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Summary. In the three preliminary sections to the article we
define two operations on finite sequences which seem to be of general
interest. The first is the cut operation that extracts a contiguous chunk
of a finite sequence from a position to a position. The second operation is
a glueing catenation that given two finite sequences catenates them with
removal of the first element of the second sequence. The main topic of the
article is to define an operation which for a given chain in a graph returns
the sequence of vertices through which the chain passes. We define the
exact conditions when such an operation is uniquely definable. This is
done with the help of the so called two-valued alternating finite sequences.
We also prove theorems about the existence of simple chains which are
subchains of a given chain. In order to do this we define the notion of a
finite subsequence of a typed finite sequence.
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1. PRELIMINARIES

We adopt the following convention: p, ¢ are finite sequences, X, Y are sets,
and i, k, [, m, n, r are natural numbers.
The scheme FinSegRng deals with natural numbers A, B, a unary functor F
yielding a set, and a unary predicate P, and states that:
{F@): A<i AN i<B A Pli]} is finite
for all values of the parameters.
One can prove the following propositions:
(1)  m+1<kand k < n iff there exists a natural number ¢ such that m <
and ¢ <nand k =i+ 1.
(2) 1If g =p| Segn, then leng < lenp and for every i such that 1 < i and
i <lenq holds p(i) = q(7).
(3) If X C Segk and ¥ C domSgmX, then SgmX - SgmY =
Sgmrng(Sgm X ['Y).

(4)  For all natural numbers m, n holds {k:m <k AN k<m+n} =n+1.

(5) For every [ such that 1 <[ and [ < n holds (Sgm{k; : k; ranges over
natural numbers, m+1<ky A ky <m+n})(l) =m-+I1.

2. THE CUT OPERATION FOR FINITE SEQUENCES

Let p be a finite sequence and let m, n be natural numbers. The functor
(p(m),...,p(n)) yields a finite sequence and is defined by:

(Def.1) (i) len(p(m),...,p(n))+m = n+1 and for every natural number i such
that i < len(p(m),...,p(n)) holds (p(m),...,p(n))(i +1) = p(m + i) if
1<mand m <n-+1andn <lenp,

(ii))  (p(m),...,p(n)) = e, otherwise.
We now state several propositions:
(6) If 1 <m and m <lenp, then (p(m),...,p(m)) = (p(m)).
(1) (p(1),...,p(lenp)) = p.
(8) Ifm <nandn <randr <lenp, then (p(m+1),...,p(n)) ~ (p(n +
1),....p(r)) = (p(m+1),...,p(r)).
(9) If1 <mandm <lenp,then (p(1),...,p(m))"(p(m+1),...,p(lenp)) =
.
(10) If1 <mand m < n and n
1),...,p(n)) ~(p(n+1),...,p(le
(11)  mg(p(m),...,p(n)) € rngp.
Let D be a set, let p be a finite sequence of elements of D, and let m, n be
natural numbers. Then (p(m),...,p(n)) is a finite sequence of elements of D.
Next we state the proposition

< lenp, then (p(1),...,p(m)) ~ (p(m +
np)) = p-



VERTEX SEQUENCES INDUCED BY CHAINS

(12) Ifp#eand1l <mandm <nandn < lenp, then (p(m),...,p(n))(1) =
p(m) and (p(m),...,p(n))(len(p(m),...,p(n))) = p(n).

3. THE GLUEING CATENATION OF FINITE SEQUENCES

Let p, g be finite sequences. The functor p ~ ¢ yielding a finite sequence is
defined as follows:

(Def.2) p~qg=p~(q(2),....q(lenq)).
Next we state several propositions:

(13) If g # €, then len(p ~~ q¢) + 1 =lenp + leng.
(14) If1 <k and k <lenp, then (p =~ q)(k) = p(k).
(15) If1 <k and k <leng, then (p ~ q)(lenp+ k) = q(k + 1).
(16) If 1 <leng, then (p ~ ¢)(len(p ~ q)) = g(lenq).
(17)  rng(p ~ ¢q) CmgpUrngg.
Let D be a set and let p, ¢ be finite sequences of elements of D. Then p ~ ¢

is a finite sequence of elements of D.
Next we state the proposition

(18) If p# e and q # ¢ and p(lenp) = ¢(1), then rng(p ~ ¢) = rngpUrngq.

4. TWO VALUED ALTERNATING FINITE SEQUENCES

A finite sequence is two-valued if:
(Def.3)  cardrngit = 2.
The following proposition is true
(19) p is two-valued iff lenp > 1 and there exist arbitrary x, y such that
x #y and rmgp = {z,y}.
A finite sequence is alternating if:
(Def.4)  For every natural number i such that 1 < ¢ and i + 1 < lenit holds
it(i) #it(i + 1).
One can check that there exists a finite sequence which is two-valued and
alternating.
In the sequel a, a1, as are two-valued alternating finite sequences.
One can prove the following propositions:
(20) Iflenaj =lenas and rnga; = rngag and aq(1) = a(1), then a1 = as.
(21) If a1 # a2 and lena; = lenay and rng a; = rngas, then for every ¢ such
that 1 < and ¢ < lena; holds aq (i) # az(7).

(22) If a1 # a9 and lena; = lenas and rng a; = rngas, then for every a such
that lena = len a; and rnga = rngaq holds a = a1 or a = ao.
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(23) If X #Y and n > 1, then there exists a; such that rmga; = {X,Y}
and lena; =n and a;1(1) = X.

5. FINITE SUBSEQUENCE OF FINITE SEQUENCES

Let us consider X and let f1 be a finite sequence of elements of X. A finite
subsequence is called a FinSubsequence of f; if:

(Def.5) It C f1.
In the sequel s; will denote a finite subsequence.
The following propositions are true:
(24) If s is a finite sequence, then Seq sy = s7.
(25) If rngp C dom sy, then s - p is a finite sequence.
(26) Let f be a finite subsequence and let g, h, f2, f3, f4 be finite sequences.
If rngg € dom f and rngh C dom f and fo = f-¢g and f3 = f- h and
fa=f-(g~h), then fy= fo" fs.
We follow the rules: f1, f5, fe will be finite sequences of elements of X and
f7, fs will be FinSubsequence of f.
We now state four propositions:
(27)  dom f7 C dom f; and rng f7 C rng f1.
(28)  f1 is a FinSubsequence of f;.
(29)  f71Y is a FinSubsequence of fi.
(30)  For every FinSubsequence fy of f5 such that Seq f7 = f5 and Seq fo = f
and fg = f7 | rng(Sgmdom f; | dom fg) holds Seq fs = f.

6. VERTEX SEQUENCES INDUCED BY CHAINS

In the sequel G is a graph.
Let us consider G. One can verify that the vertices of G is non empty.
We follow the rules: v, v1, v9, v3, v4 will denote elements of the vertices of
G and e will be arbitrary.
We now state two propositions:
(31) If e joins vy with vy, then e joins ve with vy.
(32) If e joins vy with vy and e joins vs with vy, then v1 = v3 and vy = v4 or
v1 = v4 and vy = v3.
Let us consider G. We see that the chain of G is a finite sequence of elements
of the edges of G.
Let us consider G. A path of G is a path-like chain of G.
We follow the rules: vs, vg, v7 will denote finite sequences of elements of the
vertices of G and ¢, c¢1, co will denote chains of G.
The following proposition is true
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(33) € 1is a chain of G.

Let us consider G. One can check that there exists a chain of G which is
empty.

Let us consider G, X. The functor (G)-VSet(X) yields a set and is defined
as follows:

(Defﬁ) (G) _Vset(X) = {U : \/e:element of the edges of G ec X A (U = (the source
of G)(e) V v = (the target of G)(e))}.

Let us consider G, vs and let ¢ be a finite sequence. We say that vs is vertex
sequence of ¢ if and only if:

(Def.7)  lenwvs =lenc+ 1 and for every n such that 1 < n and n < lenc holds
¢(n) joins m,vs with 7, 1vs.
One can prove the following four propositions:
34) If ¢ # € and v5 is vertex sequence of ¢, then (G)-VSet(rngc) = rngvs.
35)
36) There exists vs which is vertex sequence of c.
37)

( (v) is vertex sequence of €.
( Suppose ¢ # € and vg is vertex sequence of ¢ and v7 is vertex sequence

of ¢ and vg # v7. Then vg(1) # v7(1) and for every vs such that vs is
vertex sequence of ¢ holds vs = vg or vy = v7.

Let us consider G and let ¢ be a finite sequence. We say that ¢ alternates
vertices in G if and only if:

(Def.8)  lenc > 1 and (G)-VSet(rngc) = 2 and for every n such that n € domc
holds (the source of G)(¢(n)) # (the target of G)(c(n)).

One can prove the following propositions:

(38) If c alternates vertices in G and vj is vertex sequence of ¢, then for every
k such that k£ € dom ¢ holds v5(k) # vs(k + 1).

(39) Suppose c alternates vertices in G and vj is vertex sequence of ¢. Then
rng vs = {(the source of G)(c(1)), (the target of G)(c(1))}.

(40)  Suppose c alternates vertices in G and vj is vertex sequence of ¢. Then
vs is a two-valued alternating finite sequence.

(41)  Suppose c alternates vertices in G. Then there exist vg, vy such that
(i) wve # vr,
(ii)  wvg is vertex sequence of c,
(iii) vy is vertex sequence of ¢, and

) for every wvs such that vz is vertex sequence of ¢ holds vs = vg or
V5 = V7.

(42)  Suppose vj is vertex sequence of ¢. Then the vertices of G =1 or c# ¢
and ¢ does not alternate vertices in G if and only if for every vg such that
vg is vertex sequence of ¢ holds vg = vs.

Let us consider GG, c. Let us assume that the vertices of G =1 or ¢ # ¢ and
¢ does not alternate vertices in GG. The functor vertex-seq(c) yielding a finite
sequence of elements of the vertices of GG is defined as follows:
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vertex-seq(c) is vertex sequence of c.

We now state several propositions:

(43)
(44)

(45)

(46)

(47)

If v5 is vertex sequence of ¢ and ¢; = ¢ | Segn and vg = v5 | Seg(n + 1),
then vg is vertex sequence of cy.

If 1 <mand m <nandn <lencand g = (c(m),...,c(n)), then ¢ is a
chain of G.

If 1 <mand m <nandn <lenc and ¢; = (c(m),...,c(n)) and v
is vertex sequence of ¢ and vg = (vs(m),...,vs(n + 1)), then vg is vertex

sequence of cq.

If vg is vertex sequence of ¢; and vy is vertex sequence of co and
ve(lenvg) = v7(1), then ¢1 ™ ¢y is a chain of G.

Suppose vg is vertex sequence of ¢; and v7 is vertex sequence of ¢ and
ve(lenvg) = v7(1) and ¢ = ¢1 ~ ¢y and v5 = vg ~ vy7. Then v is vertex
sequence of c.

7. VERTEX SEQUENCES INDUCED BY SIMPLE CHAINS, PATHS AND ORDERED

CHAINS

Let us consider G. A chain of G is simple if it satisfies the condition (Def.10).

(Def.10)

There exists vs such that vs is vertex sequence of it and for all n, m
such that 1 < n and n < m and m < lenvs and v5(n) = vs(m) holds
n =1 and m = lenvs.

Let us consider G. One can check that there exists a chain of G which is
simple.

In the sequel so denotes a simple chain of G.

Next we state several propositions:

(49)°

(50)
(51)

(52)

(53)

so | Segn is a simple chain of G.

If 2 < len sy and vg is vertex sequence of s9 and v7 is vertex sequence
of s9, then vg = v7.

If vs is vertex sequence of so, then for all n, m such that 1 < n and
n < m and m < lenwvs and vs(n) = vs(m) holds n =1 and m = lenvs.

Suppose c is not a simple chain of G and vj is vertex sequence of c¢. Then
there exists a FinSubsequence f1g of ¢ and there exists a FinSubsequence
f11 of vy and there exist c1, vg such that lenc; < lenc and vg is vertex
sequence of ¢; and lenvg < lenwvs and vs(1) = vg(1) and vs(lenwvs) =
ve(len vg) and Seq f190 = ¢1 and Seq f11 = vg.

Suppose vs is vertex sequence of ¢. Then there exists a FinSubsequence
f10 of ¢ and there exists a FinSubsequence f11 of v5 and there exist ss, vg
such that Seq fi9p = s2 and Seq f11 = vs and vg is vertex sequence of sy
and v5(1) = vg(1) and vs(lenvs) = vg(len vg).

2The proposition (48) has been removed.
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Let us consider G. One can check that every chain of G which is empty is
also path-like.
We now state the proposition

(54) If p is a path of G, then p | Segn is a path of G.
Let us consider G. One can verify that there exists a path of G which is
simple.
We now state two propositions:
(55)  If 2 < len sg, then sy is a path of G.
(56)  s2is a path of G iff len sy = 0 or lensy = 1 or sa(1) # s2(2).
Let us consider G. Observe that every chain of G which is empty is also
oriented.
Let us consider G and let 01 be an oriented chain of GG. Let us assume that
o1 # €. The functor vertex-seq(o;) yields a finite sequence of elements of the
vertices of G and is defined as follows:

(Def.11)  vertex-seq(o1) is vertex sequence of 01 and (vertex-seq(o1))(1) = (the
source of G)(01(1)).
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The terminology and notation used here are introduced in the following articles:
(18], [11], [5], [17], [6], [20], [14], [15], [13], [1], [16], [10], [19], [3], [4], [2], [12],
[9], [7], and [8].

In this paper F' denotes a field and V7 denotes a strict vector space over F.

Let us consider F', V1. The functor Ly, yields a strict bounded lattice and
is defined as follows:

(Def.1) L,y = (Subspaces V1, SubJoin V1, SubMeet V7).
Let us consider F', V;. Family of subspaces of V7 is defined as follows:
(Def.2)  For arbitrary x such that x € it holds z is a subspace of V;.

Let us consider F', V;. Note that there exists a family of subspaces of V;
which is non empty.

Let us consider F', V7. Then Subspaces V7 is a non empty family of subspaces
of V1. Let X be a non empty family of subspaces of V7. We see that the element
of X is a subspace of V.

Let us consider F', V1 and let x be an element of Subspaces V;. The functor
T yielding a subset of the carrier of V7 is defined as follows:

(Def.3)  There exists a subspace X of Vj such that © = X and T = the carrier
of X.

