Some Properties of the Intervals

Józef Białas
Łódź University

MML Identifier: MEASURE6.

The papers [8], [10], [4], [5], [6], [1], [2], [3], [7], and [9] provide the terminology and notation for this paper.

The scheme FunctXD YD concerns a non empty set \mathcal{A}, a non empty set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a function F from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $\mathcal{P}[x, F(x)]$
provided the following condition is satisfied:

- For every element x of \mathcal{A} there exists an element y of \mathcal{B} such that $\mathcal{P}[x, y]$.
Let X, Y be non empty sets. Note that Y^{X} is non empty.
We now state a number of propositions:
(1) There exists a function F from \mathbb{N} into $: \mathbb{N}, \mathbb{N}]$ such that F is one-to-one and $\operatorname{dom} F=\mathbb{N}$ and $\operatorname{rng} F=[: \mathbb{N}, \mathbb{N}]$.
(2) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds $0_{\overline{\mathrm{R}}} \leq \sum F$.
(3) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$ and let x be a Real number. Suppose there exists a natural number n such that $x \leq F(n)$ and F is non-negative. Then $x \leq \sum F$.
(4) For every Real number x such that there exists a Real number y such that $y<x$ holds $x \neq-\infty$.
(5) For every Real number x such that there exists a Real number y such that $x<y$ holds $x \neq+\infty$.
(6) For all Real numbers x, y holds $x \leq y$ iff $x<y$ or $x=y$.
(7) Let x, y be Real numbers and let p, q be real numbers. If $x=p$ and $y=q$, then $p \leq q$ iff $x \leq y$.
(8) For all Real numbers x, y such that x is a real number holds $(y-x)+x=$ y and $(y+x)-x=y$.
(9) For all Real numbers x, y such that $x \in \mathbb{R}$ holds $x+y=y+x$.
(10) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $y<x$ holds $(z+x)-$ $(z+y)=x-y$.
(11) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $x \leq y$ holds $z+x \leq z+y$ and $x+z \leq y+z$ and $x-z \leq y-z$.
(12) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $x<y$ holds $z+x<z+y$ and $x+z<y+z$ and $x-z<y-z$.
Let x be a real number. The functor $\overline{\mathbb{R}}(x)$ yields a Real number and is defined as follows:
(Def.1) $\quad \overline{\mathbb{R}}(x)=x$.
The following propositions are true:
(13) For all real numbers x, y holds $x \leq y$ iff $\overline{\mathbb{R}}(x) \leq \overline{\mathbb{R}}(y)$.
(14) For all real numbers x, y holds $x<y$ iff $\overline{\mathbb{R}}(x)<\overline{\mathbb{R}}(y)$.
(15) For all Real numbers x, y, z such that $x<y$ and $y<z$ holds y is a real number.
(16) Let x, y, z be Real numbers. Suppose x is a real number and z is a real number and $x \leq y$ and $y \leq z$. Then y is a real number.
(17) For all Real numbers x, y, z such that x is a real number and $x \leq y$ and $y<z$ holds y is a real number.
(18) For all Real numbers x, y, z such that $x<y$ and $y \leq z$ and z is a real number holds y is a real number.
(19) For all Real numbers x, y such that $0_{\overline{\mathbb{R}}}<x$ and $x<y$ holds $0_{\overline{\mathbb{R}}}<y-x$.
(20) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq x$ and $0_{\overline{\mathbb{R}}} \leq z$ and $z+x<y$ holds $z<y-x$.
(21) For every Real number x holds $x-0_{\bar{R}}=x$.
(22) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq x$ and $0_{\overline{\mathbb{R}}} \leq z$ and $z+x<y$ holds $z \leq y$.
(23) For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ there exists a Real number y such that $0_{\overline{\mathrm{R}}}<y$ and $y<x$.
(24) Let x, z be Real numbers. Suppose $0_{\overline{\mathbb{R}}}<x$ and $x<z$. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}}<y$ and $x+y<z$ and $y \in \mathbb{R}$.
(25) Let x, z be Real numbers. Suppose $0_{\overline{\mathbb{R}}} \leq x$ and $x<z$. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}}<y$ and $x+y<z$ and $y \in \mathbb{R}$.
(26) For every Real number x such that $0_{\bar{R}}<x$ there exists a Real number y such that $0_{\overline{\mathrm{R}}}<y$ and $y+y<x$.
Let x be a Real number. Let us assume that $0_{\overline{\mathrm{R}}}<x$. The functor $\operatorname{Seg} x$ yields a non empty subset of $\overline{\mathbb{R}}$ and is defined by:
(Def.2) For every Real number y holds $y \in \operatorname{Seg} x$ iff $0_{\overline{\mathbb{R}}}<y$ and $y+y<x$.
Let x be a Real number. Let us assume that $0_{\overline{\mathbb{R}}}<x$. The functor len x yielding a Real number is defined as follows:
(Def.3) $\quad \operatorname{len} x=\sup \operatorname{Seg} x$.
Next we state several propositions:
(27) For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ holds $0_{\overline{\mathbb{R}}}<\operatorname{len} x$.

