Boolean Properties of Lattices

Agnieszka Julia Marasik
Warsaw University
Białystok

MML Identifier: BOOLEALG.

The article [1] provides the terminology and notation for this paper.

1. General lattice

We follow the rules: L will be a lattice and X, Y, Z, V will be elements of the carrier of L.

Let us consider L, X, Y. The functor $X \backslash Y$ yielding an element of the carrier of L is defined by:
(Def.1) $\quad X \backslash Y=X \sqcap Y^{\mathrm{c}}$.
Let us consider L, X, Y. The functor $X \doteq Y$ yields an element of the carrier of L and is defined by:
(Def.2) $\quad X \dot{\succ} Y=(X \backslash Y) \sqcup(Y \backslash X)$.
Let us consider L, X, Y. Let us observe that $X=Y$ if and only if: (Def.3) $\quad X \sqsubseteq Y$ and $Y \sqsubseteq X$.

Let us consider L, X, Y. We say that X meets Y if and only if: (Def.4) $\quad X \sqcap Y \neq \perp_{L}$.
We introduce X misses Y as an antonym of X meets Y.
We now state a number of propositions:
(1) $X \sqsubseteq X \sqcup Y$ and $Y \sqsubseteq X \sqcup Y$.
(3) ${ }^{1}$ If $X \sqcup Y \sqsubseteq Z$, then $X \sqsubseteq Z$ and $Y \sqsubseteq Z$.
(4) $X \sqcap Y \sqsubseteq X \sqcup Z$.
(5) If $X \sqsubseteq Y$, then $X \sqcap Z \sqsubseteq Y \sqcap Z$ and $Z \sqcap X \sqsubseteq Z \sqcap Y$.
(6) If $X \sqsubseteq Z$, then $X \backslash Y \sqsubseteq Z$.

[^0](7) If $X \sqsubseteq Y$, then $X \backslash Z \sqsubseteq Y \backslash Z$.
(8) $X \backslash Y \sqsubseteq X$.
(9) $X \backslash Y \sqsubseteq X \dot{-} Y$.
(10) If $X \backslash Y \sqsubseteq Z$ and $Y \backslash X \sqsubseteq Z$, then $X \doteq Y \sqsubseteq Z$.
(11) $\quad X=Y \sqcup Z$ iff $Y \sqsubseteq X$ and $Z \sqsubseteq X$ and for every V such that $Y \sqsubseteq V$ and $Z \sqsubseteq V$ holds $X \sqsubseteq V$.
(12) $\quad X=Y \sqcap Z$ iff $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and for every V such that $V \sqsubseteq Y$ and $V \sqsubseteq Z$ holds $V \sqsubseteq X$.
(13) If $X \sqcup Y=Y$ or $Y \sqcup X=Y$, then $X \sqsubseteq Y$.
(14) $\quad X \sqcap(Y \backslash Z)=X \sqcap Y \backslash Z$.
(15) If X meets Y, then Y meets X.
(16) X meets X iff $X \neq \perp_{L}$.
(17) $X \doteq Y=Y \dot{\doteq}$.

2. Modular lattice

In the sequel L will denote a modular lattice and X, Y will denote elements of the carrier of L.

The following three propositions are true:
(18) If $Y \sqsubseteq X$ and $X \sqcap Y=\perp_{L}$, then $Y=\perp_{L}$.
$(20)^{2}$ If $X \sqsubseteq Y$, then $X \sqcup Y=Y$ and $Y \sqcup X=Y$.
(21) If X misses Y, then Y misses X.

3. Distributive lattice

In the sequel L will denote a distributive lattice and X, Y, Z will denote elements of the carrier of L.

Next we state three propositions:
(22) If $X \sqcap Y \sqcup X \sqcap Z=X$, then $X \sqsubseteq Y \sqcup Z$.
(23) $\quad X \sqcap Y \sqcup Y \sqcap Z \sqcup Z \sqcap X=(X \sqcup Y) \sqcap(Y \sqcup Z) \sqcap(Z \sqcup X)$.
(24) $(X \sqcup Y) \backslash Z=(X \backslash Z) \sqcup(Y \backslash Z)$.

