Some Properties of the Intervals

Józef Białas Łódź University

MML Identifier: MEASURE6.

The papers [8], [10], [4], [5], [6], [1], [2], [3], [7], and [9] provide the terminology and notation for this paper.

The scheme $FunctXD\ YD$ concerns a non empty set \mathcal{A} , a non empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

There exists a function F from A into B such that for every element x of A holds P[x, F(x)]

provided the following condition is satisfied:

• For every element x of \mathcal{A} there exists an element y of \mathcal{B} such that $\mathcal{P}[x,y]$.

Let X, Y be non empty sets. Note that Y^X is non empty.

We now state a number of propositions:

- (1) There exists a function F from \mathbb{N} into $[\mathbb{N}, \mathbb{N}]$ such that F is one-to-one and dom $F = \mathbb{N}$ and rng $F = [\mathbb{N}, \mathbb{N}]$.
- (2) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds $0_{\overline{\mathbb{R}}} \leq \sum F$.
- (3) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$ and let x be a *Real number*. Suppose there exists a natural number n such that $x \leq F(n)$ and F is non-negative. Then $x \leq \sum F$.
- (4) For every Real number x such that there exists a Real number y such that y < x holds $x \neq -\infty$.
- (5) For every Real number x such that there exists a Real number y such that x < y holds $x \neq +\infty$.
- (6) For all Real numbers x, y holds $x \le y$ iff x < y or x = y.
- (7) Let x, y be Real numbers and let p, q be real numbers. If x = p and y = q, then $p \le q$ iff $x \le y$.
- (8) For all Real numbers x, y such that x is a real number holds (y-x)+x=y and (y+x)-x=y.
- (9) For all Real numbers x, y such that $x \in \mathbb{R}$ holds x + y = y + x.

- (10) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and y < x holds (z + x) (z + y) = x y.
- (11) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $x \le y$ holds $z + x \le z + y$ and $x + z \le y + z$ and $x z \le y z$.
- (12) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and x < y holds z + x < z + y and x + z < y + z and x z < y z.

Let x be a real number. The functor $\overline{\mathbb{R}}(x)$ yields a Real number and is defined as follows:

(Def.1) $\overline{\mathbb{R}}(x) = x$.

The following propositions are true:

- (13) For all real numbers x, y holds $x \leq y$ iff $\overline{\mathbb{R}}(x) \leq \overline{\mathbb{R}}(y)$.
- (14) For all real numbers x, y holds x < y iff $\overline{\mathbb{R}}(x) < \overline{\mathbb{R}}(y)$.
- (15) For all Real numbers x, y, z such that x < y and y < z holds y is a real number.
- (16) Let x, y, z be Real numbers. Suppose x is a real number and z is a real number and $x \le y$ and $y \le z$. Then y is a real number.
- (17) For all Real numbers x, y, z such that x is a real number and $x \le y$ and y < z holds y is a real number.
- (18) For all Real numbers x, y, z such that x < y and $y \le z$ and z is a real number holds y is a real number.
- (19) For all Real numbers x, y such that $0_{\mathbb{R}} < x$ and x < y holds $0_{\mathbb{R}} < y x$.
- (20) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \le x$ and $0_{\overline{\mathbb{R}}} \le z$ and z + x < y holds z < y x.
- (21) For every Real number x holds $x 0_{\mathbb{R}} = x$.
- (22) For all Real numbers x, y, z such that $0_{\mathbb{R}} \le x$ and $0_{\mathbb{R}} \le z$ and z + x < y holds $z \le y$.
- (23) For every Real number x such that $0_{\overline{\mathbb{R}}} < x$ there exists a Real number y such that $0_{\overline{\mathbb{R}}} < y$ and y < x.
- (24) Let x, z be Real numbers. Suppose $0_{\overline{\mathbb{R}}} < x$ and x < z. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}} < y$ and x + y < z and $y \in \mathbb{R}$.
- (25) Let x, z be Real numbers. Suppose $0_{\overline{\mathbb{R}}} \leq x$ and x < z. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}} < y$ and x + y < z and $y \in \mathbb{R}$.
- (26) For every Real number x such that $0_{\mathbb{R}} < x$ there exists a Real number y such that $0_{\mathbb{R}} < y$ and y + y < x.

