Projective Planes

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. The line of points a, b, denoted by $a \cdot b$ and the point of lines A, B denoted by $A \cdot B$ are defined. A few basic theorems related to these notions are proved. An inspiration for such approach comes from so called Leibniz program. Let us recall that the Leibniz program is a program of algebraization of geometry using purely geometric notions. Leibniz formulated his program in opposition to algebraization method developed by Descartes.

MML Identifier: PROJPL_1.

The terminology and notation used in this paper are introduced in the papers [2] and [1].

1. Projective Spaces

In this paper G will denote a projective incidence structure.
Let us consider G. A point of G is an element of the points of G. A line of G is an element of the lines of G.

We adopt the following rules: $a, a_{1}, a_{2}, b, b_{1}, b_{2}, c, d, p, q, r$ will be points of G and A, B, M, N, P, Q, R will be lines of G.

Let us consider G, a, P. We introduce $a \nmid P$ as an antonym of $a \mid P$.
Let us consider G, a, b, P. The predicate $a, b \nmid P$ is defined as follows:
(Def.1) $\quad a \nmid P$ and $b \nmid P$.
Let us consider G, a, P, Q. The predicate $a \mid P, Q$ is defined as follows:
(Def.2) $\quad a \mid P$ and $a \mid Q$.
Let us consider G, a, P, Q, R. The predicate $a \mid P, Q, R$ is defined as follows:
(Def.3) $\quad a \mid P$ and $a \mid Q$ and $a \mid R$.
We now state the proposition
(1) (i) If $a, b \mid P$, then $b, a \mid P$,
(ii) if $a, b, c \mid P$, then $a, c, b \mid P$ and $b, a, c \mid P$ and $b, c, a \mid P$ and $c, a, b \mid P$ and $c, b, a \mid P$,
(iii) if $a \mid P, Q$, then $a \mid Q, P$, and
(iv) if $a \mid P, Q, R$, then $a \mid P, R, Q$ and $a \mid Q, P, R$ and $a \mid Q, R, P$ and $a \mid R, P, Q$ and $a \mid R, Q, P$.
A projective incidence structure is configuration if:
(Def.4) For all points p, q of it and for all lines P, Q of it such that $p \mid P$ and $q \mid P$ and $p \mid Q$ and $q \mid Q$ holds $p=q$ or $P=Q$.
We now state three propositions:
(2) $\quad G$ is configuration iff for all p, q, P, Q such that $p, q \mid P$ and $p, q \mid Q$ holds $p=q$ or $P=Q$.
(3) $\quad G$ is configuration iff for all p, q, P, Q such that $p \mid P, Q$ and $q \mid P, Q$ holds $p=q$ or $P=Q$.
(4) The following statements are equivalent
(i) G is a projective space defined in terms of incidence,
(ii) $\quad G$ is configuration and for all p, q there exists P such that $p, q \mid P$ and there exist p, P such that $p \nmid P$ and for every P there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$ and for all a, b, c, d, p, M, N, P, Q such that $a, b, p \mid M$ and $c, d, p \mid N$ and $a, c \mid P$ and $b, d \mid Q$ and $p \nmid P$ and $p \nmid Q$ and $M \neq N$ there exists q such that $q \mid P, Q$.
An incidence projective plane is a 2 -dimensional projective space defined in terms of incidence.

Let us consider G, a, b, c. We say that a, b and c are collinear if and only if: (Def.5) There exists P such that $a, b, c \mid P$.
We introduce a, b, c form a triangle as an antonym of a, b and c are collinear.
Next we state two propositions:
(5) $\quad a, b$ and c are collinear iff there exists P such that $a \mid P$ and $b \mid P$ and $c \mid P$.
(6) a, b, c form a triangle iff for every P holds $a \nmid P$ or $b \nmid P$ or $c \nmid P$.

Let us consider G, a, b, c, d. We say that a, b, c, d form a quadrangle if and only if the conditions (Def.6) are satisfied.
(Def.6) (i) $\quad a, b, c$ form a triangle,
(ii) b, c, d form a triangle,
(iii) c, d, a form a triangle, and
(iv) d, a, b form a triangle.