Let us consider F, Vi. The functor V; yielding a function from Subspaces V;
into 2¢he carrier of Vi g defined by:

(Def.4)  For every element h of SubspacesV; and for every subspace H of Vj
such that h = H holds V;(h) = the carrier of H.
We now state two propositions:

(1)  For every strict vector space V1 over F' and for every non empty subset
H of Subspaces V; holds Vi°H is non empty.

© 1996 Warsaw University - Bialystok
305 ISSN 1426-2630
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(2)  For every strict vector space V7 over F and for every strict subspace H
of V1 holds O(Vl) S Vl(H)

Let us consider F', V7 and let G be a non empty subset of Subspaces V1. The
functor () G yielding a strict subspace of V7 is defined by:
(Def.5)  The carrier of NG = N(V1"G).
Next we state several propositions:

(3)  Subspaces V; = the carrier of Ly,).

(4)  The meet operation of L(y;) = SubMeet V.

(5)  The join operation of Ly, ) = SubJoin V3.

(6) Let V4 be a strict vector space over F', and let p, ¢ be elements of the

carrier of Ly, ), and let Hy, Ha be strict subspaces of V;. Suppose p = H;
and ¢ = Hy. Then p C ¢ if and only if the carrier of Hy C the carrier of
H.

(7)  Let V4 be a strict vector space over F, and let p, g be elements of the
carrier of L(y;), and let Hy, Ho be subspaces of V1. If p = H; and q = Ha,
then pUq = Hy + Hs.

(8) Let V4 be a strict vector space over F, and let p, ¢ be elements of the
carrier of L(y; ), and let Hy, Ha be subspaces of Vi. If p = H; and ¢ = Ha,
then pMqg = Hy N Hs.

Let us observe that a non empty lattice structure is complete if it satisfies

the condition (Def.6).

(Def.6) Let X be a subset of the carrier of it. Then there exists an element a
of the carrier of it such that ¢ C X and for every element b of the carrier
of it such that b C X holds b C a.

The following propositions are true:

(9)  For every Vi holds Ly, is complete.

(10) Let = be arbitrary, and let V; be a strict vector space over F', and let
S be a subset of the carrier of V7. If S is non empty and linearly closed,
then if x € Lin(S), then z € S.

Let F' be a field, let A, B be strict vector spaces over F', and let f be a
function from the carrier of A into the carrier of B. The functor FuncLatt(f)
yields a function from the carrier of L4 into the carrier of Lp and is defined by
the condition (Def.7).

(Def.7)  Let S be a strict subspace of A and let By be a subset of the carrier of
B. If By = f°(the carrier of ), then (FuncLatt(f))(S) = Lin(By).

Let L1, Lo be lattices. A function from the carrier of L into the carrier of
Lo is called a lower homomorphism between L and Lo if:

(Def.8)  For all elements a, b of the carrier of Ly holds it(a Mb) = it(a) Mit(b).

Let L1, Lo be lattices. A function from the carrier of L into the carrier of
Lo is called an upper homomorphism between Lq and Lo if:

(Def.9)  For all elements a, b of the carrier of Ly holds it(a L b) = it(a) U it(b).
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One can prove the following propositions:

(11)  Let L, Lo be lattices and let f be a function from the carrier of L;
into the carrier of Ls. Then f is a homomorphism from L; to Lo if and
only if f is an upper homomorphism between L; and Lo and a lower
homomorphism between L and Ls.

(12)  Let F be a field, and let A, B be strict vector spaces over F, and let f
be a function from the carrier of A into the carrier of B. If f is linear,
then FuncLatt(f) is an upper homomorphism between L4 and Lp.

(13) Let F be a field, and let A, B be strict vector spaces over F', and let
f be a function from the carrier of A into the carrier of B. Suppose f is
one-to-one and linear. Then FuncLatt(f) is a homomorphism from L4 to
Lg.

(14) Let A, B be strict vector spaces over F' and let f be a function from
the carrier of A into the carrier of B. If f is linear and one-to-one, then
FuncLatt(f) is one-to-one.

(15) Let A be a strict vector space over F' and let f be a function from
the carrier of A into the carrier of A. If f = id (e carrier of 4), then
FunCLatt(f) = id(thc carrier of L4) -
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The articles [15], [3], [16], [8], [4], [2], [17], [13], [7], [10], [12], [9], [11], [14], 1],
[6], and [5] provide the terminology and notation for this paper.
The following propositions are true:

(1) Let G be a group and let Hy, Hy be subgroups of G. Then the carrier
of H; N Hy = (the carrier of Hy) N (the carrier of Hy).

(2)  For every group G and for arbitrary h holds h € SubGr G iff there exists
a strict subgroup H of G such that h = H.

(3) Let G be a group, and let A be a subset of the carrier of G, and let H
be a strict subgroup of G. If A = the carrier of H, then gr(A) = H.

(4) Let G be a group, and let Hy, Hy be subgroups of G, and let A be a
subset of the carrier of G. If A = (the carrier of H;)U (the carrier of Ha),
then Hy U Hy = gr(A).

(5) Let G be a group, and let Hy, Hy be subgroups of G, and let g be an
element of the carrier of G. If g € Hy or g € Hy, then g € Hy U Ho.

(6) Let G1, Gy be groups, and let f be a homomorphism from G; to Gbo,
and let Hy be a subgroup of G;. Then there exists a strict subgroup Ho
of G such that the carrier of Hy = f°(the carrier of Hy).

(7)  Let G1, G2 be groups, and let f be a homomorphism from G; to Ga,
and let Hy be a subgroup of G5. Then there exists a strict subgroup Hy
of Gy such that the carrier of Hy = f ~! (the carrier of Hs).

(8) Let G1, G2 be groups, and let f be a homomorphism from G; to Ga,
and let Hy, Hy be subgroups of G;. Suppose the carrier of H; C the
carrier of Hy. Then f°(the carrier of Hy) C f°(the carrier of Hy).

(9) Let G1, Gy be groups, and let f be a homomorphism from G; to Gbo,

and let Hy, Hs be subgroups of Gy. Suppose the carrier of H; C the
carrier of Hy. Then f ~! (the carrier of Hy) C f ~! (the carrier of Hs).
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(10) Let Gi1, G5 be groups, and let f be a homomorphism from G; to G,
and let Hy, Ho be subgroups of G1, and let H3, H4 be subgroups of
G4. Suppose the carrier of Hs = f°(the carrier of Hy) and the carrier
of Hy = f°(the carrier of Hs). If Hy is a subgroup of Hy, then Hj is a
subgroup of Hy.

(11)  Let G1, G2 be groups, and let f be a homomorphism from G to G,
and let Hy, Hy be subgroups of Gs, and let Hs, H4 be subgroups of Gj.
Suppose the carrier of H3 = f ~! (the carrier of H;) and the carrier of
Hy = f ! (the carrier of Hy). If Hy is a subgroup of Hs, then Hj is a
subgroup of Hy.

(12)  Let G1, G2 be groups, and let f be a function from the carrier of G
into the carrier of Gg, and let A be a subset of the carrier of G1. Then
f°A C f°(the carrier of gr(A)).

(13)  Let Gy, Gy be groups, and let Hy, Hy be subgroups of G1, and let f be
a function from the carrier of G; into the carrier of G5, and let A be a
subset of the carrier of G1. Suppose A = (the carrier of Hy) U (the carrier
of Hy). Then f°(the carrier of Hy Ll Hy) = f°(the carrier of gr(A)).

(14)  For every group G and for every subset A of the carrier of G such that
A ={1g} holds gr(A) = {1}¢.

(15)  For all non empty sets X, Y and for all subsets Ay, Ay of Y and for
every function f from X into Y holds f ~' (AjUAp) = f 1 A U f 1 A,

(16)  For all non empty sets X, Y and for all subsets A;, Ay of X and for
every function f from X into Y holds f°(A; U Ag) = f°A; U f°A,.

Let G be a group. The functor G yields a function from SubGr@G into
gthe carrier of G 411 i5 defined as follows:

(Def.1)  For every element h of SubGr G and for every subgroup H of G such

that h = H holds G(h) = the carrier of H.
Next we state several propositions:

(17)  Let G be a group, and let h be an element of SubGr G, and let H be a
subgroup of G. If h = H, then G(h) = the carrier of H.

(18) Let G be a group, and let H be a strict subgroup of G, and let x be an
element of the carrier of G. Then x € G(H) if and only if x € H.

(19) _ For every group G and for every strict subgroup H of G holds 1¢ €
G(H).

(20)  For every group G and for every strict subgroup H of G holds G(H) # ().

(21) Let G be a group, and let H be a strict _subgroup of G, and let g1,
g2 be elements of the carrier of G. If g1 € G(H) and g2 € G(H), then
g1 - g2 € G(H)

(22) Let G be a group, and let H be a strict subgroup of G, and let g be an
element of the carrier of G. If g € G(H), then g~ € G(H).

(23)  For every group G and for all strict subgroups Hi, Ha of G holds the
carrier of H; N Hy = G(H1) N G(Ha).
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(24)  For every group G and for all strict subgroups H1, Hy of G holds G(H1N
Hg) = @(Hl) N G(Hg)
Let G be a group and let F' be a non empty subset of SubGr G. The functor
N F yielding a strict subgroup of G is defined by:

(Def.2)  The carrier of N F = N(G°F).
Next we state several propositions:
(25)  For every group G and for every non empty subset F' of SubGr G such
that {1}¢ € F holds N F = {1}¢.
(26)  For every group G and for every element h of SubGrG and for every
non empty subset F' of SubGr G such that F' = {h} holds N F = h.

(27) Let G be a group, and let Hy, Hy be subgroups of G, and let hq,
ho be elements of the carrier of Lg. If hy = Hy and ho = Hs, then
hi1 U hy = Hi U Ho.

(28) Let G be a group, and let Hy, Hy be subgroups of G, and let hq,
ho be elements of the carrier of Lg. If hy = Hy and ho = Hs, then
hi1 Mhy = H N Hs.

(29) Let G be a group, and let p be an element of the carrier of Lg, and let
H be a subgroup of G. If p = H, then H is a strict subgroup of G.

(30) Let G be a group, and let Hy, Hy be subgroups of G, and let p, ¢ be
elements of the carrier of Lg. Suppose p = Hy and ¢ = Hs. Then p C ¢
if and only if the carrier of Hy C the carrier of Ho.

(31) Let G be a group, and let Hy, Hy be subgroups of G, and let p, ¢ be
elements of the carrier of L. If p = Hy and ¢ = Ho, then p C ¢ iff Hy is
a subgroup of Hs.

(32)  For every group G holds Lg is complete.

Let G1, G2 be groups and let f be a function from the carrier of G into the
carrier of Gy. The functor FuncLatt(f) yielding a function from the carrier of
L(c,) into the carrier of I(q,) is defined by the condition (Def.3).

(Def.3)  Let H be a strict subgroup of G; and let A be a subset of the carrier
of Gy. If A = f°(the carrier of H), then (FuncLatt(f))(H) = gr(A).

One can prove the following propositions:

(33) Let G be a group and let f be a function from the carrier of G
into the carrier of G. If f = id(tne carrier of @)» then FuncLatt(f) =
id(thc carrier of Lg)*

(34)  For all groups G1, G2 and for every homomorphism f from G; to Gs
such that f is one-to-one holds FuncLatt(f) is one-to-one.

(35)  For all groups G1, G2 and for every homomorphism f from G; to Gs
holds (FuncLatt(f))({1}a,)) = {1}Ge)-

(36) Let G1, G2 be groups and let f be a homomorphism from G; to Gs.
Suppose f is one-to-one. Then FuncLatt(f) is a lower homomorphism
between L(g,) and L(g,).
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Let GG1, G5 be groups and let f be a homomorphism from G4 to Go.
Then FuncLatt(f) is an upper homomorphism between L (g, and L(g,)-

Let G1, G2 be groups and let f be a homomorphism from G; to Gs.
If f is one-to-one, then FuncLatt(f) is a homomorphism from L, to

[L(G2 )
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The papers [13], [16], [15], [12], [17], [6], [7], [2], [8], [5], [4], [18], [1], [10], [11],
[9], [14], and [3] provide the terminology and notation for this paper.

In this paper Uy is a universal algebra, H is a non empty subset of the carrier
of Uy, and o is an operation of Uy.

Let us consider Uy. Family of subalgebras of Uy is defined by:

(Def.1)  For arbitrary Uy such that U; € it holds Uj is a subalgebra of Uy.

Let us consider Ujy. One can check that there exists a family of subalgebras
of Uy which is non empty.

Let us consider Uy. Then Subalgebras(Up) is a non empty family of subal-
gebras of Uy. Let Uz be a non empty family of subalgebras of Uy. We see that
the element of Us is a subalgebra of Uy.

Let us consider Up. Then |, is a binary operation on Subalgebras(Uy).
Then [, is a binary operation on Subalgebras(Up).

Let us consider Uy and let u be an element of Subalgebras(Up). The functor
w yielding a subset of the carrier of Uy is defined as follows:

(Def.2)  There exists a subalgebra Uy of Uy such that u = U; and @ = the carrier
of Ul.

Let us consider Uy. The functor Carr(Up) yields a function from Subalgebras(Up)
into 2the carrier of Uo 4 is defined by:

(Def.3)  For every element u of Subalgebras(Uy) holds (Carr(Up))(u) = w.

We now state several propositions:

(1)  For arbitrary u holds u € Subalgebras(Uy) iff there exists a strict sub-
algebra Uy of Uy such that v = Uj.

(2) Let H be a non empty subset of the carrier of Uy and given o. If
arity o = 0, then H is closed on o iff o(e) € H.

© 1996 Warsaw University - Bialystok
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(3)  For every subalgebra Uy of Uy holds the carrier of U; C the carrier of
Up.

(4)  For every non empty subset H of the carrier of Uy and for every o such
that H is closed on o and arity o = 0 holds oy = o.

(5) If Up has constants, then Constants(Uy) = {o(¢) : o ranges over opera-
tion of Uy, arity o = 0}.

(6)  For every universal algebra Uy with constants and for every subalgebra
Uy of Uy holds Constants(Uy) = Constants(Uy).

Let Uy be a universal algebra with constants. Note that every subalgebra of

Uy has constants.

The following proposition is true

(7)  For every universal algebra Uy with constants and for all subalgebras
Ui, Us of Uy holds Constants(U;) = Constants(Us).