Let x be a *Real number*. Let us assume that $0_{\overline{\mathbb{R}}} < x$. The functor Seg x yields a non empty subset of $\overline{\mathbb{R}}$ and is defined by:

(Def.2) For every Real number y holds $y \in \operatorname{Seg} x$ iff $0_{\mathbb{R}} < y$ and y + y < x.

Let x be a Real number. Let us assume that $0_{\mathbb{R}} < x$. The functor len x yielding a Real number is defined as follows:

(Def.3) len x = sup Seg x.

Next we state several propositions:

- (27) For every Real number x such that $0_{\mathbb{R}} < x$ holds $0_{\mathbb{R}} < \text{len } x$.
- (28) For every Real number x such that $0_{\mathbb{R}} < x$ holds len $x \le x$.
- (29) For every Real number x such that $0_{\mathbb{R}} < x$ and $x < +\infty$ holds len x is a real number.
- (30) For every Real number x such that $0_{\overline{\mathbb{R}}} < x$ holds len $x + \text{len } x \leq x$.
- (31) Let e_1 be a Real number. Suppose $0_{\overline{\mathbb{R}}} < e_1$. Then there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number n holds $0_{\overline{\mathbb{R}}} < F(n)$ and $\sum F < e_1$.
- (32) Let e_1 be a Real number and let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $0_{\overline{\mathbb{R}}} < e_1$ and inf X is a real number. Then there exists a Real number x such that $x \in X$ and $x < \inf X + e_1$.
- (33) Let e_1 be a Real number and let X be a non empty subset of \mathbb{R} . Suppose $0_{\mathbb{R}} < e_1$ and $\sup X$ is a real number. Then there exists a Real number x such that $x \in X$ and $\sup X e_1 < x$.
- (34) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Suppose F is non-negative and $\sum F < +\infty$. Let n be a natural number. Then $F(n) \in \mathbb{R}$.
 - $-\infty$ is a Real number.
 - $+\infty$ is a Real number.

We now state a number of propositions:

- (35) \mathbb{R} is an interval and $\mathbb{R} =]-\infty, +\infty[$ and $\mathbb{R} = [-\infty, +\infty]$ and $\mathbb{R} = [-\infty, +\infty[$ and $\mathbb{R} =]-\infty, +\infty[$.
- (36) For all Real numbers a, b such that $b = -\infty$ holds $]a, b[=\emptyset]$ and $[a, b] = \emptyset$ and $[a, b] = \emptyset$.
- (37) For all Real numbers a, b such that $a = +\infty$ holds $]a, b[= \emptyset$ and $[a, b] = \emptyset$ and $[a, b] = \emptyset$.
- (38) Let A be an interval and let a, b be Real numbers. Suppose A =]a, b[. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \le e$ and $e \le d$, then $e \in A$.
- (39) Let A be an interval and let a, b be Real numbers. Suppose A = [a, b]. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \le e$ and $e \le d$, then $e \in A$.
- (40) Let A be an interval and let a, b be Real numbers. Suppose A = [a, b]. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \le e$ and $e \le d$, then $e \in A$.
- (41) Let A be an interval and let a, b be Real numbers. Suppose A = [a, b[. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \le e$ and $e \le d$, then $e \in A$.
- (42) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
 - (i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \le e$ and $e \le d$ holds $e \in A$,
 - (ii) $m \notin A$, and

- (iii) $M \notin A$. Then A =]m, M[.
- (43) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
 - (i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \le e$ and $e \le d$ holds $e \in A$,
 - (ii) $m \in A$,
- (iii) $M \in A$, and
- (iv) $A \subseteq \mathbb{R}$. Then A = [m, M].
- (44) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
 - (i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \le e$ and $e \le d$ holds $e \in A$,
 - (ii) $m \in A$,
 - (iii) $M \notin A$, and
 - (iv) $A \subseteq \mathbb{R}$. Then A = [m, M].
- (45) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
 - (i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \le e$ and $e \le d$ holds $e \in A$,
 - (ii) $m \notin A$,
 - (iii) $M \in A$, and
- (iv) $A \subseteq \mathbb{R}$. Then A = [m, M].
- (46) Let A be a subset of \mathbb{R} . Then A is an interval if and only if for all real numbers a, b such that $a \in A$ and $b \in A$ and for every real number c such that $a \le c$ and $c \le b$ holds $c \in A$.

