form a triangle,
- (iii) c, d, a form a triangle, and
- (iv) d, a, b form a triangle.

One can prove the following propositions:

- (7) If G is a projective space defined in terms of incidence, then there exist A, B such that $A \neq B$.
- (8) Suppose G is a projective space defined in terms of incidence and $a \mid A$. Then there exist b, c such that $b, c \mid A$ and a, b, c are mutually different.

- (9)Suppose G is a projective space defined in terms of incidence and $a \mid A$ and $A \neq B$. Then there exists b such that $b \mid A$ and $b \nmid B$ and $a \neq b$.
- (10)If G is configuration and $a_1, a_2 \mid A$ and $a_1 \neq a_2$ and $b \nmid A$, then a_1, a_2 , b form a triangle.
- Suppose a, b and c are collinear. Then (11)
 - a, c and b are collinear, (i)
 - (ii) b, a and c are collinear,
 - (iii) b, c and a are collinear,
 - c, a and b are collinear, and(iv)
 - (\mathbf{v}) c, b and a are collinear.
- (12)Suppose a, b, c form a triangle. Then
 - a, c, b form a triangle, (i)
 - (ii) b, a, c form a triangle,
 - b, c, a form a triangle, (iii)
 - c, a, b form a triangle, and (iv)
 - c, b, a form a triangle. (\mathbf{v})
- Suppose a, b, c, d form a quadrangle. Then (13)
 - (i) a, c, b, d form a quadrangle,
 - b, a, c, d form a quadrangle, (ii)
 - b, c, a, d form a quadrangle, (iii)
 - (iv)c, a, b, d form a quadrangle,
 - c, b, a, d form a quadrangle, (\mathbf{v})
- a, b, d, c form a quadrangle, (vi)
- a, c, d, b form a quadrangle, (vii)
- b, a, d, c form a quadrangle, (viii)
- b, c, d, a form a quadrangle, (ix)
- c, a, d, b form a quadrangle, (\mathbf{x})
- c, b, d, a form a quadrangle, (xi)
- (xii) a, d, b, c form a quadrangle, a, d, c, b form a quadrangle, (xiii)
- b, d, a, c form a quadrangle,
- (xiv)b, d, c, a form a quadrangle, (xv)
- (xvi) c, d, a, b form a quadrangle,
- c, d, b, a form a quadrangle, (xvii)
- (xviii) d, a, b, c form a quadrangle,
- d, a, c, b form a quadrangle, (xix)
- (xx)d, b, a, c form a quadrangle,
- d, b, c, a form a quadrangle, (xxi)
- (xxii) d, c, a, b form a quadrangle, and
- d, c, b, a form a quadrangle. (xxiii)
- (14)If G is configuration and $a_1, a_2 \mid A$ and $b_1, b_2 \mid B$ and $a_1, a_2 \nmid B$ and $b_1, b_2 \nmid A$ and $a_1 \neq a_2$ and $b_1 \neq b_2$, then a_1, a_2, b_1, b_2 form a quadrangle.
- Suppose G is a projective space defined in terms of incidence. Then (15)there exist a, b, c, d such that a, b, c, d form a quadrangle.

Let G be a projective space defined in terms of incidence. An element of [the points of G, the points of G, the points of G, the points of G] is called a quadrangle of G if:

(Def.7) it_1, it_2, it_3, it_4 form a quadrangle.

Let G be a projective space defined in terms of incidence and let a, b be points of G. Let us assume that $a \neq b$. The functor $a \cdot b$ yields a line of G and is defined as follows:

 $(Def.8) \quad a,b \mid a \cdot b.$

Next we state the proposition

(16) Let G be a projective space defined in terms of incidence, and let a, b be points of G, and let L be a line of G. Suppose $a \neq b$. Then $a \mid a \cdot b$ and $b \mid a \cdot b$ and $a \cdot b = b \cdot a$ and if $a \mid L$ and $b \mid L$, then $L = a \cdot b$.

2. Projective Planes

The following propositions are true:

- (17) If there exist a, b, c such that a, b, c form a triangle and for all p, q there exists M such that $p, q \mid M$, then there exist p, P such that $p \nmid P$.
- (18) If there exist a, b, c, d such that a, b, c, d form a quadrangle, then there exist a, b, c such that a, b, c form a triangle.
- (19) If a, b, c form a triangle and $a, b \mid P$ and $a, c \mid Q$, then $P \neq Q$.
- (20) If a, b, c, d form a quadrangle and $a, b \mid P$ and $a, c \mid Q$ and $a, d \mid R$, then P, Q, R are mutually different.
- (21) Suppose G is configuration and $a \mid P, Q, R$ and P, Q, R are mutually different and $a \nmid A$ and $p \mid A, P$ and $q \mid A, Q$ and $r \mid A, R$. Then p, q, r are mutually different.
- (22) Suppose that
 - (i) G is configuration,
 - (ii) for all p, q there exists M such that $p, q \mid M$,
 - (iii) for all P, Q there exists a such that $a \mid P, Q$, and
 - (iv) there exist a, b, c, d such that a, b, c, d form a quadrangle. Given P. Then there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$.
- (23) G is an incidence projective plane if and only if the following conditions are satisfied:
 - (i) G is configuration,
 - (ii) for all p, q there exists M such that $p, q \mid M$,
 - (iii) for all P, Q there exists a such that $a \mid P, Q$, and
 - (iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

We adopt the following convention: G will denote an incidence projective plane, a, q will denote points of G, and A, B will denote lines of G.

Let us consider G, A, B. Let us assume that $A \neq B$. The functor $A \cdot B$ yields a point of G and is defined by:

 $(Def.9) \quad A \cdot B \mid A, B.$

Next we state two propositions:

- (24) If $A \neq B$, then $A \cdot B \mid A$ and $A \cdot B \mid B$ and $A \cdot B = B \cdot A$ and if $a \mid A$ and $a \mid B$, then $a = A \cdot B$.
- (25) If $A \neq B$ and $a \mid A$ and $q \nmid A$ and $a \neq A \cdot B$, then $q \cdot a \cdot B \mid B$ and $q \cdot a \cdot B \nmid A$.

3. Some Useful Propositions

We adopt the following convention: G denotes a projective space defined in terms of incidence and a, b, c, d denote points of G.

We now state two propositions:

- (26) If a, b, c form a triangle, then a, b, c are mutually different.
- (27) If a, b, c, d form a quadrangle, then a, b, c, d are mutually different.

In the sequel G will be an incidence projective plane.

One can prove the following propositions:

- (28) For all points a, b, c, d of G such that $a \cdot c = b \cdot d$ holds a = c or b = d or c = d or $a \cdot c = c \cdot d$.
- (29) For all points a, b, c, d of G such that $a \cdot c = b \cdot d$ holds a = c or b = d or c = d or $a \mid c \cdot d$.
- (30) Let G be an incidence projective plane, and let e, m, m' be points of G, and let I be a line of G. If $m \mid I$ and $m' \mid I$ and $m \neq m'$ and $e \nmid I$, then $m \cdot e \neq m' \cdot e$ and $e \cdot m \neq e \cdot m'$.
- (31) Let G be an incidence projective plane, and let e be a point of G, and let I, L_1 , L_2 be lines of G. If $e \mid L_1$ and $e \mid L_2$ and $L_1 \neq L_2$ and $e \nmid I$, then $I \cdot L_1 \neq I \cdot L_2$ and $L_1 \cdot I \neq L_2 \cdot I$.
- (32) Let G be a projective space defined in terms of incidence and let a, b, q, q_1 be points of G. If $q \mid a \cdot b$ and $q \mid a \cdot q_1$ and $q \neq a$ and $q_1 \neq a$ and $a \neq b$, then $q_1 \mid a \cdot b$.
- (33) Let G be a projective space defined in terms of incidence and let a, b, c be points of G. If $c \mid a \cdot b$ and $a \neq c$, then $b \mid a \cdot c$.
- (34) Let G be an incidence projective plane, and let q_1, q_2, r_1, r_2 be points of G, and let H be a line of G. If $r_1 \neq r_2$ and $r_1 \mid H$ and $r_2 \mid H$ and $q_1 \nmid H$ and $q_2 \nmid H$, then $q_1 \cdot r_1 \neq q_2 \cdot r_2$.
- (35) For all points a, b, c of G such that $a \mid b \cdot c$ holds a = c or b = c or $b \mid c \cdot a$.
- (36) For all points a, b, c of G such that $a \mid b \cdot c$ holds b = a or b = c or $c \mid b \cdot a$.

(37) Let e, x_1, x_2, p_1, p_2 be points of G and let H, I be lines of G. Suppose $x_1 \mid I \text{ and } x_2 \mid I \text{ and } e \mid H \text{ and } e \nmid I \text{ and } x_1 \neq x_2 \text{ and } p_1 \neq e \text{ and } p_2 \neq e$ and $p_1 \mid e \cdot x_1$ and $p_2 \mid e \cdot x_2$. Then there exists a point r of G such that $r \mid p_1 \cdot p_2$ and $r \mid H$ and $r \neq e$.

References

- [1]Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225–232, 1991. Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
- [2]1(1):97–105, 1990.

Received July 28, 1994