Let us consider Uy. Then Carr(Uy) is a function from Subalgebras(Up) into
othe carrier of Uo an( it can be characterized by the condition:

(Def.4)  For every element u of Subalgebras(Uy) and for every subalgebra U of
Up such that v = Uj holds (Carr(Uy))(u) = the carrier of Uy.
One can prove the following propositions:

(8)  For every strict subalgebra H of Uy and for every element u of Uy holds
u € (Carr(Uy))(H) iff u € H.
(9) For every non empty subset H of Subalgebras(Uy) holds (Carr(Up))°H
is non empty.
(10)  For every universal algebra Uy with constants and for every strict sub-
algebra U; of Uy holds Constants(Uy) C (Carr(Up))(Uy).

(11)  Let Uy be a universal algebra with constants, and let U; be a subalgebra
of Up, and let a be arbitrary. If a is an element of Constants(Uy), then
a € the carrier of Uj.

(12)  Let Uy be a universal algebra with constants and let H be a non empty
subset of Subalgebras(Up). Then (((Carr(Up))°H) is a non empty subset
of the carrier of Uy.

(13)  For every universal algebra Uy with constants holds the carrier of the
lattice of subalgebras of Uy = Subalgebras(Up).

(14)  Let Uy be a universal algebra with constants, and let H be a non empty

subset of Subalgebras(Up), and let S be a non empty subset of the carrier
of Uy. If S = N((Carr(Uy))°H), then S is operations closed.

Let Uy be a strict universal algebra with constants and let H be a non empty
subset of Subalgebras(Up). The functor (| H yielding a strict subalgebra of Uy
is defined as follows:

(Def.5)  The carrier of (VH = (((Carr(Uy))°H).

One can prove the following propositions:
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(15)  Let Uy be a universal algebra with constants, and let [, I be elements
of the carrier of the lattice of subalgebras of Uy, and let Uy, Uz be strict
subalgebras of Uy. If [; = Uy and ly = Us, then 1 Uls = Uy | | Us.

(16)  Let Uy be a universal algebra with constants, and let {1, I be elements
of the carrier of the lattice of subalgebras of Uy, and let Uy, Us be strict
subalgebras of Uy. If [{ = Uy and lo = Us, then {1 My = Uy NUs.

(17)  Let Uy be a universal algebra with constants, and let {1, I be elements
of the carrier of the lattice of subalgebras of Uy, and let Uy, Us be strict
subalgebras of Uy. Suppose I = Uy and Iy = Us. Then [; C Iy if and only
if the carrier of Uy C the carrier of Us.

(18)  Let Uy be a universal algebra with constants, and let [, I be elements
of the carrier of the lattice of subalgebras of Uy, and let Uy, Uz be strict
subalgebras of Uy. If [y = Uy and Iy = Us, then [; C Iy iff Uy is a
subalgebra of Us.

(19)  For every strict universal algebra Uy with constants holds the lattice of
subalgebras of Uy is bounded.

(20)  For every strict universal algebra Uy with constants and for ev-
ery strict subalgebra U; of Uy holds GenY(Constants(Up)) N U; =
GenY* (Constants(Up)).

(21) For every strict universal algebra Uy with constants holds
—Lthe lattice of subalgebras of Uy — GenUA(Constants(Uo)).

(22) Let Uy be a strict universal algebra with constants, and let U; be a
subalgebra of Uy, and let H be a subset of the carrier of Uy. If H = the
carrier of Uy, then GenV(H)||U; = GenYA(H).

(23) Let Uy be a strict universal algebra with constants and let H be a
subset of the carrier of Uy. Suppose H = the carrier of Uy. Then
T the lattice of subalgebras of Uy — GeDUA(H )

(24)  For every strict universal algebra Uy with constants holds
Tthe lattice of subalgebras of Uy — UO'

(25)  For every strict universal algebra Uy with constants holds the lattice of
subalgebras of Uy is complete.

Let Uy, Us be universal algebras with constants and let F' be a function from
the carrier of Uy into the carrier of Us. The functor FuncLatt(F') yielding a
function from the carrier of the lattice of subalgebras of Uy, into the carrier of
the lattice of subalgebras of Us is defined by the condition (Def.6).

(Def.6)  Let Uy be a strict subalgebra of Uy and let H be a subset of the carrier of
Us. If H = F°(the carrier of Uy), then (FuncLatt(F))(U;) = GenVA (H).
We now state the proposition

(26) Let Uy be a strict universal algebra with constants and let
F be a function from the carrier of Uy into the carrier of
Up. Suppose F' = id(se carrier of Up)- Lhen FuncLatt(F) =

ld(the carrier of the lattice of subalgebras of Ug)-
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The notation and terminology used here are introduced in the following papers:
[10], [12], [9], [7], [1], [13], [4], [2], [11], [8], [5], [3], and [6].

1. PRELIMINARIES

We introduce degenerated as a synonym of trivial.

Let us observe that every set which is non trivial is also non empty.

In the sequel z, y, z will be arbitrary.

Let us consider z, y. Observe that (x,y) is non trivial.

Let us consider z, y, z. Note that (x,y, z) is non trivial.

Let f be a non empty finite sequence. One can check that Rev(f) is non
empty.

2. DECOMPOSING A FINITE SEQUENCE

For simplicity we adopt the following rules: fi, fo, f3 will denote finite
sequences, p, p1, P2, p3 will be arbitrary, f will denote a finite sequence, and 1,
k will denote natural numbers.

Next we state a number of propositions:

(3)! For every set X and for every i such that X C Segi and 1 € X holds
(Sgm X)(1) = 1.

(4) For every finite sequence f such that k& € dom f and for every i such
that 1 < ¢ and ¢ < k holds f(i) # f(k) holds f(k) «r f = k.

!The propositions (1) and (2) have been removed.
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(p1,p2) | Seg1 = (p1).

(p1,p2,p3) | Seg1 = (p1).

(p1,p2,p3) I Seg2 = (p1,p2).

If p€rng fi, then p <P (f1 ™ fo) =p <P fi.

If p € rng fo \ rng f1, then p <P (f1 ™ f2) =len fi +p <P fo.

If p € g f1, then f1 7 fo — p=(fi = p) "~ fa

If p € rng fo \ rng f1, then f1 ™ fo — p = fo — p.

1€ h™ fa

For every set A such that A C dom f; holds (f1 ~ fo) 1 A= f1 1 A.
If p € rng f1, then f1 = fo «— p= f1 < p.

Let us consider f1, i. Observe that f; | Segi is finite sequence-like.
The following propositions are true:

15)
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If f1 C fa, then f37 f1 C f37 fo.

(f1™ f2) I Seg(len f1 +14) = f1 ™ (f2 | Segi).

If p € rng fo \ rng f1, then f1 ~ fo = p = f1 " (f2 < p).

For every finite sequence f and for arbitrary p, ¢ such that p € rng f
and g erng f and p «p f = q <P f holds p =gq.

If f1 = f5 yields p just once, then p € rng f1 = rng fo.

If f1 ~ f5 yields p just once and p € rng f1, then f; yields p just once.

If rng f is non trivial, then f is non trivial.

pf(p)=1

p1 <P (p1,p2) = 1.

If p1 # p2, then py <P (p1,p2) = 2.

p1 <P {p1,p2,p3) = 1.

If p1 # p2, then pa <P (p1,p2,p3) = 2.

If p1 # p3 and pa # ps3, then p3 <P (p1,p2,p3) = 3.

For every finite sequence f holds Rev({p) ~ f) = (Rev(f)) " (p).

For every finite sequence f holds Rev(Rev(f)) = f.
If x # y, then (z,y) «— y = ().

If x # y, then (z,y,z) «— y = (z).

If x # z and y # z, then (z,y,2) «— z = (z,y).
(z,y) =z = (y).

If x # y, then (z,y,2) — y = (2).

(T, y,2) =z = (y,2).

(z) > z=cand (2) — z=¢e.

If x # y, then (z,y) -y =-e.

If x # z and y # z, then (x,y,z) — z =&.

If x € g f and y € rng(f <« x), then (f «— z) —y=f «—v.
If x ¢ tng f1, then z «p (f1 ~ (z) ~ fo) =len f1 + 1.
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(41) If f yields x just once, then = «f f + x <P Rev(f) =len f + 1.
(42) If f yields x just once, then Rev(f <+ z) = Rev(f) — =.
(43) If f yields x just once, then Rev(f) yields x just once.

3. FINITE SEQUENCES WITH ELEMENTS FROM A NON EMPTY SET

We adopt the following convention: D will denote a non empty set, p, p1,
p2, p3 will denote elements of D, and f, f1, fo will denote finite sequences of
elements of D.

One can prove the following propositions:

44) If perngf, then f —:p=(f — p)~ (p).
45) If perngf, then f:—p=(p) ~ (f — p).

(

(

(46) If f # ¢, then m f € rng f.

(47)  If f #¢, then (mf) « f = 1.

(48) If f#eand mf =p, then f —:p=(p) and f:—p=f.

(49) (1) " fln = 1.

(50)  (p1,p2)11 = (p2)-

(51)  (p1,p2,p3)11 = (P2, D3)-

(52) If k € dom f and for every i such that 1 < ¢ and i < k holds 7; f # i f,
then (mif) «p f = k.

(53)  If p1 # po, then (p1,p2) —:p2 = (p1,p2).

(54)  If p1 # pa, then (p1,p2,p3) —: P2 = (P1,P2)-

(55)  If p1 # p3 and pa # ps, then (p1,p2,p3) —: p3 = (p1,p2,P3)-

(56)  (p):—p=(p) and (p) —:p = (p).

(57)  If p1 # pa, then (p1,p2) :— p2 = (p2).

(58)  If p1 # pa, then (p1,p2,p3) :— P2 = (P2, P3).

(59)  If p1 # p3 and p2 # p3, then (p1,p2,p3) :— p3 = (p3)-

(60) Ifxerngfandperngfandz«r f<p« f, then x € rng(f —: p).

(61) Ifperngfandper f >k, thenper f=k+p < (fx)

(62) Ifperngfandp«r f >k, then p € rng(fix).

(63) Ifk <iandiedom f, then m;f € rng(fx).

(64) Ifperngfandp«r f >k, then flr —p=(f—:p)k-

(65) Ifperngfandp« f#1, then fj; —p=(f—p)1-

(66) p€rmg(f:—p).

(67) Ifxe€rngfandperngfand z «p f > p«p f, then x € rng(f :— p).

(68) Ifpermgfand k<lenfand k > p <P f, then 7 f € rng(f :— p).

(69) Ifperngfi, then i~ for—p=(fi:—p)" fo.

(70)  If p € rng fo \rng f1, then fi ~ fo:—p= fo:—p.

(71)  Ifp €rngfyi, then f1~ fo—1p=f1 —:p.
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-3
[\

If p € rng fo \ rng f1, then f1 =~ fo —:p= f1 ™ (f2 —:p).
fi=p:=p=[f:—p

If p; € rng f and pz € g f\rng(f—:p1), then f — pa = (f — p1) — po.
If p € rng f, then rng f = rmg(f —: p) Urng(f :— p).

If p1 € rng f and py € g f \ rng(f —:p1), then f:—p1:—ps = f:—pa.

9NN
D Ul B W

77) Ifperngf,thenp«r (f —:p)=p<r f.
78)  flili=f]4.
79 Ifpermgf, then f—p—p=f—:p.
80) If p; € rng f and pa € rng(f —: p1), then f —:py —:p2 = f —: pa.
$1) I pemgf, then (f —:p) ~ ((F i p)p) = .
82) If f1 # ¢, then (f1” f2)11 = ((f1)11) "~ fo.
If po € rng f and py <P f # 1, then py € rng(f)1).
84) Ifperngf,thenp«r (f:—p) =1
86 2 (ED)Lk =E&p.
87) itk = (f1i) k-

Qo
Qo

Ifperngfand p« f >k, then fjr :—p=f:—p.
Ifperngfandp« f#1, then f|; :—p=f:—p.

If i + k =len f, then Rev(fx) = Rev(f) [ i.

If i+ k =len f, then Rev(f | k) = (Rev(f)) ;-

If f yields p just once, then Rev(f — p) = Rev(f) < p.
If f yields p just once, then Rev(f :— p) = Rev(f) —: p.
If f yields p just once, then Rev(f —: p) = Rev(f) :— p.

AN AN N N N N N N N N N N N N N N N N N N N
O © © © 0 0]
W N = O © w

e N e O N N N N N N N Y ) N

Ne}
=

4. ROTATING A FINITE SEQUENCE

Let D be a non empty set. A finite sequence of elements of D is circular if:
(Def.l) T1it = Tenieit.

Let us consider D, f, p. The functor f% yielding a finite sequence of elements
of D is defined by:

(Def.2) ()  f&=(f:=p) " ((f —:p)) if p € g,

(ii) fE = f, otherwise.

Let us consider D, let f be a non empty finite sequence of elements of D,
and let p be an element of D. One can verify that fX is non empty.

Let us consider D. Observe that there exists a finite sequence of elements of
D which is circular non empty and trivial and there exists a finite sequence of
elements of D which is circular non empty and non trivial.

The following proposition is true

95) 3 =7

2The proposition (85) has been removed.




ON THE DECOMPOSITION OF FINITE SEQUENCES

Let us consider D, p and let f be a circular non empty finite sequence of
elements of D. Observe that fX is circular.
We now state a number of propositions:

= =~~~
SOV YO © ©
— O © 00 g O

—_
o
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— —
[a) (@)
Ut DO

P2 NI N s N N 2N

N N N N /N /S A/
[
o
w

—
o
(=)

(1]
2]

3]
[4]

[5]
[6]
[7]
8]

[9]
[10]

[11]

[12]

If f is circular and p € rng f, then rng(f5) = rng f.

If p € rng f, then p € rng(f%).

pr 6 rngf, then Wlfg =p

) =(p >

<p1,p2> = (p1,p2)-

(p1,p2)% = (p2,p2)-

(p1,p2,3)%s = (P1,D2,P3)-

If p1 # po, then (p1,p2,p3)%s = (p2, D3, P2).

If po # p3, then (p1,p2,p3)s = (D3, 2, P3)-
For every circular non trivial finite sequence f of elements of D holds

rg(fj1) = rng f.
ng(f1) € mg(f5).
If po € rng f \ rng(f —: p1), then (f5")% = f&°.
If po «p f # 1 and py € rng f \ rng(f :— p1), then (f5)% = f&°
If po € rng(f)1) and f yields py just once, then (fE")5 = f&°

If f is circular and f yields pa just once, then (f5")% = f&°.
If f is circular and f yields p just once, then Rev(f%) = (Rev(f))h.
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The articles [20], [23], [6], [22], [9], [2], [14], (17], 18], [24], [1], [5], [3], [, [21],
[10], [11], [16], [15], [7], [8], [12], [13], and [19] provide the terminology and
notation for this paper.

