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Summary. This article introduces the construction of a many
sorted quotient algebra. A few preliminary notions such as a many sorted
relation, a many sorted equivalence relation, a many sorted congruence
and the set of all classes of a many sorted relation are also formulated.

MML Identifier: MSUALG_4.

The notation and terminology used here are introduced in the following papers:
[13], [15], [5], [16], [10], [6], [2], [4], [1], [14], [12], [8], [11], [3], [7], and [9].

1. MANY SORTED RELATION

In this paper S will be a non void non empty many sorted signature and o
will be an operation symbol of S.
A function is binary relation yielding if:
(Def.1)  For arbitrary x such that = € domit holds it(x) is a binary relation.

Let I be a set. Observe that there exists a many sorted set of I which is
binary relation yielding.

Let I be a set. A many sorted relation of I is a binary relation yielding many
sorted set of I.

Let I be a set and let A, B be many sorted sets of I. A many sorted set of
I is said to be a many sorted relation between A and B if:

(Def.2)  For arbitrary ¢ such that ¢ € I holds it(4) is a relation between A(7) and
B(i).

Let I be a set and let A, B be many sorted sets of I. Note that every many
sorted relation between A and B is binary relation yielding.

Let I be a set and let A be a many sorted set of I. A many sorted relation
of A is a many sorted relation between A and A.
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Let I be a set and let A be a many sorted set of . A many sorted relation
of A is equivalence if it satisfies the condition (Def.3).

(Def.3)  Let i be arbitrary and let R be a binary relation on A(4). If i € I and
it(¢) = R, then R is an equivalence relation of A(7).

Let I be a non empty set, let A, B be many sorted sets of I, let F' be a many
sorted relation between A and B, and let i be an element of I. Then F(i) is a
relation between A(i) and B(7).

Let S be a non empty many sorted signature and let U; be an algebra over

S

(Def.4) A many sorted relation of the sorts of U; is said to be a many sorted
relation of Uj.

Let S be a non empty many sorted signature and let U; be an algebra over
S. A many sorted relation of U; is equivalence if:

(Def.5) It is equivalence.

Let S be a non void non empty many sorted signature and let U; be an
algebra over S. Note that there exists a many sorted relation of U; which is
equivalence.

One can prove the following proposition

(1) Let S be a non void non empty many sorted signature, and let U; be
an algebra over S, and let R be an equivalence many sorted relation of
Ui, and let s be a sort symbol of S. Then R(s) is an equivalence relation
of (the sorts of Uy)(s).

Let S be a non void non empty many sorted signature and let U; be a non-
empty algebra over S. An equivalence many sorted relation of Uj is called a
congruence of Uy if it satisfies the condition (Def.6).

(Def.6) Let o be an operation symbol of S and let =, y be elements of
Args(o,U71). Suppose that for every natural number n such that
n € domx holds (x(n), y(n)) € it(m, Arity(o)). Then ((Den(o,U;))(z),
(Den(o,U7))(y)) € it(the result sort of o).

Let S be a non void non empty many sorted signature, let U; be an algebra
over S, let R be an equivalence many sorted relation of Uy, and let ¢ be an
element of the carrier of S. Then R(i) is an equivalence relation of (the sorts of
U1)(i).

Let S be a non void non empty many sorted signature, let Uy be an algebra
over S, let R be an equivalence many sorted relation of Uy, let ¢ be an element
of the carrier of S, and let = be an element of (the sorts of U1)(7). The functor
[z]; vields a subset of (the sorts of U;)(i) and is defined by:

(Def.7)  [z]g = [x]R(i)‘

Let us consider S, let Uy be a non-empty algebra over S, and let R be a
congruence of U;. The functor Classes R yields a non-empty many sorted set of
the carrier of S and is defined by:

(Def.8)  For every element s of the carrier of S holds (Classes R)(s) =
Classes R(s).
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2. MANY SORTED QUOTIENT ALGEBRA

Let us consider S, let M7y, M5 be many sorted sets of the operation symbols
of S, let F' be a many sorted function from M; into M5, and let o be an operation
symbol of S. Then F(o) is a function from M; (o) into Ms(0).

Let I be a non empty set, let p be a finite sequence of elements of I, and let
X be a non-empty many sorted set of I. Then X - p is a non-empty many sorted
set of dom p.

Let us consider S, o, let A be a non-empty algebra over S, let R be a
congruence of A, and let = be an element of Args(o, A). The functor R#x yields
an element of [J(Classes R - Arity (o)) and is defined as follows:

(Def.9) For every natural number n such that n € dom Arity(o) holds
(Rftz)(n) = [l’(n)]}z(wn Arity(0))*
Let us consider S, o, let A be a non-empty algebra over S, and let R be
a congruence of A. The functor QuotRes(R,0) yielding a function from ((the
sorts of A) - (the result sort of S))(o) into (Classes R - (the result sort of S))(0)
is defined as follows:

(Def.10)  For every element z of (the sorts of A)(the result sort of o) holds
(QuotRes(R, 0)(z) = [2] .
The functor QuotArgs(R, o) yielding a function from ((the sorts of A)# - (the
arity of S))(o) into ((Classes R)* - (the arity of S))(0) is defined as follows:
(Def.11)  For every element = of Args(o, A) holds (QuotArgs(R,0))(z) = R#x.