Let $A,\,B$ be intervals. Then $A\cup B$ is a subset of $\mathbb{R}.$

Next we state the proposition

- (47) For all intervals A, B such that $A \cap B \neq \emptyset$ holds $A \cup B$ is an interval. Let A be an interval. Let us assume that $A \neq \emptyset$. The functor inf A yields a Real number and is defined as follows:
- (Def.4) There exists a *Real number b* such that inf $A \leq b$ but $A = [\inf A, b]$ or $A = [\inf A, b]$ or $A = [\inf A, b]$ or $A = [\inf A, b]$.

Let A be an interval. Let us assume that $A \neq \emptyset$. The functor $\sup A$ yielding a Real number is defined as follows:

(Def.5) There exists a *Real number a* such that $a \le \sup A$ but $A =]a, \sup A[$ or $A = [a, \sup A]$ or $A = [a, \sup A]$.

Next we state a number of propositions:

(48) For every interval A such that A is open interval and $A \neq \emptyset$ holds inf $A \leq \sup A$ and $A = \inf A, \sup A$.

- (49) For every interval A such that A is closed interval and $A \neq \emptyset$ holds inf $A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (50) For every interval A such that A is right open interval and $A \neq \emptyset$ holds inf $A \leq \sup A$ and $A = [\inf A, \sup A[$.
- (51) For every interval A such that A is left open interval and $A \neq \emptyset$ holds inf $A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (52) For every interval A such that $A \neq \emptyset$ holds $\inf A \leq \sup A$ but $A = [\inf A, \sup A[$ or $A = [\inf A, \sup A[$.
- (53) For all intervals A, B such that $A = \emptyset$ or $B = \emptyset$ holds $A \cup B$ is an interval.
- (54) For every interval A and for every real number a such that $a \in A$ holds inf $A \leq \overline{\mathbb{R}}(a)$ and $\overline{\mathbb{R}}(a) \leq \sup A$.
- (55) For all intervals A, B and for all real numbers a, b such that $a \in A$ and $b \in B$ holds if $\sup A \leq \inf B$, then $a \leq b$.
- (56) For every interval A and for every Real number a such that $a \in A$ holds inf $A \leq a$ and $a \leq \sup A$.
- (57) For every interval A such that $A \neq \emptyset$ and for every Real number a such that inf A < a and $a < \sup A$ holds $a \in A$.
- (58) For all intervals A, B such that $\sup A = \inf B$ but $\sup A \in A$ or $\inf B \in B$ holds $A \cup B$ is an interval.

Let A be a subset of \mathbb{R} and let x be a real number. The functor x+A yields a subset of \mathbb{R} and is defined by:

(Def.6) For every real number y holds $y \in x + A$ iff there exists a real number z such that $z \in A$ and y = x + z.

One can prove the following propositions:

- (59) For every subset A of \mathbb{R} and for every real number x holds -x+(x+A)=A.
- (60) For every real number x and for every subset A of \mathbb{R} such that $A = \mathbb{R}$ holds x + A = A.
- (61) For every real number x holds $x + \emptyset = \emptyset$.
- (62) For every interval A and for every real number x holds A is open interval iff x + A is open interval.
- (63) For every interval A and for every real number x holds A is closed interval iff x + A is closed interval.
- (64) Let A be an interval and let x be a real number. Then A is right open interval if and only if x + A is right open interval.
- (65) Let A be an interval and let x be a real number. Then A is left open interval if and only if x + A is left open interval.
- (66) For every interval A and for every real number x holds x + A is an interval.

Let A be an interval and let x be a real number. Note that x + A is interval. The following proposition is true

(67) For every interval A and for every real number x holds vol(A) = vol(x + A).

References

- [1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [3] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Białas Józef. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263–269, 1992.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received February 5, 1994