For simplicity we follow a convention: ¢ will be a point of 6'%, 1, 11, 12, J,
Jj1, jo, k will be natural numbers, 7, s will be real numbers, and G will be a
Go-board.

We now state the proposition

(1) Let M be a tabular finite sequence and given i, j. If (i, j) € the indices

of M,then 1 <iandi<lenM and 1 < j and j < width M.

Let us consider G, i. The functor vstrip(G, i) yielding a subset of the carrier
of 5% is defined as follows:

(Def.1) (i)  wstrip(G,i) = {[r,s] : (Gi1)1 <1 A r < (Giy11)1} if 1 < i and

i <lenG,

(ii)  wstrip(G,i) = {[r,s] : (Giq)1 <r}ifi>lenG,

(ili)  wstrip(G,i) = {[r,s] : 7 < (Git1,1)1}, otherwise.

The functor hstrip(G, i) yields a subset of the carrier of 5% and is defined by:

(Def.2) (i)  hstrip(G,i) = {[r,s] : (G1i)2 < s A s < (Gri+1)2} if 1 <7 and

1 < width G,
(i)  hstrip(G,i) ={[r,s] : (G1,i)2 < s} if i > width G,
(i)  hstrip(G,i) = {[r,s] : s < (G1,i41)2}, otherwise.
We now state a number of propositions:
(2) Ifl<jandj < widthG and 1 < i and ¢ < lenG, then (G, ;)2 =
(G2

(3) Ifl1 < jandj < widthG and 1 < i and ¢ < lenG, then (G ;)1 =
(Gia)-

(4) Ifl1<jandj<widthG and 1 <i; and i1 < iz and i3 < len G, then
(G )1 < (Gigj)r-
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(5) If1 <7 and j; < jo and jo < widthG and 1 < i and i < len G, then
(Giji)2 < (Gij)2-
(6) If1<jandj < widthG and 1 <7 and i <lenG, then hstrip(G, j) =
{[r,s] : (Gij)2 <5 A s < (Gijy1)2}
(7) Ifl <iandi <lenG, then hstrip(G,width G) = {[r, s] : (G widthc)2 <
s}.
(8) If1<iandi<lenG, then hstrip(G,0) = {[r,s] : s < (G4 1)2}.
(9) Ifl<iandi<lenG and 1 < j and j < width G, then vstrip(G, i) =
{lros] 1 (Gighh <7 A r < (Gigrgt
(10) If1 < j and j < width G, then vstrip(G,len G) = {[r,s] : (Gien,j)1 <
r}.
(11) If1<jand j < widthG, then vstrip(G,0) = {[r,s] : 7 < (G1;)1}-
Let G be a Go-board and let us consider i, j. The functor cell(G, i, 7) yields
a subset of the carrier of £2 and is defined as follows:

(Def.3)  cell(G,i,7) = vstrip(G, i) N hstrip(G, j).
A finite sequence of elements of 8% is s.c.c. if:
(Def.4)  For all ¢, j such that i +1 < j but ¢ > 1 and j < lenit or j + 1 < lenit
holds L(it, ) N L(it, ) = 0.
A non empty finite sequence of elements of 5% is standard if:
(Def.5) It is a sequence which elements belong to the Go-board of it.

One can verify that there exists a non empty finite sequence of elements of
5% which is non constant special unfolded circular s.c.c. and standard.
We now state two propositions:

(12) Let f be a standard non empty finite sequence of elements of S%. Sup-
pose k € dom f. Then there exist ¢, j such that (i, j) € the indices of the
Go-board of f and 7y f = (the Go-board of f); ;.

(13) Let f be a standard non empty finite sequence of elements of 5% and
let n be a natural number. Suppose n € dom f and n + 1 € dom f. Let
m, k, i, j be natural numbers. Suppose that
) {m, k) € the indices of the Go-board of f,

) (i, j) € the indices of the Go-board of f,

ii) 7,f = (the Go-board of f),,, and
) Tnt1f = (the Go-board of f); ;.

Then |m —i| + |k — j| = 1.

A special circular sequence is a special unfolded circular s.c.c. non empty
finite sequence of elements of £2.

In the sequel f is a standard special circular sequence.

Let us consider f, k. Let us assume that 1 < k and k+1 < len f. The functor
rightcell(f, k) yielding a subset of the carrier of £% is defined by the condition

(Def.6).

(Def.6)  Let iy, ji, i2, jo be natural numbers. Suppose that
(i) (i1, j1) € the indices of the Go-board of f,
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(ii)  (i2, jo) € the indices of the Go-board of f,
(i)  m,f = (the Go-board of f);, j,, and
(iv) 741 f = (the Go-board of f);, j,.

Then
(v) i1 =i and j; + 1 = jo and rightcell(f, k) = cell(the Go-board of f,
Z’17‘7‘1)7 or

(vi) i1+ 1 =2 and j; = jo and rightcell(f, k) = cell(the Go-board of f,
il,jl ! 1), or
(vil) 43 = i2 + 1 and j; = j2 and rightcell(f, k) = cell(the Go-board of f,
i27j2)7 or
(viii) 43 = i2 and j; = jo + 1 and rightcell(f, k) = cell(the Go-board of f,
il - 17j2)‘
The functor leftcell(f, k) yielding a subset of the carrier of £2 is defined by the
condition (Def.7).

(Def.7)  Let i1, j1, i2, j2 be natural numbers. Suppose that

(i) (41, j1) € the indices of the Go-board of f,
(ii) (2, j2) € the indices of the Go-board of f,
(i)  m,f = (the Go-board of f);, j,, and
(iv) 741 f = (the Go-board of f)4, j,.

Then
(v) i1 =2 and j1 + 1 = jo and leftcell(f, k) = cell(the Go-board of f,
. _/ 1 .
11 7]1)7 or
(vi) 414+ 1 =9 and j; = jo and leftcell(f, k) = cell(the Go-board of f,
il)jl)) or
(vil) i1 =2+ 1 and j1 = jo and leftcell(f, k) = cell(the Go-board of f,
i27j2 ~! 1)7 or
(viii) 41 = d2 and j; = jo + 1 and leftcell(f, k) = cell(the Go-board of f,
Z’17‘7‘2)’
Next we state a number of propositions:
(14) Ifi <lenG and 1 < j and j < widthG, then L(Git1,5,Git1,5+1) C
vstrip(G, 7).
(15) Ifl<iandi<lenGand1 < jandj < widthG, then L(G;;,G; j+1) C
vstrip(G, 7).
(16) Ifj < widthG and 1 < 4 and 7 < lenG, then ﬁ(Gi,j+1,Gi+1,j+1) -
hstrip(G, 7).
(17) Ifl1<jandj <widthGand1l <iandi <lenG, then L(G; j,Git1;) C
hstrip(G, 7).
(18) If 1 < 4 and i < lenG and 1 < j and 7 + 1 < widthG, then
E(Gi,j, Gi,j—i—l) g hStrip(G,j).
(19) Ifi <lenG and 1 < j and j < widthG, then L(Git1,5,Git1,5+1) C
cell(G, 1, j).
(20) Ifl1<iandi<lenGand1l < jandj < widthG, then L(G;;,G; 1) C
cell(G, 1, 7).
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(21) If1 < jand j < widthG and 1 < 7 and ¢ + 1 < lenG, then
E(Gi,j, Gi+17j) - VStrip(G,i).

(22) If j < widthG and 1 < ¢ and i < lenG, then L(G; j+1,Git1,j+1) C
cell(G, 1, j).

(23) Ifl<iandi<lenGand1l < jandj < widthG, then £(G; j,Git1,5) C
cell(G, 1, 7).

(24) Ifi+1 <lenG, then vstrip(G,i)Nvstrip(G, i+1) = {q : ¢1 = (Git+1,1)1}-

(25) If j +1 < widthG, then hstrip(G, j) N hstrip(G,j + 1) = {q : ¢2 =
(G1j+1)2}-

(26) For every Go-board G such that i < lenG and 1 < j and j < widthG
holds CGH(G, Z,]) N cell(G,i + 1,j) = E(Gi+17j, Gi+17j+1).

(27)  For every Go-board G such that j < widthG and 1 < i and i < len G
holds cell(G, i, j) Ncell(G, 1,7 + 1) = E(GiJ’J,_l, Gi+17j+1).

(28)  Suppose that

(i) 1<k,
(i) k+1<lenf,
(i) (i + 1, j) € the indices of the Go-board of f,
(iv)  (i+1, j+ 1) € the indices of the Go-board of f,
(v)  mrf = (the Go-board of f);;1,, and
)

Tr41f = (the Go-board of f)it1 j41.
Then leftcell(f, k) = cell(the Go-board of f, i,7) and rightcell(f, k) =
cell(the Go-board of f, i+ 1,7).

(29)  Suppose that

(i) 1<k,

(i) k+1<lenf,
(i) (4,  + 1) € the indices of the Go-board of f,
(iv)  (i+1, j+ 1) € the indices of the Go-board of f,
(v)  mf = (the Go-board of f); j+1, and
(vi) 741 f = (the Go-board of f)it1 j41.

Then leftcell(f, k) = cell(the Go-board of f, i,7 + 1) and rightcell(f, k) =
cell(the Go-board of f, i, j).

(30)  Suppose that

(i) 1<k,
(i) k+1<lenf,
(i) (4,  + 1) € the indices of the Go-board of f,
(iv) (i+1, j+ 1) € the indices of the Go-board of f,
(v)  mf = (the Go-board of f)it1 +1, and
)

Tr+1f = (the Go-board of f); j41.
Then leftcell(f, k) = cell(the Go-board of f, i,j) and rightcell(f, k) =
cell(the Go-board of f, 4,5+ 1).
(31)  Suppose that

(i) 1<k,

(i) k+1<lenf,
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(iii) (i+1, j+ 1) € the indices of the Go-board of f,

(iv)  (i+1, j) € the indices of the Go-board of f,

(v) mrf = (the Go-board of f);41,+1, and

(vi) 741 f = (the Go-board of f)it1 ;.
Then leftcell(f, k) = cell(the Go-board of f, i+ 1,7) and rightcell(f, k) =
cell(the Go-board of f, i, j).

(32) If1<kandk-+1<lenf, then leftcell(f, k) Nrightcell(f, k) = L(f, k).
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Indexed Category

Grzegorz Bancerek
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Summary. The concept of indexing of a category (a part of in-
dexed category, see [18]) is introduced as a pair formed by a many sorted
category and a many sorted functor. The indexing of a category C' against
to [18] is not a functor but it can be treated as a functor from C into
some categorial category (see [1]). The goal of the article is to work out
the notation necessary to define institutions (see [13]).

MML Identifier: INDEX_1.

The articles [23], [25], [11], [24], [26], [4], [5], [19], [9], [7], [22], [20], [21], [15], [16],
[14], [3], [6], [12], [8], [2], [10], [17], and [1] provide the notation and terminology
for this paper.

1. CATEGORY-YIELDING FUNCTIONS

Let A be a non empty set. One can check that there exists a many sorted
set indexed by A which is non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed
by A which is non-empty is also non empty yielding.

Let C' be a categorial category and let f be a morphism of C. Then fg is a
functor from f11 to f1,2.

We now state two propositions:

(1)  For every categorial category C and for all morphisms f, g of C' such
that dom g = cod f holds g - f = ({dom f, cod g), g2 - f2).

(2) Let C be a category, and let D, E be categorial categories, and let F’
be a functor from C to D, and let G be a functor from C to E. If F = G,
then Obj F' = ObjG.

A function is category-yielding if:
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(Def.1)  For arbitrary x such that = € domit holds it(z) is a category.

Let us note that there exists a function which is category-yielding.

Let X be a set. Observe that there exists a many sorted set indexed by X
which is category-yielding.

Let A be a set. A many sorted category indexed by A is a category-yielding
many sorted set indexed by A.

Let C be a category. A many sorted set indexed by C' is a many sorted set
indexed by the objects of C. A many sorted category indexed by C' is a many
sorted category indexed by the objects of C.

Let X be a set and let = be a category. One can verify that X —— z is
category-yielding.

Let X be a set and let = be a function. One can check that X —— =z is
function yielding.

Let X be anon empty set. One can check that every many sorted set indexed
by X is non empty.

Let f be a non empty function. One can check that rng f is non empty.

Let f be a category-yielding function. Observe that rng f is categorial.

Let X be a non empty set, let f be a many sorted category indexed by X,
and let x be an element of X. Then f(z) is a category.

Let B be a set, let A be a non empty set, let f be a function from B into
A, and let g be a many sorted category indexed by A. Observe that g - f is
category-yielding.

Let F be a category-yielding function. The functor Objs(F') yields a non-
empty function and is defined by the conditions (Def.2).

(Def.2) (i) dom Objs(F) = dom F, and
(ii)  for every set x such that x € dom F' and for every category C' such
that C' = F(x) holds (Objs(F'))(z) = the objects of C.
The functor Mphs(F') yields a non-empty function and is defined by the condi-
tions (Def.3).
(Det.3) (i) domMphs(F) = dom F, and
(ii)  for every set x such that x € dom F and for every category C such
that C'= F(x) holds (Mphs(F'))(z) = the morphisms of C.

Let A be a non empty set and let £’ be a many sorted category indexed by A.
Then Objs(F') is a non-empty many sorted set indexed by A. Then Mphs(F) is
a non-empty many sorted set indexed by A.

The following proposition is true

(3)  For every set X and for every category C holds Objs(X +— C) =
X —— the objects of C' and Mphs(X —— C) = X —— the morphisms of
C.
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2. PAIRS OF MANY SORTED SETS

Let A, B be sets. Pair of many sorted sets indexed by A and B is defined
by:

(Def.4)  There exists a many sorted set f indexed by A and there exists a many
sorted set g indexed by B such that it = (f, g).

Let A, B be sets, let f be a many sorted set indexed by A, and let g be a
many sorted set indexed by B. Then (f, g) is a pair of many sorted sets indexed
by A and B.

Let A, B be sets and let X be a pair of many sorted sets indexed by A and
B. Then X7 is a many sorted set indexed by A. Then X9 is a many sorted set
indexed by B.

Let A, B be sets. A pair of many sorted sets indexed by A and B is category-
yielding on first if:

(Def.5) ity is category-yielding.
A pair of many sorted sets indexed by A and B is function-yielding on second
if:

(Def.6) ito is function yielding.

Let A, B be sets. One can check that there exists a pair of many sorted sets
indexed by A and B which is category-yielding on first and function-yielding on
second.

