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1. Preliminaries

The following proposition is true

(1) Let I be a set, and let J be a non empty set, and let f be a function
from I into J∗, and let X be a many sorted set of J , and let p be an
element of J∗, and let x be arbitrary. If x ∈ I and p = f(x), then
(X# · f)(x) =

∏
(X · p).

Let I be a set, let A, B be many sorted sets of I, let C be a many sorted
subset of A, and let F be a many sorted function from A into B. The functor
F

�
C yielding a many sorted function from C into B is defined as follows:

(Def.1) For arbitrary i such that i ∈ I and for every function f from A(i) into
B(i) such that f = F (i) holds (F

�
C)(i) = f

�
C(i).

Let I be a set, let X be a many sorted set of I, and let i be arbitrary. Let
us assume that i ∈ I. The functor coprod(i,X) yields a set and is defined as
follows:

(Def.2) For arbitrary x holds x ∈ coprod(i,X) iff there exists arbitrary a such
that a ∈ X(i) and x = 〈〈a, i〉〉.

Let I be a set and let X be a many sorted set of I. Then disjoint X is a
many sorted set of I and it can be characterized by the condition:

(Def.3) For arbitrary i such that i ∈ I holds (disjoint X)(i) = coprod(i,X).
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We introduce coprod(X) as a synonym of disjoint X.

Let I be a non empty set and let X be a non-empty many sorted set of I.
One can verify that coprod(X) is non-empty.

Let I be a non empty set and let X be a non-empty many sorted set of I.
One can check that

⋃
X is non empty.

We now state the proposition

(2) Let I be a set, and let X be a many sorted set of I, and let i be arbitrary.
If i ∈ I, then X(i) 6= ∅ iff (coprod(X))(i) 6= ∅.

2. Free Many Sorted Universal Algebra - General Notions

Let S be a non void non empty many sorted signature and let U0 be an
algebra over S. A subset of U0 is said to be a generator set of U0 if:

(Def.4) The sorts of Gen(it) = the sorts of U0.

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, and let U0 be a
strict non-empty algebra over S, and let A be a subset of U0. Then A is
a generator set of U0 if and only if Gen(A) = U0.

Let S be a non void non empty many sorted signature and let U0 be a non-
empty algebra over S. A generator set of U0 is free if it satisfies the condition
(Def.5).

(Def.5) Let U1 be a non-empty algebra over S and let f be a many sorted
function from it into the sorts of U1. Then there exists a many sorted
function h from U0 into U1 such that h is a homomorphism of U0 into U1

and h
�
it = f.

Let S be a non void non empty many sorted signature. A non-empty algebra
over S is free if:

(Def.6) There exists generator set of it which is free.

The following proposition is true

(4) Let S be a non void non empty many sorted signature and let X be a
many sorted set of the carrier of S. Then

⋃
coprod(X) ∩ [: the operation

symbols of S, {the carrier of S} :] = ∅.

3. Semidisjoint Many Sorted Signature

Let S be a non void many sorted signature. Note that the operation symbols
of S is non empty.

Let S be a non void non empty many sorted signature and let X be a
many sorted set of the carrier of S. The functor REL(X) yields a relation
between [: the operation symbols of S, {the carrier of S} :] ∪

⋃
coprod(X) and
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([: the operation symbols of S, {the carrier of S} :] ∪
⋃

coprod(X))∗ and is de-
fined by the condition (Def.9).

(Def.9) 1 Let a be an element of [: the operation symbols of S,
{the carrier of S} :] ∪

⋃
coprod(X) and let b be an element of

([: the operation symbols of S, {the carrier of S} :] ∪
⋃

coprod(X))∗. Then
〈〈a, b〉〉 ∈ REL(X) if and only if the following conditions are satisfied:

(i) a ∈ [: the operation symbols of S, {the carrier of S} :], and

(ii) for every operation symbol o of S such that 〈〈o, the carrier of S〉〉 = a

holds len b = len Arity(o) and for arbitrary x such that x ∈ dom b holds
if b(x) ∈ [: the operation symbols of S, {the carrier of S} :], then for
every operation symbol o1 of S such that 〈〈o1, the carrier of S〉〉 = b(x)
holds the result sort of o1 = Arity(o)(x) and if b(x) ∈

⋃
coprod(X), then

b(x) ∈ coprod(Arity(o)(x),X).

In the sequel S will be a non void non empty many sorted
signature, X will be a many sorted set of the carrier of S, o

will be an operation symbol of S, and b will be an element of
([: the operation symbols of S, {the carrier of S} :] ∪

⋃
coprod(X))∗.