For every Real number x such that $0_{\overline{\mathrm{R}}}<x$ holds len $x \leq x$.
For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ and $x<+\infty$ holds len x is a real number.
(30) For every Real number x such that $0_{\bar{R}}<x$ holds len $x+\operatorname{len} x \leq x$.
(31) Let e_{1} be a Real number. Suppose $0_{\bar{R}}<e_{1}$. Then there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number n holds $0_{\overline{\mathbb{R}}}<F(n)$ and $\sum F<e_{1}$.
(32) Let e_{1} be a Real number and let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $0_{\overline{\mathbb{R}}}<e_{1}$ and $\inf X$ is a real number. Then there exists a Real number x such that $x \in X$ and $x<\inf X+e_{1}$.
(33) Let e_{1} be a Real number and let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $0_{\overline{\mathbb{R}}}<e_{1}$ and $\sup X$ is a real number. Then there exists a Real number x such that $x \in X$ and $\sup X-e_{1}<x$.
(34) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Suppose F is non-negative and $\sum F<+\infty$. Let n be a natural number. Then $F(n) \in \mathbb{R}$.
$-\infty$ is a Real number.
$+\infty$ is a Real number.
We now state a number of propositions:
(35) \mathbb{R} is an interval and $\mathbb{R}=]-\infty,+\infty[$ and $\mathbb{R}=[-\infty,+\infty]$ and $\mathbb{R}=$ $[-\infty,+\infty[$ and $\mathbb{R}=]-\infty,+\infty]$.
(36) For all Real numbers a, b such that $b=-\infty$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(37) For all Real numbers a, b such that $a=+\infty$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(38) Let A be an interval and let a, b be Real numbers. Suppose $A=] a, b[$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(39) Let A be an interval and let a, b be Real numbers. Suppose $A=[a, b]$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(40) Let A be an interval and let a, b be Real numbers. Suppose $A=] a, b]$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(41) Let A be an interval and let a, b be Real numbers. Suppose $A=[a, b[$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(42) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $\quad m \notin A$, and
(iii) $\quad M \notin A$.

Then $A=] m, M[$.
(43) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \in A$,
(iii) $M \in A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=[m, M]$.
(44) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \in A$,
(iii) $M \notin A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=[m, M[$.
(45) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \notin A$,
(iii) $M \in A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=] m, M]$.
(46) Let A be a subset of \mathbb{R}. Then A is an interval if and only if for all real numbers a, b such that $a \in A$ and $b \in A$ and for every real number c such that $a \leq c$ and $c \leq b$ holds $c \in A$.
Let A, B be intervals. Then $A \cup B$ is a subset of \mathbb{R}.
Next we state the proposition
(47) For all intervals A, B such that $A \cap B \neq \emptyset$ holds $A \cup B$ is an interval.

Let A be an interval. Let us assume that $A \neq \emptyset$. The functor $\inf A$ yields a Real number and is defined as follows:
(Def.4) There exists a Real number b such that $\inf A \leq b$ but $A=] \inf A, b[$ or $A=] \inf A, b]$ or $A=[\inf A, b]$ or $A=[\inf A, b[$.
Let A be an interval. Let us assume that $A \neq \emptyset$. The functor $\sup A$ yielding a Real number is defined as follows:
(Def.5) There exists a Real number a such that $a \leq \sup A$ but $A=] a, \sup A[$ or $A=] a, \sup A]$ or $A=[a, \sup A]$ or $A=[a, \sup A[$.
Next we state a number of propositions:
(48) For every interval A such that A is open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=] \inf A, \sup A[$.
(49) For every interval A such that A is closed interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=[\inf A, \sup A]$.
(50) For every interval A such that A is right open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=[\inf A, \sup A[$.
(51) For every interval A such that A is left open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=\rfloor \inf A, \sup A]$.
(52) For every interval A such that $A \neq \emptyset$ holds $\inf A \leq \sup A$ but $A=] \inf A, \sup A[$ or $A=] \inf A, \sup A]$ or $A=[\inf A, \sup A]$ or $A=$ $[\inf A, \sup A[$.
(53) For all intervals A, B such that $A=\emptyset$ or $B=\emptyset$ holds $A \cup B$ is an interval.
(54) For every interval A and for every real number a such that $a \in A$ holds $\inf A \leq \overline{\mathbb{R}}(a)$ and $\overline{\mathbb{R}}(a) \leq \sup A$.
(55) For all intervals A, B and for all real numbers a, b such that $a \in A$ and $b \in B$ holds if $\sup A \leq \inf B$, then $a \leq b$.
(56) For every interval A and for every Real number a such that $a \in A$ holds $\inf A \leq a$ and $a \leq \sup A$.
(57) For every interval A such that $A \neq \emptyset$ and for every Real number a such that $\inf A<a$ and $a<\sup A$ holds $a \in A$.
(58) For all intervals A, B such that $\sup A=\inf B$ but $\sup A \in A$ or $\inf B \in$ B holds $A \cup B$ is an interval.
Let A be a subset of \mathbb{R} and let x be a real number. The functor $x+A$ yields a subset of \mathbb{R} and is defined by:
(Def.6) For every real number y holds $y \in x+A$ iff there exists a real number z such that $z \in A$ and $y=x+z$.
One can prove the following propositions:
(59) For every subset A of \mathbb{R} and for every real number x holds $-x+(x+A)=$ A.
(60) For every real number x and for every subset A of \mathbb{R} such that $A=\mathbb{R}$ holds $x+A=A$.
(61) For every real number x holds $x+\emptyset=\emptyset$.
(62) For every interval A and for every real number x holds A is open interval iff $x+A$ is open interval.
(63) For every interval A and for every real number x holds A is closed interval iff $x+A$ is closed interval.
(64) Let A be an interval and let x be a real number. Then A is right open interval if and only if $x+A$ is right open interval.
(65) Let A be an interval and let x be a real number. Then A is left open interval if and only if $x+A$ is left open interval.
(66) For every interval A and for every real number x holds $x+A$ is an interval.

Let A be an interval and let x be a real number. Note that $x+A$ is interval. The following proposition is true
(67) For every interval A and for every real number $x \operatorname{holds} \operatorname{vol}(A)=\operatorname{vol}(x+$ A).

REferences

[1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[3] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Białas Józef. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 5, 1994