Let A, B be sets and let X be a category-yielding on first pair of many sorted
sets indexed by A and B. Then X7 is a many sorted category indexed by A.

Let A, B be sets and let X be a function-yielding on second pair of many
sorted sets indexed by A and B. Then X9 is a many sorted function of B.

Let f be a function yielding function. One can check that rng f is functional.

Let A, B be sets, let f be a many sorted category indexed by A, and let
g be a many sorted function of B. Then (f, g) is a category-yielding on first
function-yielding on second pair of many sorted sets indexed by A and B.

Let A be a non empty set and let ', G be many sorted categories indexed
by A. A many sorted function of A is called a many sorted functor from F' to
G if:

(Def.7)  For every element a of A holds it(a) is a functor from F'(a) to G(a).

The scheme LambdaMSFr deals with a non empty set A, many sorted cat-
egories B, C indexed by A, and a unary functor F yielding a set, and states
that:

There exists a many sorted functor F' from B to C such that for
every element a of A holds F'(a) = F(a)
provided the parameters meet the following requirement:

e For every element a of A holds F(a) is a functor from B(a) to C(a).

Let A be a non empty set, let F', G be many sorted categories indexed by
A, let f be a many sorted functor from F' to G, and let a be an element of A.
Then f(a) is a functor from F(a) to G(a).
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3. INDEXING

Let A, B be non empty sets and let ', G be functions from B into A. A
category-yielding on first pair of many sorted sets indexed by A and B is said
to be an indexing of F' and G if:

(Def.8)  itg is a many sorted functor from ity - F' to ity - G.
Next we state two propositions:

(4) Let A, B be non empty sets, and let F', G be functions from B into A,
and let I be an indexing of F' and G, and let m be an element of B. Then
Iz(m) is a functor from I (F(m)) to I1(G(m)).

(5) Let C be a category, and let I be an indexing of the dom-map of C
and the cod-map of C, and let m be a morphism of C. Then Ia(m) is a
functor from I3 (domm) to I3 (codm).

Let A, B be non empty sets, let F', G be functions from B into A, and let
I be an indexing of F' and G. Then I2 is a many sorted functor from I - F' to
I - G.

Let A, B be non empty sets, let F', G be functions from B into A, and let [
be an indexing of F' and G. A categorial category is called a target category of
I if it satisfies the conditions (Def.9).

(Def.9) (i)  For every element a of A holds I7(a) is an object of it, and

(ii)  for every element b of B holds ({I1(F(b)), I1(G(b))), I2(b)) is a mor-

phism of it.

Let A, B be non empty sets, let F', G be functions from B into A, and let [
be an indexing of F' and GG. One can verify that there exists a target category
of I which is full and strict.

Let A, B be non empty sets, let ', G be functions from B into A, let ¢ be
a partial function from [ B, B] to B, and let i be a function from A into B.
Let us assume that there exists a category C such that C = (A, B, F,G,c,1i).
An indexing of F' and G is called an indexing of F', G, ¢ and ¢ if it satisfies the
conditions (Def.10).

(Def.10) (i) ~ For every element a of A holds it2(i(a)) = idj (), and

(ii)  for all elements my, mg of B such that F'(msy) = G(m;1) holds ita(c({ma,
ml))) = itz(mg) . itz(ml).

Let C be a category. An indexing of C is an indexing of the dom-map of C,
the cod-map of C, the composition of C' and the id-map of C. A coindexing of
C is an indexing of the cod-map of C, the dom-map of C, ~(the composition
of C) and the id-map of C.

One can prove the following propositions:

(6) Let C be a category and let I be an indexing of the dom-map of C' and
the cod-map of C'. Then [ is an indexing of C if and only if the following
conditions are satisfied:

(i)  for every object a of C holds Ia(id,) = idy (a), and
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(ii)  for all morphisms mqy, ms of C such that domms = codm; holds
Iz(mQ . ’I’)’Ll) = Iz(mg) . Iz(ml).

(7)  Let C be a category and let I be an indexing of the cod-map of C and
the dom-map of C'. Then [ is a coindexing of C'if and only if the following
conditions are satisfied:

(i)  for every object a of C holds Ia(id,) = id, (a), and

(ii)  for all morphisms my, mg of C such that dommsg = codm; holds

12(m2 . ml) = 12(?711) . IQ(mg).

(8)  For every category C and for every set x holds x is a coindexing of C'
iff = is an indexing of C°P.

(9) Let C be a category, and let I be an indexing of C, and let ¢y, c2 be
objects of C'. Suppose hom(cy, cz) is non empty. Let m be a morphism
from ¢; to co. Then Ia(m) is a functor from I7(cq) to I7(c2).

(10) Let C be a category, and let I be a coindexing of C, and let ¢1, ¢ be
objects of C'. Suppose hom(cy,cz) is non empty. Let m be a morphism
from ¢; to ca. Then Ia(m) is a functor from I7(cz) to I7(ey).

Let C be a category, let I be an indexing of C, and let T be a target category
of I. The functor I -functor(C,T') yielding a functor from C to T is defined as
follows:

(Def.11)  For every morphism f of C holds (I -functor(C,T))(f) = ({I1(dom f),
I1(cod [)), I2(f))-

We now state three propositions:

(11) Let C be a category, and let I be an indexing of C, and let Ty, Th
be target categories of I. Then I -functor(C,T}) = I -functor(C,Ts) and
Obj(I -functor(C,T1)) = Obj(I -functor(C, T5)).

(12)  For every category C and for every indexing I of C' and for every target
category 1" of I holds Obj( -functor(C,T)) = I3.

(13)  Let C be a category, and let I be an indexing of C', and let T be a target
category of I, and let « be an object of C'. Then (I -functor(C,T))(z) =
Ii(z).

Let C be a category and let I be an indexing of C'. The functor rng I yielding
a strict target category of I is defined by:

(Def.12)  For every target category T' of I holds rng I = Im(/ -functor(C,T)).

Next we state the proposition

(14) Let C be a category, and let I be an indexing of C, and let D be a
categorial category. Then rng/l is a subcategory of D if and only if D is
a target category of I.

Let C be a category, let I be an indexing of C', and let m be a morphism of
C. The functor I(m) yielding a functor from I3 (domm) to I3 (cod m) is defined
by:

(Def.13)  I(m) = Ia(m).
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Let C be a category, let I be a coindexing of C, and let m be a morphism of
C'. The functor I(m) yielding a functor from Iy (cod m) to I3 (domm) is defined
as follows:
(Def.14)  I(m) = Ia(m).
The following proposition is true
(15) Let C, D be categories. Then
(i)  ((the objects of C') — (D), (the morphisms of C) — idp) is an
indexing of C, and
(ii)  ((the objects of C') — (D), (the morphisms of C') — idp) is a
coindexing of C.

4. INDEXING VS FUNCTORS

Let A be a set and let B be a non empty set. We see that the function from
A into B is a many sorted set indexed by A.

Let C, D be categories and let F' be a function from the morphisms of C'
into the morphisms of D. Then Obj F is a function from the objects of C' into
the objects of D.

Let C' be a category, let D be a categorial category, and let F' be a functor
from C to D. Note that Obj F' is category-yielding.

Let C' be a category, let D be a categorial category, and let F' be a functor
from C to D. Then pr2(F) is a many sorted functor from Obj F - (the dom-map
of C') to Obj F' - (the cod-map of C).

Next we state the proposition

(16) Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D. Then ( Obj F, pr2(F)) is an indexing of C'.

Let C be a category, let D be a categorial category, and let F' be a functor
from C to D. The functor F-indexing of C' yields an indexing of C and is
defined by:

(Def.15)  F-indexing of C' = (Obj F, pr2(F)).

One can prove the following propositions:

(17)  Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D. Then D is a target category of F-indexing of C.

(18) Let C be a category, and let D be a categorial category, and let F' be a
functor from C to D, and let T be a target category of F-indexing of C.
Then F' = F-indexing of C-functor(C,T).

(19) Let C be a category, and let D, E be categorial categories, and let F'
be a functor from C to D, and let G be a functor from C to E. If F' = G,
then F-indexing of C' = G-indexing of C.

(20)  For every category C and for every indexing I of C' and for every target
category T of I holds pr2(I -functor(C,T)) = I2.
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(21)  For every category C and for every indexing I of C' and for every target
category T' of I holds (I -functor(C,T"))-indexing of C' = I.

5. COMPOSING INDEXINGS AND FUNCTORS

Let C, D, E be categories, let F' be a functor from C' to D, and let I be an
indexing of F. Let us assume that Im £’ is a subcategory of E. The functor I - F’
yielding an indexing of C' is defined by:

(Def.16)  For every functor F’ from C to E such that F/ = F holds I - F =
((I-functor(E,rngI)) - F')-indexing of C.
Next we state several propositions:

(22) Let C, D1, Dy, E be categories, and let I be an indexing of E, and
let F' be a functor from C to D1, and let G be a functor from C to Ds.
Suppose Im F' is a subcategory of E and Im G is a subcategory of E and
F=G. ThenI -F=1-G.

(23) Let C, D be categories, and let F' be a functor from C to D, and
let I be an indexing of D, and let 1" be a target category of I. Then
I-F = (({-functor(D,T)) - F)-indexing of C.

(24) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D. Then every target category of I is a target category
of I-F.

(25) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D, and let T be a target category of I. Then rng(I - F')
is a subcategory of T

(26) Let C, D, E be categories, and let F' be a functor from C to D, and
let G be a functor from D to FE, and let I be an indexing of £. Then
(I-G)-F=1-(G-F).

Let C be a category, let I be an indexing of C, and let D be a categorial
category. Let us assume that D is a target category of I. Let E be a categorial
category and let F' be a functor from D to E. The functor F - I yielding an
indexing of C' is defined as follows:

(Def.17)  For every target category T of I and for every functor G from
T to E such that T = D and G = F holds F -1 = (G -
(I -functor(C, T)))-indexing of C.
One can prove the following propositions:

(27) Let C be a category, and let I be an indexing of C, and let T" be a
target category of I, and let D, E be categorial categories, and let F' be
a functor from T to D, and let G be a functor from 7T to E. If F' = G,
then - I =G 1.

(28) Let C be a category, and let I be an indexing of C, and let T' be a
target category of I, and let D be a categorial category, and let F' be a
functor from T to D. Then Im F is a target category of F - I.
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(29) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F' be a
functor from T to D. Then D is a target category of F - I.

(30) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F' be a
functor from T" to D. Then rng(F - I) is a subcategory of Im F.

(31) Let C be a category, and let I be an indexing of C, and let T' be a
target category of I, and let D, FE be categorial categories, and let F
be a functor from T to D, and let G be a functor from D to E. Then
(G-F)-I=G-(F-1I).

Let C, D be categories, let I; be an indexing of C, and let I be an indexing
of D. The functor Is - I yielding an indexing of C' is defined as follows:

(Def.18) Iy - I; = Iy - (I -functor(C,rng I)).
We now state several propositions:

(32) Let C be a category, and let D be a categorial category, and let I
be an indexing of C, and let Is be an indexing of D, and let T be a
target category of Iy. If D is a target category of Iy, then Iy - I; =
I5 - (I; -functor(C, T)).

(33) Let C be a category, and let D be a categorial category, and let I
be an indexing of C, and let Is be an indexing of D, and let T be a
target category of I,. If D is a target category of Iy, then Iy - I; =
(Iz -functor(D,T)) - I;.

(34) Let C, D be categories, and let F' be a functor from C' to D, and let
I be an indexing of D, and let T be a target category of I, and let E
be a categorial category, and let G be a functor from T to E. Then
(G-I)-F=G-(I-F).

(35)  Let C be a category, and let I be an indexing of C, and let T be a target

category of I, and let D be a categorial category, and let F' be a functor
from T to D, and let J be an indexing of D. Then (J-F)-I=J-(F-I).

(36) Let C be a category, and let I be an indexing of C, and let T} be a
target category of I, and let J be an indexing of 77, and let T be a target
category of J, and let D be a categorial category, and let F’ be a functor
from T5 to D. Then (F-J)-I=F-(J-I).

(37) Let C, D be categories, and let F' be a functor from C to D, and let I
be an indexing of D, and let T" be a target category of I, and let J be an
indexing of T. Then (J-I)-F=J-(I-F).

(38) Let C be a category, and let I be an indexing of C, and let D be a

target category of I, and let J be an indexing of D, and let F be a target
category of J, and let K be an indexing of E. Then (K-J)-I = K-(J-I).
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The notation and terminology used in this paper are introduced in the following
articles: [13], [2), [11], [17], [18], [33], [21], [32], [3]. [34], [8], [9], [4]. [14], [15];
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(5], [22], [28], and [20].

1. PRELIMINARIES

For simplicity we follow the rules: k, t, ¢, j, m, n are natural numbers, x is
arbitrary, A is a set, and D is a non empty set.
We now state two propositions:

(1)  For every finite sequence p of elements of D and for every i holds py; is
a finite sequence of elements of D.
(2)  For every i and for every finite sequence p holds rng(p;;) C rngp.

Let D be a non empty set. A matrix over D is a tabular finite sequence of
elements of D*.

Let K be a field. A matrix over K is a matrix over the carrier of K.

Let D be a non empty set, let us consider k, and let M be a matrix over D.
Then M), is a matrix over D.

Next we state four propositions:
(3)  For every finite sequence M of elements of D such that len M =n + 1
holds len(M;p+1) = n.
(4) Let M be a matrix over D of dimension n + 1 x m and let M; be a
matrix over D. Then if n > 0, then width M = width(M,41) and if
M, = (M(n+ 1)), then width M = width M;.

For every matrix M over D of dimension n 4+ 1 x m holds M,41 is a
matrix over D of dimension n X m.

()
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(6) For every finite sequence M of elements of D such that len M =n + 1
holds M = (Myennr) ~ (M (len M)).

Let us consider D and let P be a finite sequence of elements of D. Then (P)
is a matrix over D of dimension 1 x len P.

2. MORE ON FINITE SEQUENCE

One can prove the following propositions:
(7)  For every set A and for every finite sequence F holds (Sgm(F ~! A)) ~
Sgm(F ~! (rng '\ A)) is a permutation of dom F.
(8) Let F be a finite sequence and let A be a subset of rng F. Suppose
F' is one-to-one. Then there exists a permutation p of dom F' such that
(F—A)"(F—A)=F-p.
A function is finite sequence yielding if:
(Def.1)  For every x such that z € domit holds it(x) is a finite sequence.
Let us observe that there exists a function which is finite sequence yielding.
Let F', G be finite sequence yielding functions. The functor F' — G yields a
finite sequence yielding function and is defined by the conditions (Def.2).
(Def.2) (i) dom(F — G) =dom FNdomG, and
(ii)  for arbitrary i such that ¢ € dom(F — G) and for all finite sequences
f, g such that f = F(i) and g = G(¢) holds (F ~ G)(i) = f " g.