Next we state the proposition

(5) 〈〈〈〈o, the carrier of S〉〉, b〉〉 ∈ REL(X) if and only if the following condi-
tions are satisfied:

(i) len b = len Arity(o), and

(ii) for arbitrary x such that x ∈ dom b holds if b(x) ∈ [: the operation sym-
bols of S, {the carrier of S} :], then for every operation symbol o1 of S such
that 〈〈o1, the carrier of S〉〉 = b(x) holds the result sort of o1 = Arity(o)(x)
and if b(x) ∈

⋃
coprod(X), then b(x) ∈ coprod(Arity(o)(x),X).

Let S be a non void non empty many sorted signature and let X be a many
sorted set of the carrier of S. The functor DTConMSA(X) yielding a strict tree
construction structure is defined as follows:

(Def.10) DTConMSA(X) = 〈[: the operation symbols of S, {the carrier of S} :]∪
⋃

coprod(X),REL(X)〉.

Let S be a non void non empty many sorted signature and let X be a many
sorted set of the carrier of S. Observe that DTConMSA(X) is non empty.

We now state the proposition

(6) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then the nonterminals of
DTConMSA(X) = [: the operation symbols of S, {the carrier of S} :] and
the terminals of DTConMSA(X) =

⋃
coprod(X).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. Observe that DTConMSA(X) has
terminals, nonterminals, and useful nonterminals.

One can prove the following proposition

1The definitions (Def.7) and (Def.8) have been removed.
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(7) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set of the carrier of S, and let t be arbitrary.
Then t ∈ the terminals of DTConMSA(X) if and only if there exists a
sort symbol s of S and there exists arbitrary x such that x ∈ X(s) and
t = 〈〈x, s〉〉.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let o be an operation symbol of S. The
functor Sym(o,X) yielding a symbol of DTConMSA(X) is defined by:

(Def.11) Sym(o,X) = 〈〈o, the carrier of S〉〉.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let s be a sort symbol of S. The functor
FreeSort(X, s) yielding a non empty subset of TS(DTConMSA(X)) is defined
by the condition (Def.12).

(Def.12) FreeSort(X, s) = {a : a ranges over elements of TS(DTConMSA(X)),
∨

x
x ∈ X(s) ∧ a = the root tree of 〈〈x, s〉〉 ∨

∨
o

〈〈o, the carrier of
S〉〉 = a(ε) ∧ the result sort of o = s}.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeSorts(X) yielding a
non-empty many sorted set of the carrier of S is defined by:

(Def.13) For every sort symbol s of S holds (FreeSorts(X))(s) = FreeSort(X, s).

The following propositions are true:

(8) Let S be a non void non empty many sorted signature, and let
X be a non-empty many sorted set of the carrier of S, and let o

be an operation symbol of S, and let x be arbitrary. Suppose x ∈
((FreeSorts(X))# · (the arity of S))(o). Then x is a finite sequence of
elements of TS(DTConMSA(X)).

(9) Let S be a non void non empty many sorted signature, and let X

be a non-empty many sorted set of the carrier of S, and let o be an
operation symbol of S, and let p be a finite sequence of elements of
TS(DTConMSA(X)). Then p ∈ ((FreeSorts(X))# · (the arity of S))(o) if
and only if dom p = dom Arity(o) and for every natural number n such
that n ∈ dom p holds p(n) ∈ FreeSort(X,πn Arity(o)).

(10) Let S be a non void non empty many sorted signature, and let X

be a non-empty many sorted set of the carrier of S, and let o be an
operation symbol of S, and let p be a finite sequence of elements of
TS(DTConMSA(X)). Then Sym(o,X) ⇒ the roots of p if and only if
p ∈ ((FreeSorts(X))# · (the arity of S))(o).

(11) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set of the carrier of S, and let o be an operation
symbol of S. Then (FreeSorts(X) · (the result sort of S))(o) 6= ∅.