[^1]
4. Distributive lower bounded lattice

In the sequel L will denote a lower bound lattice and X, Y, Z will denote elements of the carrier of L.

The following propositions are true:
(25) If $X \sqsubseteq \perp_{L}$, then $X=\perp_{L}$.
(26) If $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and $Y \sqcap Z=\perp_{L}$, then $X=\perp_{L}$.
(27) $X \sqcup Y=\perp_{L}$ iff $X=\perp_{L}$ and $Y=\perp_{L}$.
(28) If $X \sqsubseteq Y$ and $Y \sqcap Z=\perp_{L}$, then $X \sqcap Z=\perp_{L}$.
(29) $\perp_{L} \backslash X=\perp_{L}$.
(30) If X meets Y and $Y \sqsubseteq Z$, then X meets Z.
(31) If X meets $Y \sqcap Z$, then X meets Y and X meets Z.
(32) If X meets $Y \backslash Z$, then X meets Y.
(33) X misses \perp_{L}.
(34) If X misses Z and $Y \sqsubseteq Z$, then X misses Y.
(35) If X misses Y or X misses Z, then X misses $Y \sqcap Z$.
(36) If $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and Y misses Z, then $X=\perp_{L}$.
(37) If X misses Y, then $Z \sqcap X$ misses $Z \sqcap Y$ and $X \sqcap Z$ misses $Y \sqcap Z$.

5. Boolean lattice

We follow a convention: L will be a Boolean lattice and X, Y, Z, V will be elements of the carrier of L.