3. MATRICES AND FINITE SEQUENCES IN VECTOR SPACE

For simplicity we adopt the following convention: K denotes a field, V' de-
notes a vector space over K, a denotes an element of the carrier of K, W denotes
an element of the carrier of V, K, Ko, K3 denote linear combinations of V,
and X denotes a subset of the carrier of V.

Next we state four propositions:

(9) If X is linearly independent and support K1 C X and support Ko C X

and ZKI = ZKQ, then Kl = KQ.

(10) If X is linearly independent and support K1 C X and support Ky C X
and support K3 C X and Y>> K1 =) Ko + Y K3, then K1 = Ko + Kj.

(11)  If X is linearly independent and support K; C X and support Ko C X
and a # 0g and > K1 =a- Y Ky, then K1 =a- Ks.

(12)  For every basis by of V' there exists a linear combination K4 of V' such
that W = > K4 and support K4 C bs.

Let K be a field and let V' be a vector space over K. We say that V is finite
dimensional if and only if:

(Def.3)  There exists finite subset of the carrier of V' which is a basis of V.
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Let K be a field. Note that there exists a vector space over K which is strict
and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A
finite sequence of elements of the carrier of V is called an ordered basis of V if:

(Def.4) It is one-to-one and rngit is a basis of V.

For simplicity we adopt the following convention: p will denote a finite se-
quence, M7 will denote a matrix over D of dimension n x m, My will denote
a matrix over D of dimension k x m, V7, Va, V3 will denote finite dimensional
vector spaces over K, f, f1, fo will denote maps from V; into Vs, g will denote
a map from V5 into V3, b; will denote an ordered basis of Vi, by will denote an
ordered basis of V5, bs will denote an ordered basis of V3, b will denote a basis
of Vi, v1, vg will denote vectors of Vo, v will denote an element of the carrier
of Vi, pa, F will denote finite sequences of elements of the carrier of V7, py, d
will denote finite sequences of elements of the carrier of K, and K4 will denote
a linear combination of V7.

Let us consider K, let us consider Vi, V5, and let us consider fi, fo. The
functor f1 + fo yielding a map from V7 into V5 is defined as follows:

(Def.5)  For every element v of the carrier of V1 holds (f1+ f2)(v) = fi(v)+ fa(v).

Let us consider K, let us consider V7, Vs, let us consider f, and let a be an
element of the carrier of K. The functor a - f yielding a map from V; into Vs is
defined as follows:

(Def.6)  For every element v of the carrier of V7 holds (a- f)(v) = a- f(v).
The following propositions are true:

(13) Let a be an element of the carrier of Vi, and let F' be a finite sequence
of elements of the carrier of V7, and let G be a finite sequence of elements
of the carrier of K. Suppose len F' = len G and for every k and for every
element v of the carrier of K such that & € dom F' and v = G(k) holds
F(k)=v-a. Then > F =% G-a.

(14)  Let a be an element of the carrier of Vj, and let F' be a finite sequence
of elements of the carrier of K, and let G be a finite sequence of elements
of the carrier of V;. If len F' = len G and for every k such that k € dom F’
holds G(k) = mF - a, then > G =>_F - a.

(15)  If for every k such that k € dom F holds 7 F' = Oy, then > F' = O(y,).

Let us consider K, let us consider Vi, and let us consider py, po. The functor
Imlt(p1, p2) yielding a finite sequence of elements of the carrier of Vj is defined
as follows:

(Def.7)  lmlt(py, p2) = (the left multiplication of V1)°(p1, p2).
Next we state the proposition

(16) If domp; = dompy, then domlmlt(p;,p2) = domp; and
dom lmlt(p1, p2) = dom ps.
Let us consider K, let us consider V7, and let M be a matrix over the carrier

of V. The functor Y~ M yields a finite sequence of elements of the carrier of V;
and is defined as follows:
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(Def.8) lenY M = lenM and for every k such that & € dom) M holds
>, M =3 Line(M, k).
The following propositions are true:
(17)  For every matrix M over the carrier of V7 such that len M = 0 holds

222 M = 0.
(18)  For every matrix M over the carrier of V; of dimension m+ 1 x 0 holds
Z Z M — 0(V1)‘

(19)  For every element z of the carrier of Vi holds ((x)) = ((z))T.

(20)  For every finite sequence p of elements of the carrier of V; such that f
is linear holds f(}-p) = >(f - p).

(21)  Let a be a finite sequence of elements of the carrier of K and let p be
a finite sequence of elements of the carrier of V. If lenp = lena, then if
f is linear, then f - lmlt(a,p) = lmlt(a, f - p).

(22) Let a be a finite sequence of elements of the carrier of K. If lena =
len by, then if g is linear, then ¢(3" lmlt(a, b2)) = Y lmlt(a, g - b2).

(23) Let F, Fy be finite sequences of elements of the carrier of Vi, and let
K4 be a linear combination of V7, and let p be a permutation of dom F.
If i =F-p, then K4 I = (K4F) - P.

(24) If F is one-to-one and support K4 C rng F, then > (K4 F) = > Kjy.

(25) Let A be a set and let p be a finite sequence of elements of the carrier
of V1. Suppose rngp C A. Suppose fi is linear and f5 is linear and for
every v such that v € A holds f1(v) = fa(v). Then f1(3p) = f2(>°p).

(26)  If fi is linear and fs is linear, then for every ordered basis by of V; such
that len by > 0 holds if fy - b1 = fo - b1, then f1 = fo.

Let D be anon empty set. Observe that every matrix over D is finite sequence
yielding.

Let D be a non empty set and let F', G be matrices over D. Then F — G is
a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M; be a matrix over
D of dimension n x k, and let My be a matrix over D of dimension m x k.
Then M ~ Ms is a matrix over D of dimension n +m x k.

One can prove the following propositions:

(27)  Given 4, and let M; be a matrix over D of dimension n x k, and
let My be a matrix over D of dimension m x k. If i € dom M7, then
Line(M; ~ My, i) = Line(Mj, ).

(28)  Let Mj be a matrix over D of dimension n x k and let My be a matrix
over D of dimension m x k. If width M; = width My, then width(M;
Mg) = width M1 and Wldth(Ml - Mg) = width Mg.

(29) Given i, n, and let M; be a matrix over D of dimension ¢ x k, and
let My be a matrix over D of dimension m x k. If n € dom My and
i =len My + n, then Line(M; ~ My, i) = Line(Ma, n).
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(30) Let Mj be a matrix over D of dimension n X k and let My be a matrix
over D of dimension m x k. If width M; = width M>, then for every i
such that ¢ € Seg width M7 holds (Ml - MQ)\],Z‘ = ((Ml)[m') - ((MQ)DJ').

(31) Let M; be a matrix over the carrier of V; of dimension n x k and
let My be a matrix over the carrier of V7 of dimension m x k. Then
YoMy~ M) = (32 M) ™ 32 M.

(32) Let M; be a matrix over D of dimension n x k and let My be a matrix
over D of dimension m x k. If width M = width My, then (M;~ M)T =
(M T) ™ M,T.

(33)  For all matrices My, My over the carrier of Vi holds (the addition of
V1)° (30 My, 32 Ma) = >2(My — Ma).

Let D be a non empty set, let F' be a binary operation on D, and let P,
P, be finite sequences of elements of D. Then F°(P;, P») is a finite sequence of
elements of D.

Next we state several propositions:

(34) Let Py, P, be finite sequences of elements of the carrier of V;. Iflen P, =
len Py, then Y ((the addition of V1)°(Py, P»)) =Y. Pi + Y P.

(35)  For all matrices My, My over the carrier of V; such that len My = len M,
holds 33 My + 3 My = 5 (M; — My).

(36) For every finite sequence P of elements of the carrier of V; holds
Y3UP) = X ((P)T).

(37)  For every n and for every matrix M over the carrier of V; such that
len M =n holds .5 M =SS (M™).

(38) Let M be a matrix over the carrier of K of dimension n x m. Suppose
n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of
K. Suppose lenp = n and lend = m and for every j such that j € domd
holds 7jd = Y_(p ® Mp ;). Let b, c be finite sequences of elements of the
carrier of V7. Suppose lenb = m and lenc = n and for every i such
that ¢ € dome holds mic = > Imlt(Line(M,),b). Then Y lmlt(p,c) =
> Imlt(d, b).

4. DECOMPOSITION OF A VECTOR IN BASIS

Let K be a field, let V be a finite dimensional vector space over K, let b1 be
an ordered basis of V', and let W be an element of the carrier of V. The functor
W — by yielding a finite sequence of elements of the carrier of K is defined by
the conditions (Def.9).

(Def.9) (i) len(W — b1) = lenby, and
(ii)  there exists a linear combination K4 of V such that W = " K, and
support K4 C rng by and for every k such that 1 < k and k < len(W — by)

holds 7 (W — b1) = K4(mb1).
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The following four propositions are true:
(39) If v1 — by = v9 — by, then v1 = vs.
(40) v = 1mlt(v — by,by).
(41) Iflend = lenby, then d = 3 lmlt(d, by) — b;.
(42) Let a be a finite sequence of elements of the carrier of K. Suppose
lena = len by. Let j be a natural number. Suppose j € dombs. Let d be
a finite sequence of elements of the carrier of K. Suppose lend = len b
and for every k such that & € dombs holds d(k) = m;(g(mib2) — b3). If
lenby > 0 and lenbs > 0, then 7;(3° Imlt(a, g - ba) — b3) = > (a e d).

5. ASSOCIATED MATRIX OF LINEAR MAP

Let K be a field, let Vi, V5 be finite dimensional vector spaces over K, let
f be a function from the carrier of V7 into the carrier of V5, let b1 be a finite
sequence of elements of the carrier of V7, and let by be an ordered basis of V5.
The functor AutMt(f, b1, b2) yielding a matrix over K is defined as follows:

(Def.10)  len AutMt(f, b1, bs) = lenb; and for every k such that k¥ € domb; holds

Tk AutMt(f, by, bg) = f(ﬂ'kbl) — bo.
One can prove the following propositions:
(43) If lenby = 0, then AutMt(f,by,b9) = €.
(44)  If lenb; > 0, then width AutMt(f, by, ba) = len bs.

(45) If f1 is linear and fo is linear, then if AutMt(fy,b1,b2) =
AutMt(fa,b1,b2) and lenby > 0, then f1 = fo.

(46)  If f is linear and ¢ is linear and lenb; > 0 and len by > 0 and lenbs > 0,
then AutMt(g - f,b1,b3) = AutMt(f, b1, ba) - AutMt(g, b2, bs).

(47)  AutMt(f1 + fa,b1,b2) = AutMt(f1,b1,b2) + AutMt(f2, by, ba).
(48) If a # Ok, then AutMt(a - f,b1,b2) = a - AutMt(f, by, be).
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The articles [15], [17], [7], [1], [14], [16], [12], [4], [2], [8], [9], [13], 18], [3], (5],
[6], [10], and [11] provide the notation and terminology for this paper.

For simplicity we follow the rules: i, j, n will be natural numbers, r, s, rq,
81, T2, Sy will be real numbers, p will be a point of 5%, G will be a Go-board,
M will be a metric space, and u will be a point of £2.

One can prove the following propositions:

(4)! For every metric space M and for every point u of M such that r > 0
holds u € Ball(u, r).

(6)2 For every subset B of the carrier of £% and for every point u of £" such
that B = Ball(u, ) holds B is open.

(7)  Let M be a metric space, and let u be a point of M, and let P be a
subset of the carrier of Mi,,. Then u € Int P if and only if there exists r
such that » > 0 and Ball(u,r) C P.

(8) Let u be a point of £™ and let P be a subset of the carrier of £f. Then
u € Int P if and only if there exists  such that » > 0 and Ball(u,r) C P.

(9)  For all points u, v of £2 such that u = [r1,s1] and v = [rg, s2] holds
plu,v) = \/(7‘1 —19)2 + (51 — 52)2.
(10)  For every point u of £2 such that u = [r, s] holds if 0 < ry and 75 < 7y,
then [r + ro, s] € Ball(u,r;).
(11)  For every point u of £2 such that u = [r, 5] holds if 0 < s and s3 < s,
then [r, s + so] € Ball(u, s1).
(12)  For every point u of £2 such that u = [r, s] holds if 0 < ry and 75 < rq,
then [r — ro, s] € Ball(u,r;).

!The propositions (1)—(3) have been removed.
2The proposition (5) has been removed.
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(13)  For every point u of £2 such that u = [r, s] holds if 0 < s3 and s3 < s,
then [r, s — so] € Ball(u, s1).

(14) Ifl1<iandi<lenGand1l < jandj < widthG, then G; j+Git1 41 =
Gijr1+ Gig1-

(15)  Intwvstrip(G,0) = {[r,s] : r < (G11)1}-

(16)  Intvstrip(G,len G) = {[r,s] : (Gieng,1)1 < T}

(17) If1 <iandi <lenG, then Int vstrip(G,i) = {[r,s] : (Gi1)1 <7 A r<
(Git11)1}

(18)  Inthstrip(G,0) = {[r,s] : s < (G1,1)2}

(19)  Inthstrip(G, width G) = {[r, s] : (G1,wiathc)2 < S}

(20) If1 < j and j < widthG, then Int hstrip(G,j) = {[r,s] : (G1,)2 <
s A s <(Gij+i)2}

(21)  Imtcell(G,0,0) ={[r,s] : 7 < (G11)1 A s<(G11)2}

(22)  Intcell(G,0,widthG) = {[r,s] : 7 < (G1,1)1 N (Giwidthg)2 < S}

(23) If1<jandj < widthG, then Intcell(G,0,5) = {[r,s] : r < (G11)1 A
(G1j)2 <s A s <(Gijt1)2}-

(24) Intcell(G,lenG,0) ={[r,s] : (Glenc,1)1 <7 A s<(G11)2}.

(25) Intcell(G,len G,widthG) = {[r,s] : (Gienc,1)1 <7 A (Gl widthG)2 <
s}.

