Free Many Sorted Universal Algebra

Beata Perkowska Warsaw University Białystok

 $\label{eq:MML} {\rm MML} \ {\rm Identifier:} \ {\tt MSAFREE}.$

The terminology and notation used in this paper are introduced in the following papers: [21], [24], [25], [11], [22], [12], [7], [18], [13], [10], [2], [4], [5], [23], [14], [6], [1], [16], [3], [8], [20], [17], [19], [9], and [15].

1. Preliminaries

The following proposition is true

(1) Let *I* be a set, and let *J* be a non empty set, and let *f* be a function from *I* into J^* , and let *X* be a many sorted set of *J*, and let *p* be an element of J^* , and let *x* be arbitrary. If $x \in I$ and p = f(x), then $(X^{\#} \cdot f)(x) = \prod (X \cdot p)$.

Let I be a set, let A, B be many sorted sets of I, let C be a many sorted subset of A, and let F be a many sorted function from A into B. The functor $F \upharpoonright C$ yielding a many sorted function from C into B is defined as follows:

(Def.1) For arbitrary *i* such that $i \in I$ and for every function *f* from A(i) into B(i) such that f = F(i) holds $(F \upharpoonright C)(i) = f \upharpoonright C(i)$.

Let I be a set, let X be a many sorted set of I, and let i be arbitrary. Let us assume that $i \in I$. The functor coprod(i, X) yields a set and is defined as follows:

(Def.2) For arbitrary x holds $x \in \text{coprod}(i, X)$ iff there exists arbitrary a such that $a \in X(i)$ and $x = \langle a, i \rangle$.

Let I be a set and let X be a many sorted set of I. Then disjoint X is a many sorted set of I and it can be characterized by the condition:

(Def.3) For arbitrary i such that $i \in I$ holds (disjoint X)(i) = coprod(i, X).

C 1996 Warsaw University - Białystok ISSN 0777-4028 We introduce $\operatorname{coprod}(X)$ as a synonym of disjoint X.

Let I be a non empty set and let X be a non-empty many sorted set of I. One can verify that coprod(X) is non-empty.

Let I be a non empty set and let X be a non-empty many sorted set of I. One can check that $\bigcup X$ is non empty.

We now state the proposition

- (2) Let *I* be a set, and let *X* be a many sorted set of *I*, and let *i* be arbitrary. If $i \in I$, then $X(i) \neq \emptyset$ iff $(\operatorname{coprod}(X))(i) \neq \emptyset$.
 - 2. Free Many Sorted Universal Algebra General Notions

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. A subset of U_0 is said to be a generator set of U_0 if:

(Def.4) The sorts of $Gen(it) = the sorts of U_0$.

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, and let U_0 be a strict non-empty algebra over S, and let A be a subset of U_0 . Then A is a generator set of U_0 if and only if $\text{Gen}(A) = U_0$.

Let S be a non-void non empty many sorted signature and let U_0 be a nonempty algebra over S. A generator set of U_0 is free if it satisfies the condition (Def.5).

(Def.5) Let U_1 be a non-empty algebra over S and let f be a many sorted function from it into the sorts of U_1 . Then there exists a many sorted function h from U_0 into U_1 such that h is a homomorphism of U_0 into U_1 and $h \upharpoonright it = f$.

Let S be a non void non empty many sorted signature. A non-empty algebra over S is free if:

(Def.6) There exists generator set of it which is free.

The following proposition is true

- (4) Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. Then $\bigcup \operatorname{coprod}(X) \cap [$ the operation symbols of S, {the carrier of S} $] = \emptyset$.
 - 3. Semidisjoint Many Sorted Signature

Let S be a non void many sorted signature. Note that the operation symbols of S is non empty.

Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. The functor REL(X) yields a relation between [the operation symbols of S, {the carrier of S}] $\cup \bigcup \text{coprod}(X)$ and ([the operation symbols of S, {the carrier of S}] $\cup \bigcup \operatorname{coprod}(X)$)^{*} and is defined by the condition (Def.9).

- $(\text{Def.9})^1$ Let a be an element of [the operation symbols of S, {the carrier of S}] $\cup \bigcup \text{coprod}(X)$ and let b be an element of ([the operation symbols of S, {the carrier of S}] $\cup \bigcup \text{coprod}(X)$)*. Then $\langle a, b \rangle \in \text{REL}(X)$ if and only if the following conditions are satisfied:
 - (i) $a \in [$ the operation symbols of S, {the carrier of S}], and
 - (ii) for every operation symbol o of S such that $\langle o,$ the carrier of $S \rangle = a$ holds len b = len Arity(o) and for arbitrary x such that $x \in$ dom b holds if $b(x) \in [$ the operation symbols of S, {the carrier of $S \}]$, then for every operation symbol o_1 of S such that $\langle o_1,$ the carrier of $S \rangle = b(x)$ holds the result sort of $o_1 =$ Arity(o)(x) and if $b(x) \in \bigcup$ coprod(X), then $b(x) \in$ coprod(Arity(o)(x), X).