Next we state a number of propositions:
(38) If $X \backslash Y \sqsubseteq Z$, then $X \sqsubseteq Y \sqcup Z$.
(39) If $X \sqsubseteq Y$, then $Z \backslash Y \sqsubseteq Z \backslash X$.
(40) If $X \sqsubseteq Y$ and $Z \sqsubseteq V$, then $X \backslash V \sqsubseteq Y \backslash Z$.
(41) If $X \sqsubseteq Y \sqcup Z$, then $X \backslash Y \sqsubseteq Z$ and $X \backslash Z \sqsubseteq Y$.
(42) $\quad X^{\mathrm{c}} \sqsubseteq(X \sqcap Y)^{\mathrm{c}}$ and $Y^{\mathrm{c}} \sqsubseteq(X \sqcap Y)^{\mathrm{c}}$.
(43) $(X \sqcup Y)^{\mathrm{c}} \sqsubseteq X^{\mathrm{c}}$ and $(X \sqcup Y)^{\mathrm{c}} \sqsubseteq Y^{\mathrm{c}}$.
(44) If $X \sqsubseteq Y \backslash X$, then $X=\perp_{L}$.
(45) If $X \sqsubseteq Y$, then $Y=X \sqcup(Y \backslash X)$ and $Y=(Y \backslash X) \sqcup X$.
(46) $\quad X \backslash Y=\perp_{L}$ iff $X \sqsubseteq Y$.
(47) If $X \sqsubseteq Y \sqcup Z$ and $X \sqcap Z=\perp_{L}$, then $X \sqsubseteq Y$.
(48) $X \sqcup Y=(X \backslash Y) \sqcup Y$.
(49) $X \backslash(X \sqcup Y)=\perp_{L}$ and $X \backslash(Y \sqcup X)=\perp_{L}$.
(50) $\quad X \backslash X \sqcap Y=X \backslash Y$ and $X \backslash Y \sqcap X=X \backslash Y$.
$(X \backslash Y) \sqcap Y=\perp_{L}$ and $Y \sqcap(X \backslash Y)=\perp_{L}$.
(52) $X \sqcup(Y \backslash X)=X \sqcup Y$ and $(Y \backslash X) \sqcup X=Y \sqcup X$.
(53) $\quad X \sqcap Y \sqcup(X \backslash Y)=X$ and $(X \backslash Y) \sqcup X \sqcap Y=X$.
(54) $\quad X \backslash(Y \backslash Z)=(X \backslash Y) \sqcup X \sqcap Z$.
(55) $\quad X \backslash(X \backslash Y)=X \sqcap Y$.
(56) $\quad(X \sqcup Y) \backslash Y=X \backslash Y$.
(57) $\quad X \sqcap Y=\perp_{L}$ iff $X \backslash Y=X$.
(58) $\quad X \backslash(Y \sqcup Z)=(X \backslash Y) \sqcap(X \backslash Z)$.
(59) $\quad X \backslash Y \sqcap Z=(X \backslash Y) \sqcup(X \backslash Z)$.
(60) $\quad X \sqcap(Y \backslash Z)=X \sqcap Y \backslash X \sqcap Z$ and $(Y \backslash Z) \sqcap X=Y \sqcap X \backslash Z \sqcap X$.
(61) $(X \sqcup Y) \backslash X \sqcap Y=(X \backslash Y) \sqcup(Y \backslash X)$.
(62) $X \backslash Y \backslash Z=X \backslash(Y \sqcup Z)$.
(63) If $X \backslash Y=Y \backslash X$, then $X=Y$.
(64) $\left(\perp_{L}\right)^{c}=\top_{L}$.
(65) $\left(\top_{L}\right)^{c}=\perp_{L}$.
(66) $X \backslash X=\perp_{L}$.
(67) $X \backslash \perp_{L}=X$.
(68) $\quad(X \backslash Y)^{\mathrm{c}}=X^{\mathrm{c}} \sqcup Y$.
(69) X meets $Y \sqcup Z$ iff X meets Y or X meets Z.
(70) $\quad X \sqcap Y$ misses $X \backslash Y$.
(71) $\quad X$ misses $Y \sqcup Z$ iff X misses Y and X misses Z.
(72) $X \backslash Y$ misses Y.
(73) If X misses Y, then $(X \sqcup Y) \backslash Y=X$ and $(X \sqcup Y) \backslash X=Y$.
(74) If $X^{\mathrm{c}} \sqcup Y^{\mathrm{c}}=X \sqcup Y$ and X misses X^{c} and Y misses Y^{c}, then $X=Y^{\mathrm{c}}$ and $Y=X^{c}$.
(75) If $X^{\mathrm{c}} \sqcup Y^{\mathrm{c}}=X \sqcup Y$ and Y misses X^{c} and X misses Y^{c}, then $X=X^{\mathrm{c}}$ and $Y=Y^{\mathrm{c}}$.
(76) $X \dot{\succ} \perp_{L}=X$ and $\perp_{L} \doteq X=X$.
(77) $X \doteq X=\perp_{L}$.
(78) $X \sqcap Y$ misses $X \doteq Y$.
(79) $\quad X \sqcup Y=X \doteq(Y \backslash X)$.
(80) $\quad X \dot{\perp} \cap \sqcap Y=X \backslash Y$.
(81) $X \sqcup Y=(X \doteq Y) \sqcup X \sqcap Y$.
(82) $X \doteq Y \doteq X \sqcap Y=X \sqcup Y$.
(83) $X \dot{\succ} \dot{-}(X \sqcup Y)=X \sqcap Y$.
(84) $X \dot{\succ} Y=(X \sqcup Y) \backslash X \sqcap Y$.
(85) $\quad(X \dot{-}) \backslash Z=(X \backslash(Y \sqcup Z)) \sqcup(Y \backslash(X \sqcup Z))$.
(86) $\quad X \backslash(Y \dot{-} Z)=(X \backslash(Y \sqcup Z)) \sqcup X \sqcap Y \sqcap Z$.
(87) $(X \dot{\oplus} Y) \dot{-} Z=X \dot{-}(Y \dot{-} Z)$.
(88) $\quad(X \dot{\succ} Y)^{\mathrm{c}}=X \sqcap Y \sqcup X^{\mathrm{c}} \sqcap Y^{\mathrm{c}}$.

References

[1] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received March 28, 1994

[^0]: ${ }^{1}$ The proposition (2) has been removed.

[^1]: ${ }^{2}$ The proposition (19) has been removed.