(26) If 1 < j and j < widthG, then Intcell(G,lenG,j) = {[r,s]
(Greng,1)1 <71 A (Grj)2 <s A s <(Gij+1)2}

(27) If1<iandi<lenG, then Intcell(G,4,0) = {[r,s] : (Gi1)1 <r A r<
(Gigr1)1 A s < (Gra)2}-

(28) If1 <iandi < len@, then Intcell(G,i, widthG) = {[r,s] : (G;1)1 <
r A r<(Gitr,1)1 A (Giwiama)2 < s}

(29) Ifl<iandi<lenGand1 < jandj < widthG, then Intcell(G,i,j) =
{[’I“, S] : (Gi,l)l <r ANr< (Gi+171)1 A (G1J)2 <s N s< (Gl’j+1)2}.

(30) If1<jandj < widthG and p € Int hstrip(G, j), then p2 > (G1;)2.
(31) If j < widthG and p € Int hstrip(G, j), then pa < (G1 j4+1)2.

(32) Ifl1<iandi<lenG and p € Intvstrip(G, 1), then p1 > (Gi1)1.

(33) Ifi<lenG and p € Intvstrip(G, i), then py < (Git1,1)1-

(34) Ifl1<iandi+1 <lenG and 1 < j and j+ 1 < widthG, then

% . (Gm‘ + G,’+17j+1) € Int Cell(G,i,j).

(35) If1 <idiandi+1 < lenG, then % - (Giwidthc + Git1widtha) + [0,
1] € Int cell(G, 7, width G).

(36) Ifl<iandi+1<lenG,then 3 (Gi1+Git11)—[0,1] € Intcell(G,4,0).

(37) If1 < jand j+1 < widthG, then 1 - (Giengj + Glencj+1) + [1,
0] € Int cell(G, len G, j).

(38) If1 < jandj+1 < widthG, then - (Gy; + Gij41) — [1,0] €
Int cell(G, 0, 7).

(39)  Gia—[1,1] € Intcell(G,0,0).



ON THE GEOMETRY OF A GO-BOARD

(40)  Gleng,widthc + [1,1] € Int cell(G,len G, width G).

(41)  Giwidthe + [—1,1] € Int cell(G, 0, width G).

(42)  Glenga +[1,—1] € Intcell(G,len G, 0).

(43) Ifl<iandi<lenG and 1< jand j < widthG, then £(3 - (G;; +

Gir141)s 5+ (Gig + Gijp)) C Intcell(G,4,7) U {5 - (Gij + Gije1)}-

(44) Suppose 1 < i and i < lenG and 1 < j and j < width G. Then 5(% .
(Gij+Git1,j41), 5 - (Gijp1+ Giy1,4+1)) € Inteell(G,4,5) U{3 - (Gijp1 +
Git1j+1)}-

(45)  Suppose 1 < i and i < lenG and 1 < j and j < width G. Then 5(% .
(Gij+Git1j41), 5 - (Gir1,j + Giy1,4+1)) € Intcell(G,4,5) U{3 - (Gigr1,j +
Git1j+1)}-

(46) Ifl1<iandi<lenG and 1< jand j < widthG, then L(3 - (G;; +
Gi+1,j+1), % . (G@j + Gi+17j)) C Int Cell(G,i,j) U {% . (Gi,j + Gi+17j)}.

(47) If1<jand j < widthG, then £(3 - (G1; + G1+1) — [1,0], 3 - (G1,; +
G17j+1)) C Int cell(G, O,j) U {% . (Gly]’ + Gly]q_l)}.

(48) If 1 < j and j < width G, then ﬁ(% (Gena,j + Giena,j+1) + [1,0],%
(Gienc.j + Gren,j+1)) C Intcell(G,len G, j) U {5 - (Gienc,j + Glenc,j+1) }

(49) If 1 < ¢ and i < lenG, then 5(% - (Gip + Giy11) — [0, 1],% - (Giq +
Git11)) C Intcell(G,4,0) U {3 - (Gi1 + Giy11)}-

(50) If 1 < ¢ and ¢ < lenG, then E(% - (Giwiathc + Git1wiatha) + [0,
1], % . (Gi,widthG + Gi—i—l,width G)) C Int CGH(G, 1, width G) U {% . (Gi,widthG +
Git1,width @) }-

(51) If1 <jand j < widthG, then £(3 - (G1; + G1,j+1) — [1,0],G1; — [1,
0]) € Intcell(G,0,7) U{G1; — [1,0]}.

(52) If1<jandj< widthG, then £(5 (G4 G1j+1) — [1,0], G141 — [1,
0]) € Intcell(G,0,7) U{G1 j+1 — [1,0]}.

(53) If 1 < j and j < widthG, then L(3 - (Gienc,j + Grenc,j+1) + [1,
0], Gienc,j + [1,0]) C Intcell(G,len G, j) U{Gienc,; + [1,0]}.

(54) If 1 < j and j < widthG, then L(3 - (Gienc,j + Grenc,j+1) + [1,
0], Gien,j+1 + [1,0]) C Intcell(G,len G, j) U{Glenc, j+1 + [1,0]}.

(55) If 1 < iandi < lenG, then £(} - (Gi1 + Giy11) — [0,1],Gi1 — [0,
1]) € Int cell(G,4,0) U {G; 1 — [0, 1]}.

(56) If1 <iandi <lenG, then £(5 - (Gi1 + Giy11) — [0,1],Giy11 — [0,
1]) C Intcell(G, 4,0) U{G;+11 — [0,1]}.

(57) If 1 < i and i < lenG, then L(3 - (Gjwidathc + Git1widine) + [0,
1], G width G + [0,1]) C Int cell(G, i, width G) U {Gi,widthG +[0,1]}.

(58) If 1 < ¢ and ¢ < lenG, then E(% . (Gi,widthG + Gi+l,widthG) + [0,
1], Git1,width G + [0,1]) C Intcell(G, i, width G) U {Gi—i-l,widthG +[0,1]}.

(59)  L£(Gy1—[1,1],G11 — [1,0]) € Int cell(G,0,0) U {G11 — [1,0]}.

349
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(60) E(Glen G,1 + [17 _1]7 Glen G,1 + [17 0]) - Int CeH(Ga len G’ 0) U {Glen G,1 + [17
0]}.

(61) E(Gl,widthG + [_171]aG1,WidthG — [1,0]) € Intcell(G,0,widthG) U
{G1,wiatne — [1,0]}.

(62)  L(Gien G, width a+[1,1], Gien G, width a+[1,0]) C Int cell(G, len G, width G)U
{Glen G,width G + [17 O]}

(63)  L(Gi1—[1,1],G11 —[0,1]) C Intcell(G,0,0) U{G11 — [0,1]}.

(64)  L(Gienci+[1,—1],Gieng,1—10,1]) C Intcell(G, len G, 0) U{Gen 1 — [0,
1]}.

(65) E(Gl,widthG + [_1,1],G1,widthG + [0,1]) € Intcell(G,0,widthG) U
{G1 wiath e + [0, 1]}.

(66) L(Gien G, width a+[1,1], Gien G, width a+[0,1]) C Int cell(G, len G, width G)U
{Glen G,width G + [07 1]}

(67) Supposel <iandi<lenG and 1< jand j+1 < widthG. Then £(3 -
(Gi7j+Gi+1J+1), %'(Gi,j—i-l —I—Gi+1,j+2)) C Int cell(G, 4, j)UInt cell(G, 7, j +
D U{3 - (Gijr1+ Git1js1)}

(68) Suppose 1 < jand j < widthG and 1 <iandi+1 < lenG. Then £(3-
(Gm’ + G,’+17j+1), % . (Gi-i-l,j + Gi+27j+1)) C Int cell(G, i, 7) UInt cell(G, i +
L) U{5 - (Giz1j + Git11)}-

(69) If1<iandi<lenG and 1 < widthG, then £(3 - (Gi1+ Giy1,1) — [0,
1], %'(Gi71+Gi+172)) C Int CGH(G, 1, O)UInt Cell(G, 1, 1)U{% -(G,’71—|—Gi+171)}.

(70)  Suppose 1 < i and ¢ < lenG and 1 < widthG. Then [,(%
(Giwiathc + Gitiwiama) + [0,1], 3 - (Giwiatme + Git1widthg—1)) C
Int cell(G, i, width G —' 1) U Intcell(G,i,widthG) U {3 - (Gjwidthe +
Gig1,widthG) }-

(71) Ifl1<jandj< widthG and 1 <lenG, then L(5 - (G1;+ G1+41) — [1,
0],% . (Gl,j + GQJ.H)) C Intcell(G,0,7) UIntcell(G, 1, 5) U {% : (GlJ +
G1j+1)}-

(72)  Suppose 1 < j and j < widthG and 1 < len G. Then E(% (Giena,j +
Gienc,j+1) +[1,0], 3+ (Gien,j + Greng—r1,j+1)) € Intcell(G,len G—'1, j) U
Int cell(G,len G, j) U {% (Gienc,j + Giena,j+1)}-

(73) Ifl<lenGand1l< jandj+1 < widthG, then £(5-(G1,;+G1,j+1)—]1,
0], % . (Gl,j—H + G17j+2) — [1,0]) € Intcell(G,0,4) UIntcell(G,0,5 + 1) U
{G1,j+1 = [1,0]}.

(74)  Suppose 1 <lenG and 1 < j and j+1 < width G. Then E(% (Glenc,j+
Glen G,j+1) 1, 0], 3(Gien 6,j 41+ Glen Gj+2)+[1,0]) € Int cell(G, len G, j)U
Int cell(G,len G, j + 1) U{Glenc,j+1 + [1,0]}.

(75) Ifl1 < widthG and 1 <iandi+1 < len G, then E(%'(Gm—I-GHLl)— [0,
1,1 - (Giy11 + Giz21) — [0,1]) C Intcell(G,i,0) U Intcell(G,i + 1,0) U
{Giv11 —1[0,1]}.
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(76)  Suppose 1 < widthG and 1 < i and 1 +1 < lenG. Then L(

1
2
(Giwiathc + Gittwiama) + [0,1], 3 - (Gitiwiame + Girawiatna) + [0,
1]) C Int cell(G, i, width G) UInt cell (G, i + 1, width G) U{G 11 wiath ¢ + [0,

1]}.

(77) If1<lenG and 1 < width G, then £(G11 —[1,1], 1+ (G171 +G12) — [1,
0]) € Int cell(G,0,0) U Intcell(G,0,1) U{G1,1 — [1,0]}.

(78) If 1 <lenG and 1 < width G, then £(Glenc,1 + (1, —1], % (Gieng1 +
Glenc,2)+[1,0]) C Intcell(G,len G,0)UInt cell(G,len G, 1) U{Glen .1 + 1,
0]}.

(79) If1 <lenG and 1 < width G, then E(Gl,widthG+[ 1 1] (Gl w1dthG+
G1 widtha—'1)—[1,0]) C Intcell(G, 0, width G)UInt cell(G 0, WldthG "Tu
{G1,wiath e — [1,0]}.

(80) If 1 < lenG and 1 < widthG, then L(Giengwidgthe + [1,1], % .
(Gren @width G + Glen@,widthg—'1) + [1,0]) € Intcell(G,len G, width G) U
Int cell(G, len G, width G — ! Hu {GlenG width ¢ + [1,0]}.

(81) If1<widthG and 1 <lenG, then £(G11 —[1,1], 1"
1]) € Intcell(G, 0,0) U Int cell(G, 1,0) U{G11 —[0,1]}.

(82) If1 < widthG and 1 < lenG, then £(G1 widthc+[—1 1] (G1,width g+
Gawidtha) + [0,1]) € Intcell(G, 0, width G) U Int cell(G 1,widthG) U
{Gl,widthG + [07 1]}

(83) If 1 < widthG and 1 < lenG, then L(Gienc,1 + [1,—1], 2 - (Gienc1 +
Gienc—1,1) — [0,1]) € Intcell(G,lenG,0) U Intcell(G,len G =’ 1,0) U
{GlonG,l - [07 1]}

(84) If 1 < widthG and 1 < lenG, then L(Giengwidgthe + [1,1], % .
(Glen G,width G + GlenG—'1,width¢) + [0,1]) € Intcell(G,len G, width G) U
Int cell(G,len G —'1, width G)U {Glen GwidthG + [0, 1]}

(85) If 1 <iandi+1 <lenG and 1 < j and j + 1 < width G, then
L(3 - (Gij+ Git1,j+1),p) meets Int cell(G, 1, 7).

(86) If1 <iandi+1<lenG, then L(p, % . (Gi,widthG + Git1widthq) + [0,
1]) meets Int cell(G, i, width G).

(87) Ifl1<iandi+1<lenG, then £(1 - (Gi1 + Giy11) — [0,1],p) meets
Int cell(G, 7,0).

(88) If1<jandj+1<widthG, then £(}-(G1;+G1j41)—[1,0],p) meets
Int cell(G, 0, 7).

(89) Ifl1<jandj+1<widthG, then L(p, 1 (Gienc,j + Grenc,j+1) + [1,
0]) meets Int cell(G,len G, j).

— o

(90)  L(p,G11 — [1,1]) meets Int cell(G, 0,0).

(91)  L(p, GlenG,width ¢ + [1,1]) meets Int cell(G, len G, width G).
(92)  L(p, G widgth ¢ + [—1,1]) meets Int cell(G, 0, width G).

(93)  L(p,Glenc,1 + [1,—1]) meets Int cell(G,len G,0).
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Summary. The basic purpose of this article is to prove the im-
portant Weierstrass’ theorem which states that a real valued continuous
function f on a topological space T assumes a maximum and a minimum
value on the compact subset S of T, i.e., there exist points x1, z2 of T
being elements of S, such that f(x1) and f(z2) are the supremum and the
infimum, respectively, of f(S), which is the image of S under the func-
tion f. The paper is divided into three parts. In the first part, we prove
some auxiliary theorems concerning properties of balls in metric spaces
and define special families of subsets of topological spaces. These con-
cepts are used in the next part of the paper which contains the essential
part of the article, namely the formalization of the proof of Weierstrass’
theorem. Here, we also prove a theorem concerning the compactness of
images of compact sets of 1" under a continuous function. The final part
of this work is developed for the purpose of defining some measures of
the distance between compact subsets of topological metric spaces. Some
simple theorems about these measures are also proved.

MML Identifier: WEIERSTR.