In the sequel S will be a non void non empty many sorted signature, X will be a many sorted set of the carrier of S, owill be an operation symbol of S, and b will be an element of ([the operation symbols of S, {the carrier of S}] $\cup \bigcup \operatorname{coprod}(X)$)*.

Next we state the proposition

- (5) $\langle \langle o, \text{ the carrier of } S \rangle, b \rangle \in \text{REL}(X)$ if and only if the following conditions are satisfied:
 - (i) $\operatorname{len} b = \operatorname{len} \operatorname{Arity}(o)$, and
- (ii) for arbitrary x such that $x \in \text{dom } b$ holds if $b(x) \in [$ the operation symbols of S, {the carrier of S}], then for every operation symbol o_1 of S such that $\langle o_1, \text{ the carrier of } S \rangle = b(x)$ holds the result sort of $o_1 = \text{Arity}(o)(x)$ and if $b(x) \in \bigcup \text{coprod}(X)$, then $b(x) \in \text{coprod}(\text{Arity}(o)(x), X)$.

Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. The functor DTConMSA(X) yielding a strict tree construction structure is defined as follows:

(Def.10) DTConMSA(X) = $\langle [\text{the operation symbols of } S, \{ \text{the carrier of } S \}] \cup \cup \operatorname{coprod}(X), \operatorname{REL}(X) \rangle.$

Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. Observe that DTConMSA(X) is non empty.

We now state the proposition

(6) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then the nonterminals of DTConMSA(X) = [the operation symbols of S, {the carrier of S}] and the terminals of DTConMSA(X) = ∪ coprod(X).

Let S be a non-void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. Observe that DTConMSA(X) has terminals, nonterminals, and useful nonterminals.

One can prove the following proposition

¹The definitions (Def.7) and (Def.8) have been removed.

(7) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let t be arbitrary. Then $t \in$ the terminals of DTConMSA(X) if and only if there exists a sort symbol s of S and there exists arbitrary x such that $x \in X(s)$ and $t = \langle x, s \rangle$.

Let S be a non-void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. The functor Sym(o, X) yielding a symbol of DTConMSA(X) is defined by:

(Def.11) Sym $(o, X) = \langle o, \text{ the carrier of } S \rangle$.

Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor $\operatorname{FreeSort}(X, s)$ yielding a non empty subset of $\operatorname{TS}(\operatorname{DTConMSA}(X))$ is defined by the condition (Def.12).

(Def.12) FreeSort(X, s) = {a : a ranges over elements of TS(DTConMSA(X)), $\bigvee_x x \in X(s) \land a =$ the root tree of $\langle x, s \rangle \lor \bigvee_o \langle o,$ the carrier of $S \rangle = a(\varepsilon) \land$ the result sort of o = s}.

Let S be a non-void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeSorts(X) yielding a non-empty many sorted set of the carrier of S is defined by:

(Def.13) For every sort symbol s of S holds $(\operatorname{FreeSorts}(X))(s) = \operatorname{FreeSort}(X, s)$. The following propositions are true:

- (8) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let x be arbitrary. Suppose $x \in ((\operatorname{FreeSorts}(X))^{\#} \cdot (\operatorname{the arity of } S))(o)$. Then x is a finite sequence of elements of $\operatorname{TS}(\operatorname{DTConMSA}(X))$.
- (9) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let p be a finite sequence of elements of TS(DTConMSA(X)). Then $p \in ((FreeSorts(X))^{\#} \cdot (\text{the arity of } S))(o)$ if and only if dom p = dom Arity(o) and for every natural number n such that $n \in \text{dom } p$ holds $p(n) \in FreeSort(X, \pi_n \operatorname{Arity}(o))$.
- (10) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let p be a finite sequence of elements of TS(DTConMSA(X)). Then $Sym(o, X) \Rightarrow$ the roots of p if and only if $p \in ((FreeSorts(X))^{\#} \cdot (the arity of S))(o)$.
- (11) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. Then $(\text{FreeSorts}(X) \cdot (\text{the result sort of } S))(o) \neq \emptyset$.
- (12) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then \bigcup rng FreeSorts(X) = TS(DTConMSA(X)).

(13) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let s_1 , s_2 be sort symbols of S. If $s_1 \neq s_2$, then $(\text{FreeSorts}(X))(s_1) \cap (\text{FreeSorts}(X))(s_2) = \emptyset$.

Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. The functor DenOp(o, X) yielding a function from $((\text{FreeSorts}(X))^{\#} \cdot (\text{the arity of } S))(o)$ into $(\text{FreeSorts}(X) \cdot (\text{the result sort of } S))(o)$ is defined by:

(Def.14) For every finite sequence p of elements of TS(DTConMSA(X)) such that $Sym(o, X) \Rightarrow$ the roots of p holds (DenOp(o, X))(p) = Sym(o, X)-tree(p).

Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeOperations(X) yielding a many sorted function from $(\operatorname{FreeSorts}(X))^{\#} \cdot (\text{the arity of } S)$ into $\operatorname{FreeSorts}(X) \cdot (\text{the result sort of } S)$ is defined as follows:

(Def.15) For every operation symbol o of S holds (FreeOperations(X))(o) = DenOp(o, X).

Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor Free(X) yields a strict non-empty algebra over S and is defined by:

(Def.16) $\operatorname{Free}(X) = \langle \operatorname{FreeSorts}(X), \operatorname{FreeOperations}(X) \rangle.$

Let S be a non-void non empty many sorted signature, let X be a nonempty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor FreeGenerator(s, X) yields a non empty subset of (FreeSorts(X))(s) and is defined as follows:

(Def.17) For arbitrary x holds $x \in \text{FreeGenerator}(s, X)$ iff there exists arbitrary a such that $a \in X(s)$ and $x = \text{the root tree of } \langle a, s \rangle$.

The following proposition is true

(14) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. Then FreeGenerator $(s, X) = \{$ the root tree of t: t ranges over symbols of DTConMSA(X), $t \in$ the terminals of DTConMSA(X) $\land t_2 = s \}$.

Let S be a non-void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeGenerator(X) yielding a generator set of Free(X) is defined as follows:

(Def.18) For every sort symbol s of S holds (FreeGenerator(X))(s) = FreeGenerator(s, X).

We now state two propositions:

- (15) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then FreeGenerator(X) is non-empty.
- (16) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then

 \bigcup rng FreeGenerator $(X) = \{$ the root tree of t: t ranges over symbols of DTConMSA $(X), t \in$ the terminals of DTConMSA $(X) \}$.

Let S be a non-void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor Reverse(s, X) yielding a function from FreeGenerator(s, X) into X(s) is defined as follows:

(Def.19) For every symbol t of DTConMSA(X) such that the root tree of $t \in$ FreeGenerator(s, X) holds (Reverse(s, X))(the root tree of t) = t₁.

Let S be a non-void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor $\operatorname{Reverse}(X)$ yielding a many sorted function from $\operatorname{FreeGenerator}(X)$ into X is defined by:

(Def.20) For every sort symbol s of S holds (Reverse(X))(s) = Reverse(s, X).

Let S be a non-void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, let A be a non-empty many sorted set of the carrier of S, let F be a many sorted function from FreeGenerator(X) into A, and let t be a symbol of DTConMSA(X). Let us assume that $t \in$ the terminals of DTConMSA(X). The functor $\pi(F, A, t)$ yielding an element of $\bigcup A$ is defined as follows:

(Def.21) For every function f such that $f = F(t_2)$ holds $\pi(F, A, t) = f$ (the root tree of t).

Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let t be a symbol of DTConMSA(X). Let us assume that there exists a finite sequence p such that $t \Rightarrow p$. The functor ^(a)(X,t) yielding an operation symbol of S is defined by:

(Def.22) $\langle ^{@}(X,t), \text{ the carrier of } S \rangle = t.$

Let S be a non void non empty many sorted signature, let U_0 be a non-empty algebra over S, let o be an operation symbol of S, and let p be a finite sequence. Let us assume that $p \in \operatorname{Args}(o, U_0)$. The functor $\pi(o, U_0, p)$ yielding an element of \bigcup (the sorts of U_0) is defined by:

(Def.23) $\pi(o, U_0, p) = (Den(o, U_0))(p).$

Next we state two propositions:

- (17) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then FreeGenerator(X) is free.
- (18) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then Free(X) is free.

Let S be a non-void non empty many sorted signature. One can check that there exists a non-empty algebra over S which is free and strict.

Let S be a non void non empty many sorted signature and let U_0 be a free non-empty algebra over S. One can verify that there exists a generator set of U_0 which is free.

One can prove the following propositions:

- (19) Let S be a non void non empty many sorted signature and let U_1 be a non-empty algebra over S. Then there exists a strict free non-empty algebra U_0 over S such that there exists many sorted function from U_0 into U_1 which is an epimorphism of U_0 onto U_1 .
- (20) Let S be a non void non empty many sorted signature and let U_1 be a strict non-empty algebra over S. Then there exists a strict free non-empty algebra U_0 over S and there exists a many sorted function F from U_0 into U_1 such that F is an epimorphism of U_0 onto U_1 and Im $F = U_1$.

References

- Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547– 552, 1991.
- [2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
 [3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,
- [9] Gizegoiz Balcerek. Sommig of decorated trees. Formatized mathematics, 4(1) 1993.
- [4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [8] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683–687, 1991.
- [15] Mał gorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [16] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. *Formalized Mathematics*, 3(2):251–253, 1992.
- [17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
- [18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [20] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [23] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.

- [24] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received April 27, 1994