One can prove the following propositions:
(7) If G is a projective space defined in terms of incidence, then there exist A, B such that $A \neq B$.
(8) Suppose G is a projective space defined in terms of incidence and $a \mid A$. Then there exist b, c such that $b, c \mid A$ and a, b, c are mutually different.
(9) Suppose G is a projective space defined in terms of incidence and $a \mid A$ and $A \neq B$. Then there exists b such that $b \mid A$ and $b \nmid B$ and $a \neq b$.
(10) If G is configuration and $a_{1}, a_{2} \mid A$ and $a_{1} \neq a_{2}$ and $b \nmid A$, then a_{1}, a_{2}, b form a triangle.
(11) Suppose a, b and c are collinear. Then
(i) a, c and b are collinear,
(ii) b, a and c are collinear,
(iii) b, c and a are collinear,
(iv) c, a and b are collinear, and
(v) c, b and a are collinear.
(12) Suppose a, b, c form a triangle. Then
(i) a, c, b form a triangle,
(ii) b, a, c form a triangle,
(iii) b, c, a form a triangle,
(iv) c, a, b form a triangle, and
(v) c, b, a form a triangle.
(13) Suppose a, b, c, d form a quadrangle. Then
(i) a, c, b, d form a quadrangle,
(ii) b, a, c, d form a quadrangle,
(iii) b, c, a, d form a quadrangle,
(iv) c, a, b, d form a quadrangle,
(v) c, b, a, d form a quadrangle,
(vi) a, b, d, c form a quadrangle,
(vii) a, c, d, b form a quadrangle,
(viii) b, a, d, c form a quadrangle,
(ix) b, c, d, a form a quadrangle,
(x) c, a, d, b form a quadrangle,
(xi) c, b, d, a form a quadrangle,
(xii) a, d, b, c form a quadrangle,
(xiii) a, d, c, b form a quadrangle,
(xiv) b, d, a, c form a quadrangle,
(xv) b, d, c, a form a quadrangle,
(xvi) c, d, a, b form a quadrangle,
(xvii) c, d, b, a form a quadrangle,
(xviii) d, a, b, c form a quadrangle,
(xix) d, a, c, b form a quadrangle,
(xx) d, b, a, c form a quadrangle,
(xxi) d, b, c, a form a quadrangle,
(xxii) d, c, a, b form a quadrangle, and
(xxiii) d, c, b, a form a quadrangle.
(14) If G is configuration and $a_{1}, a_{2} \mid A$ and $b_{1}, b_{2} \mid B$ and $a_{1}, a_{2} \nmid B$ and $b_{1}, b_{2} \nmid A$ and $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$, then $a_{1}, a_{2}, b_{1}, b_{2}$ form a quadrangle.
(15) Suppose G is a projective space defined in terms of incidence. Then there exist a, b, c, d such that a, b, c, d form a quadrangle.

Let G be a projective space defined in terms of incidence. An element of : the points of G, the points of G, the points of G, the points of G : is called a quadrangle of G if:
(Def.7) $\mathrm{it}_{\mathbf{1}}, \mathrm{it}_{\mathbf{2}}, \mathrm{it}_{\mathbf{3}}, \mathrm{it}_{\mathbf{4}}$ form a quadrangle.
Let G be a projective space defined in terms of incidence and let a, b be points of G. Let us assume that $a \neq b$. The functor $a \cdot b$ yields a line of G and is defined as follows:
(Def.8) $a, b \mid a \cdot b$.
Next we state the proposition
(16) Let G be a projective space defined in terms of incidence, and let a, b be points of G, and let L be a line of G. Suppose $a \neq b$. Then $a \mid a \cdot b$ and $b \mid a \cdot b$ and $a \cdot b=b \cdot a$ and if $a \mid L$ and $b \mid L$, then $L=a \cdot b$.

2. Projective Planes

The following propositions are true:
(17) If there exist a, b, c such that a, b, c form a triangle and for all p, q there exists M such that $p, q \mid M$, then there exist p, P such that $p \nmid P$.
(18) If there exist a, b, c, d such that a, b, c, d form a quadrangle, then there exist a, b, c such that a, b, c form a triangle.
(19) If a, b, c form a triangle and $a, b \mid P$ and $a, c \mid Q$, then $P \neq Q$.
(20) If a, b, c, d form a quadrangle and $a, b \mid P$ and $a, c \mid Q$ and $a, d \mid R$, then P, Q, R are mutually different.
(21) Suppose G is configuration and $a \mid P, Q, R$ and P, Q, R are mutually different and $a \nmid A$ and $p \mid A, P$ and $q \mid A, Q$ and $r \mid A, R$. Then p, q, r are mutually different.
(22) Suppose that
(i) G is configuration,
(ii) for all p, q there exists M such that $p, q \mid M$,
(iii) for all P, Q there exists a such that $a \mid P, Q$, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

Given P. Then there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$.
(23) G is an incidence projective plane if and only if the following conditions are satisfied:
(i) G is configuration,
(ii) for all p, q there exists M such that $p, q \mid M$,
(iii) for all P, Q there exists a such that $a \mid P, Q$, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

We adopt the following convention: G will denote an incidence projective plane, a, q will denote points of G, and A, B will denote lines of G.