Let us consider S, let A be a non-empty algebra over S, and let R be a
congruence of A. The functor QuotRes(R) yielding a many sorted function
from (the sorts of A) - (the result sort of S) into Classes R - (the result sort of .S)
is defined as follows:

(Def.12)  For every operation symbol o of S holds (QuotRes(R))(o) =
QuotRes(R, o).

The functor QuotArgs(R) yielding a many sorted function from (the sorts of
A)# - (the arity of S) into (Classes R)¥ - (the arity of S) is defined as follows:

(Def.13)  For every operation symbol o of S holds (QuotArgs(R))(o) =
QuotArgs(R, o).
Next we state the proposition
(2) Let A be a non-empty algebra over S, and let R be a congruence of A,
and let * be arbitrary. Suppose x € ((Classes R)* - (the arity of S))(o).
Then there exists an element a of Args(o, A) such that x = R#a.
Let us consider S, o, let A be a non-empty algebra over S, and let R be
a congruence of A. The functor QuotCharact(R,o0) yields a function from

((Classes R)* - (the arity of S))(0) into (Classes R - (the result sort of S))(0)
and is defined as follows:
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(Def.14)  For every element a of Args(o, A) such that R#a € ((Classes R)™ -
(the arity of S))(o) holds (QuotCharact(R,0))(R#a) = (QuotRes(R,0) -
Den(o, A))(a).

Let us consider S, let A be a non-empty algebra over S, and let R be a
congruence of A. The functor QuotCharact(R) yielding a many sorted function
from (Classes R)¥ - (the arity of S) into Classes R-(the result sort of S) is defined
as follows:

(Def.15)  For every operation symbol o of S holds (QuotCharact(R))(o) =
QuotCharact(R, o).
Let us consider S, let U; be a non-empty algebra over S, and let R be
a congruence of U;. The functor QuotMSAlg(R) yielding a strict non-empty
algebra over S is defined by:

(Def.16)  QuotMSAlg(R) = (Classes R, QuotCharact(R)).
Let us consider S, let Uy be a non-empty algebra over S, let R be a congruence

of Uy, and let s be a sort symbol of S. The functor MSNatHom (U1, R, s) yielding
a function from (the sorts of Uy)(s) into (Classes R)(s) is defined as follows:

(Def.17)  For arbitrary x such that z € (the sorts of Uj)(s) holds
(MSNatHom(U1, R, 5))(z) = [2] p(s)-
Let us consider S, let U; be a non-empty algebra over S, and let R be

a congruence of U;. The functor MSNatHom(Uy, R) yielding a many sorted
function from U into QuotMSAlg(R) is defined by:

(Def.18)  For every sort symbol s of S holds (MSNatHom(Ui, R))(s) =
MSNatHom(Uy, R, s).

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, and let U; be
a non-empty algebra over S, and let R be a congruence of U;. Then
MSNatHom (U, R) is an epimorphism of U; onto QuotMSAlg(R).

Let us consider S, let Uy, Uy be non-empty algebras over S, let F' be a many
sorted function from U; into Us, and let s be a sort symbol of S. The functor
Congruence(F, s) yields an equivalence relation of (the sorts of Uj)(s) and is
defined as follows:

(Def.19)  For all elements x, y of (the sorts of Ujp)(s) holds (z,y) €
Congruence(F, s) iff F'(s)(z) = F(s)(y).

Let us consider S, let Uy, Uy be non-empty algebras over S, and let F' be a
many sorted function from U7 into Us. Let us assume that F' is a homomorphism
of U; into Usy. The functor Congruence(F') yielding a congruence of U; is defined
by:

(Def.20)  For every sort symbol s of S holds (Congruence(F))(s) =
Congruence(F, s).

Let us consider S, let Uy, Uy be non-empty algebras over S, let F' be a many
sorted function from U; into Us, and let s be a sort symbol of S. Let us assume
that F' is a homomorphism of Uy into Us. The functor MSHomQuot(F, s) yields
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ction from (the sorts of QuotMSAlg(Congruence(F')))(s) into (the sorts of

Us)(s) and is defined as follows:

(Def.21)

For every element x of (the sorts of U;)(s) holds (MSHomQuot(F, s))
([w]Congrucncc(F,s)) = F(S)($)

Let us consider S, let Uy, Uy be non-empty algebras over S, and let F' be a
many sorted function from U; into Us. Let us assume that F' is a homomorphism

of Uy
Quot

(Def.22)

into Us. The functor MSHomQuot(F') yields a many sorted function from
MSAlg(Congruence(F')) into Uz and is defined by:
For every sort symbol s of S holds (MSHomQuot(F))(s) =
MSHomQuot(F, s).

The following propositions are true:

(4)
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[10]

1]
[12]

Let S be a non void non empty many sorted signature, and let Uy,
Uy be non-empty algebras over S, and let F' be a many sorted function
from Up into Us. Suppose F' is a homomorphism of U; into Us. Then
MSHomQuot(F') is a monomorphism of QuotMSAlg(Congruence(F)) into
Us.

Let S be a non void non empty many sorted signature, and let Uy,
Uy be non-empty algebras over S, and let F' be a many sorted function
from U; into Us. Suppose F' is an epimorphism of U; onto Us. Then
MSHomQuot(F') is an isomorphism of QuotMSAlg(Congruence(F')) and
Us.

Let S be a non void non empty many sorted signature, and let Uj,
U; be non-empty algebras over S, and let F' be a many sorted func-
tion from Uy into Us. If F is an epimorphism of U; onto Us, then
QuotMSAlg(Congruence(F)) and Us are isomorphic.
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