(12) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then

⋃
rng FreeSorts(X) =

TS(DTConMSA(X)).
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(13) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set of the carrier of S, and let s1, s2 be sort
symbols of S. If s1 6= s2, then (FreeSorts(X))(s1)∩ (FreeSorts(X))(s2) =
∅.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let o be an operation symbol of S. The
functor DenOp(o,X) yielding a function from ((FreeSorts(X))# · (the arity of
S))(o) into (FreeSorts(X) · (the result sort of S))(o) is defined by:

(Def.14) For every finite sequence p of elements of TS(DTConMSA(X)) such that
Sym(o,X) ⇒ the roots of p holds (DenOp(o,X))(p) = Sym(o,X)-tree(p).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeOperations(X)
yielding a many sorted function from (FreeSorts(X))# · (the arity of S) into
FreeSorts(X) · (the result sort of S) is defined as follows:

(Def.15) For every operation symbol o of S holds (FreeOperations(X))(o) =
DenOp(o,X).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor Free(X) yields a strict
non-empty algebra over S and is defined by:

(Def.16) Free(X) = 〈FreeSorts(X),FreeOperations(X)〉.

Let S be a non void non empty many sorted signature, let X be a non-
empty many sorted set of the carrier of S, and let s be a sort symbol of S. The
functor FreeGenerator(s,X) yields a non empty subset of (FreeSorts(X))(s) and
is defined as follows:

(Def.17) For arbitrary x holds x ∈ FreeGenerator(s,X) iff there exists arbitrary
a such that a ∈ X(s) and x = the root tree of 〈〈a, s〉〉.

The following proposition is true

(14) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set of the carrier of S, and let s be a sort symbol of
S. Then FreeGenerator(s,X) = {the root tree of t: t ranges over symbols
of DTConMSA(X), t ∈ the terminals of DTConMSA(X) ∧ t2 = s}.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor FreeGenerator(X) yield-
ing a generator set of Free(X) is defined as follows:

(Def.18) For every sort symbol s of S holds (FreeGenerator(X))(s) =
FreeGenerator(s,X).

We now state two propositions:

(15) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then FreeGenerator(X)
is non-empty.

(16) Let S be a non void non empty many sorted signature and let
X be a non-empty many sorted set of the carrier of S. Then
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⋃
rng FreeGenerator(X) = {the root tree of t: t ranges over symbols

of DTConMSA(X), t ∈ the terminals of DTConMSA(X)}.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let s be a sort symbol of S. The functor
Reverse(s,X) yielding a function from FreeGenerator(s,X) into X(s) is defined
as follows:

(Def.19) For every symbol t of DTConMSA(X) such that the root tree of t ∈
FreeGenerator(s,X) holds (Reverse(s,X))(the root tree of t) = t1.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set of the carrier of S. The functor Reverse(X) yielding a
many sorted function from FreeGenerator(X) into X is defined by:

(Def.20) For every sort symbol s of S holds (Reverse(X))(s) = Reverse(s,X).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, let A be a non-empty many sorted set of the
carrier of S, let F be a many sorted function from FreeGenerator(X) into A,
and let t be a symbol of DTConMSA(X). Let us assume that t ∈ the terminals
of DTConMSA(X). The functor π(F,A, t) yielding an element of

⋃
A is defined

as follows:

(Def.21) For every function f such that f = F (t2) holds π(F,A, t) = f(the root
tree of t).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set of the carrier of S, and let t be a symbol of DTConMSA(X).
Let us assume that there exists a finite sequence p such that t ⇒ p. The functor
@(X, t) yielding an operation symbol of S is defined by:

(Def.22) 〈〈@(X, t), the carrier of S〉〉 = t.

Let S be a non void non empty many sorted signature, let U0 be a non-empty
algebra over S, let o be an operation symbol of S, and let p be a finite sequence.
Let us assume that p ∈ Args(o, U0). The functor π(o, U0, p) yielding an element
of

⋃
(the sorts of U0) is defined by:

(Def.23) π(o, U0, p) = (Den(o, U0))(p).

Next we state two propositions:

(17) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then FreeGenerator(X)
is free.

(18) Let S be a non void non empty many sorted signature and let X be a
non-empty many sorted set of the carrier of S. Then Free(X) is free.

Let S be a non void non empty many sorted signature. One can check that
there exists a non-empty algebra over S which is free and strict.

Let S be a non void non empty many sorted signature and let U0 be a free
non-empty algebra over S. One can verify that there exists a generator set of
U0 which is free.

One can prove the following propositions:
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(19) Let S be a non void non empty many sorted signature and let U1 be
a non-empty algebra over S. Then there exists a strict free non-empty
algebra U0 over S such that there exists many sorted function from U0

into U1 which is an epimorphism of U0 onto U1.

(20) Let S be a non void non empty many sorted signature and let U1 be a
strict non-empty algebra over S. Then there exists a strict free non-empty
algebra U0 over S and there exists a many sorted function F from U0 into
U1 such that F is an epimorphism of U0 onto U1 and ImF = U1.
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