Let us consider G, A, B. Let us assume that $A \neq B$. The functor $A \cdot B$ yields a point of G and is defined by:

(Def.9) $A \cdot B \mid A, B$.

Next we state two propositions:
(24) If $A \neq B$, then $A \cdot B \mid A$ and $A \cdot B \mid B$ and $A \cdot B=B \cdot A$ and if $a \mid A$ and $a \mid B$, then $a=A \cdot B$.
(25) If $A \neq B$ and $a \mid A$ and $q \nmid A$ and $a \neq A \cdot B$, then $q \cdot a \cdot B \mid B$ and $q \cdot a \cdot B \nmid A$.

3. Some Useful Propositions

We adopt the following convention: G denotes a projective space defined in terms of incidence and a, b, c, d denote points of G.

We now state two propositions:
(26) If a, b, c form a triangle, then a, b, c are mutually different.
(27) If a, b, c, d form a quadrangle, then a, b, c, d are mutually different.

In the sequel G will be an incidence projective plane.
One can prove the following propositions:
(28) For all points a, b, c, d of G such that $a \cdot c=b \cdot d$ holds $a=c$ or $b=d$ or $c=d$ or $a \cdot c=c \cdot d$.
(29) For all points a, b, c, d of G such that $a \cdot c=b \cdot d$ holds $a=c$ or $b=d$ or $c=d$ or $a \mid c \cdot d$.
(30) Let G be an incidence projective plane, and let e, m, m^{\prime} be points of G, and let I be a line of G. If $m \mid I$ and $m^{\prime} \mid I$ and $m \neq m^{\prime}$ and $e \nmid I$, then $m \cdot e \neq m^{\prime} \cdot e$ and $e \cdot m \neq e \cdot m^{\prime}$.
(31) Let G be an incidence projective plane, and let e be a point of G, and let I, L_{1}, L_{2} be lines of G. If $e \mid L_{1}$ and $e \mid L_{2}$ and $L_{1} \neq L_{2}$ and $e \nmid I$, then $I \cdot L_{1} \neq I \cdot L_{2}$ and $L_{1} \cdot I \neq L_{2} \cdot I$.
(32) Let G be a projective space defined in terms of incidence and let a, b, q, q_{1} be points of G. If $q \mid a \cdot b$ and $q \mid a \cdot q_{1}$ and $q \neq a$ and $q_{1} \neq a$ and $a \neq b$, then $q_{1} \mid a \cdot b$.
(33) Let G be a projective space defined in terms of incidence and let a, b, c be points of G. If $c \mid a \cdot b$ and $a \neq c$, then $b \mid a \cdot c$.
(34) Let G be an incidence projective plane, and let $q_{1}, q_{2}, r_{1}, r_{2}$ be points of G, and let H be a line of G. If $r_{1} \neq r_{2}$ and $r_{1} \mid H$ and $r_{2} \mid H$ and $q_{1} \nmid H$ and $q_{2} \nmid H$, then $q_{1} \cdot r_{1} \neq q_{2} \cdot r_{2}$.
(35) For all points a, b, c of G such that $a \mid b \cdot c$ holds $a=c$ or $b=c$ or $b \mid c \cdot a$.
(36) For all points a, b, c of G such that $a \mid b \cdot c$ holds $b=a$ or $b=c$ or $c \mid b \cdot a$.
(37) Let $e, x_{1}, x_{2}, p_{1}, p_{2}$ be points of G and let H, I be lines of G. Suppose $x_{1} \mid I$ and $x_{2} \mid I$ and $e \mid H$ and $e \nmid I$ and $x_{1} \neq x_{2}$ and $p_{1} \neq e$ and $p_{2} \neq e$ and $p_{1} \mid e \cdot x_{1}$ and $p_{2} \mid e \cdot x_{2}$. Then there exists a point r of G such that $r \mid p_{1} \cdot p_{2}$ and $r \mid H$ and $r \neq e$.

References

[1] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[2] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received July 28, 1994