The papers [31], [36], [9], [32], [30], [35], [29], [37], [7], [8], [5], [6], [27], [2], [15],
(1], [14], [17], [10], [21], [19], [20], [18], [25], [33], [34], [3], [13], [22], [24], [38],
[12], [26], [11], [4], [23], [28], and [16] provide the notation and terminology for
this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) Let M be a metric space, and let x1, x2 be points of M, and let 1, 7o
be real numbers. Then there exists a point x of M and there exists a real
number r such that Ball(xzq,r) U Ball(xg,72) C Ball(x, r).
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(2) Let M be a metric space, and let n be a natural number, and let F' be
a family of subsets of M, and let p be a finite sequence. Suppose F' is
finite and a family of balls and rngp = F' and domp = Seg(n + 1). Then
there exists a family GG of subsets of M such that

(i) G is finite and a family of balls, and

(ii)  there exists a finite sequence ¢ such that rng ¢ = G and dom ¢ = Segn
and there exists a point z of M and there exists a real number r such
that U F C UG UBall(z, ).

(3) Let M be a metric space and let F' be a family of subsets of M. Suppose
F' is finite and a family of balls. Then there exists a point z of M and
there exists a real number r such that J F' C Ball(z,r).

Let T', S be topological spaces, let f be a map from T into S, and let G be
a family of subsets of S. The functor f ! G yields a family of subsets of 7' and
is defined by the condition (Def.1).

(Def.1)  Let A be a subset of the carrier of 7. Then A € f ~! G if and only if
there exists a subset B of the carrier of S such that B € G and A = f ! B.

Next we state two propositions:

(4) Let T, S be topological spaces, and let f be a map from 7 into S, and
let A, B be families of subsets of S. If A C B, then f "1 AC f ! B.

(5) Let T, S be topological spaces, and let f be a map from 7T into S, and
let B be a family of subsets of S. If f is continuous and B is open, then
f ! B is open.

Let T, S be topological spaces, let f be a map from T into S, and let G be

a family of subsets of T'. The functor f°G yields a family of subsets of S and is
defined by the condition (Def.2).

(Def.2)  Let A be a subset of the carrier of S. Then A € f°G if and only if there
exists a subset B of the carrier of T' such that B € G and A = f°B.
One can prove the following propositions:
(6) Let T, S be topological spaces, and let f be a map from 7T into S, and
let A, B be families of subsets of T. If A C B, then f°A C f°B.

(7) Let T, S be topological spaces, and let f be a map from 7 into S, and
let B be a family of subsets of S, and let P be a subset of the carrier of
S. If f°f ~! B is a cover of P, then B is a cover of P.

(8) Let T, S be topological spaces, and let f be a map from 7T into S, and
let B be a family of subsets of T', and let P be a subset of the carrier of
T. If B is a cover of P, then f ~! f°B is a cover of P.

(9) Let T, S be topological spaces, and let f be a map from 7 into S, and
let @ be a family of subsets of S. Then J(f°f ~' Q) C UQ.

(10) Let T, S be topological spaces, and let f be a map from 7T into S, and
let P be a family of subsets of T. Then P C J(f ~! f°P).

(11)  Let T, S be topological spaces, and let f be a map from 7 into S, and
let Q be a family of subsets of S. If @ is finite, then f ~! Q is finite.
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(12) Let T, S be topological spaces, and let f be a map from T into S, and
let P be a family of subsets of T'. If P is finite, then f°P is finite.

(13) Let T, S be topological spaces, and let f be a map from 7" into S, and
let P be a subset of the carrier of T', and let F' be a family of subsets of
S. Given a family B of subsets of T such that B C f ~! FF and B is a
cover of P and finite. Then there exists a family G of subsets of S such
that G C F and G is a cover of f°P and finite.

2. THE WEIERSTRASS’ THEOREM

One can prove the following three propositions:

(14) Let T, S be topological spaces, and let f be a map from 7" into S, and
let P be a subset of the carrier of T'. If P is compact and f is continuous,
then f°P is compact.

(15) Let T be a topological space, and let f be a map from 7' into R, and
let P be a subset of the carrier of T'. If P is compact and f is continuous,
then f°P is compact.

(16)  Let f be a map from 2 into R and let P be a subset of the carrier of
EZ. If P is compact and f is continuous, then f°P is compact.

Let P be a subset of the carrier of Rl. The functor Qp yields a subset of R
and is defined as follows:

(Def3) Q P = P.
Next we state three propositions:

(17)  For every subset P of the carrier of R! such that P is compact holds
Qp is bounded.

(18)  For every subset P of the carrier of Rl such that P is compact holds
Qp is closed.

(19)  For every subset P of the carrier of R such that P is compact holds
Qp is compact.

Let P be a subset of the carrier of R1. The functor sup P yields a real number
and is defined as follows:

(Def.4)  sup P = sup(Qp).
The functor inf P yielding a real number is defined by:
(Def.5)  inf P = inf(Qp).
We now state two propositions:

(20) Let T be a topological space, and let f be a map from 7' into R, and
let P be a subset of the carrier of T. Suppose P # () and P is compact
and f is continuous. Then there exists a point x1 of 1" such that x; € P
and f(z1) = sup(f°P).
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(21) Let T be a topological space, and let f be a map from T into R, and
let P be a subset of the carrier of T. Suppose P # () and P is compact
and f is continuous. Then there exists a point zo of 1" such that x9 € P
and f(z2) = inf(f°P).

3. THE MEASURE OF THE DISTANCE BETWEEN COMPACT SETS

Let M be a metric space and let  be a point of M. The functor dist(x)
yielding a map from M., into R! is defined by:
(Def.6)  For every point y of M holds (dist(z))(y) = p(y, x).
The following three propositions are true:

(22)  For every metric space M and for every point x of M holds dist(z) is
continuous.

(23)  Let M be a metric space, and let x be a point of M, and let P be a subset
of the carrier of Miop. Suppose P # () and P is compact. Then there exists
a point z1 of M;p such that 1 € P and (dist(z))(z1) = sup((dist(x))°P).

(24)  Let M be a metric space, and let x be a point of M, and let P be a subset
of the carrier of Mi,p,. Suppose P # () and P is compact. Then there exists
a point x9 of My, such that zo € P and (dist(x))(z2) = inf((dist(x))°P).

Let M be a metric space and let P be a subset of the carrier of M,,. Let us
assume that P # () and P is compact. The functor distyax(P) yielding a map
from Mi,p into R is defined by:

(Def.7)  For every point x of M holds (distyax(P))(x) = sup((dist(z))°P).
The functor distmin(P) yields a map from My, into R! and is defined by:
(Def.8)  For every point  of M holds (distmin(P))(z) = inf((dist(x))°P).

One can prove the following propositions:

(25) Let M be a metric space and let P be a subset of the carrier of M;qp,.
Suppose P # () and P is compact. Let p1, ps be points of M. If p; € P,
then p(p1,p2) < sup((dist(p2))°P) and inf((dist(p2))°P) < p(p1,p2).

(26) Let M be a metric space and let P be a subset of the carrier of Miqp.
Suppose P # () and P is compact. Let py, ps be points of M. Then
| sup((dist(p1))°P) — sup((dist(p2))° P)| < p(p1,p2)-

(27)  Let M be a metric space and let P be a subset of the carrier of M;qp,.
Suppose P # () and P is compact. Let p1, ps be points of M and let x1,
x9 be real numbers. If 21 = (distyax(P))(p1) and 29 = (distmax(P))(p2),
then |z1 — x2| < p(p1,p2).

(28)  Let M be a metric space and let P be a subset of the carrier of M;qp.
Suppose P # () and P is compact. Let pi, ps be points of M. Then
| inf((dist(p1))°P) — inf((dist(p2))° P)| < p(p1,p2)-

(29) Let M be a metric space and let P be a subset of the carrier of Myqp.
Suppose P # () and P is compact. Let p1, ps be points of M and let x1,
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x9 be real numbers. If x1 = (distyin (P))(p1) and zo = (distmin(P))(p2),
then |z1 — 22| < p(p1,p2).

(30)  Let M be a metric space and let X be a subset of the carrier of Miqp.
If X # () and X is compact, then distyax(X) is continuous.

(31) Let M be a metric space and let P, @) be subsets of the carrier of Miqp,.
Suppose P # () and P is compact and Q # () and @ is compact. Then
there exists a point z1 of My, such that z; € Q and (distmax(P))(z1) =
sup((distmax(P))° Q).

(32) Let M be a metric space and let P, @) be subsets of the carrier of Myqp,.
Suppose P # () and P is compact and Q # () and @ is compact. Then
there exists a point x5 of My, such that zo € Q and (distyax(P))(z2) =
inf((distmax(P))°Q).

(33) Let M be a metric space and let X be a subset of the carrier of Myqp.
If X # () and X is compact, then disty,in(X) is continuous.

(34) Let M be a metric space and let P, @ be subsets of the carrier of Myqp.
Suppose P # () and P is compact and Q # () and @ is compact. Then
there exists a point z1 of Miep such that z; € Q and (distmin(P))(z1) =
sup((distmin(P))°Q).

(35)  Let M be a metric space and let P, @ be subsets of the carrier of Myqp.
Suppose P # () and P is compact and Q # () and @ is compact. Then
there exists a point x of Mo, such that zo € Q and (distmin(P))(z2) =
inf((distmin(P))°Q).

Let M be a metric space and let P, ) be subsets of the carrier of Miq,. Let
us assume that P # () and P is compact and Q # () and Q is compact. The
functor distiin(P, Q) yields a real number and is defined as follows:

(Def.9)  dist™in(P, Q) = inf((distmin(P))°Q).

The functor distyyi (P, Q) yielding a real number is defined as follows:
(Def.10)  distiix (P, Q) = sup((distmin(P))°Q).

The functor dist™2 (P, Q) yielding a real number is defined as follows:

(Def.11)  dist™in (P, Q) = inf((distmax(P))°Q).

max

The functor distiax(P, Q) yielding a real number is defined as follows:

max

(Def.12)  distp2X(P, Q) = sup((distmax(P))°Q).

ax
One can prove the following propositions:

(36) Let M be a metric space and let P, @) be subsets of the carrier of
Miop. Suppose P # () and P is compact and @ # ) and Q is compact.
Then there exist points x1, T2 of M such that z1 € P and zo € Q and
p(@1, x2) = distpin (P, Q).

(37) Let M be a metric space and let P, @ be subsets of the carrier of
Miop. Suppose P # () and P is compact and @ # ) and @ is compact.
Then there exist points x1, T2 of M such that z1 € P and zo € Q and
p(x1, w2) = distii (P, Q).
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Let M be a metric space and let P, () be subsets of the carrier of
Miop. Suppose P # () and P is compact and @ # ) and @ is compact.
Then there exist points x1, x9 of M such that 1 € P and z9 € @ and
p(z1, 2) = distpiy (P, Q).

min
Let M be a metric space and let P, () be subsets of the carrier of
Miop. Suppose P # () and P is compact and @ # ) and @ is compact.
Then there exist points x1, z9 of M such that 1 € P and x9 € @ and
p(z1,2) = distpiX (P, Q).

max
Let M be a metric space and let P, () be subsets of the carrier of Mp,.
Suppose P # () and P is compact and @ # () and @ is compact. Let 1,
9 be points of M. If 21 € P and x5 € Q, then dist™X(P,Q) < p(z1,z2)
and p(z1, z2) < dist 33 (P, Q).
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Summary. This article is the first part of a paper proving the fun-
damental Urysohn’s Theorem concerning the existence of a real valued
continuous function on a normal topological space. The paper is divided
into four parts. In the first part, we prove some auxiliary theorems con-
cerning properties of natural numbers and prove two useful schemes about
recurrently defined functions; in the second part, we define a special set
of rational numbers, which we call dyadic, and prove some of its prop-
erties. The next part of the paper contains the definitions of T; space
and normal space, and we prove related theorems used in later parts of
the paper. The final part of this work is developed for proving the theo-
rem about the existence of some special family of subsets of a topological
space. This theorem is essential in proving Urysohn’s Lemma.
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The notation and terminology used in this paper have been introduced in the
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1. PRELIMINARIES

The following propositions are true:

(1) 0#3and1#1.

(2) 0<iand3<l.

(3)  For every natural number n holds 1 < 2.
(4)  For every natural number n holds 0 < 2™.

In this article we present several logical schemes. The scheme
FuncEx2DChoice deals with a non empty set A, a non empty set 3, a non
empty set C, and a ternary predicate P, and states that:
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There exists a function F' from [ .4, B] into C such that for every
element z of A and for every element y of B holds P[z,y, F({x, y))]
provided the parameters meet the following requirement:
e For every element x of A and for every element y of B there exists
an element z of C such that Plz,y, z].
The scheme RecExDN RD concerns a non empty set A, an element B of A,
and a ternary predicate P, and states that:
There exists a function F' from N into .4 such that F(0) = B and
for every element n of N holds Pln, F(n), F'(n + 1)]
provided the parameters satisfy the following condition:
e For every natural number n and for every element x of A there
exists an element y of A such that P[n,z,y].

2. DyADIC NUMBERS

The subset R of R is defined by:
(Def.1)  For every real number z holds z € R iff z < 0.
The subset R of R is defined by:
(Def.2)  For every real number z holds z € Ry iff 1 < z.
Let n be a natural number. The functor dyadic(n) yields a subset of R and
is defined by:
(Def.3)  For every real number x holds x € dyadic(n) iff there exists a natural
number 7 such that 0 <4 and i < 2" and = = 2%
The subset DYADIC of R is defined by:
(Def.4)  For every real number a holds a € DYADIC iff there exists a natural
number n such that a € dyadic(n).
The subset DOM of R is defined by:
(Def.5) DOM = Ry U DYADIC UR .

Let T be a topological space, let A be a non empty subset of R, let F' be a
function from A into 2the carrier of T "and let r be an element of A. Then F(r) is
a subset of the carrier of T'.

One can prove the following three propositions:

(5)  For every natural number n and for every real number = such that
x € dyadic(n) holds 0 < z and =z < 1.

(6) dyadic(0) = {0,1}.

(7)  dyadic(1) = {0, 3,1}

Let n be a natural number. Note that dyadic(n) is non empty.
Next we state the proposition

(8)  For every natural number z and for every natural number n holds x™
is a natural number.



DYADIC NUMBERS AND T4 TOPOLOGICAL ... 363

Let z, n be natural numbers. Then z" is a natural number.
The following proposition is true

(9) Let n be a natural number. Then there exists a finite sequence F such
that dom F; = Seg(2" + 1) and for every natural number i such that

i € dom Fy holds Fi (i) = .
Let n be a natural number. The functor dyad(n) yielding a finite sequence
is defined by:
(Def.6)  domdyad(n) = Seg(2" + 1) and for every natural number i such that
i € domdyad(n) holds (dyad(n))(i) = 2.
We now state the proposition
(10)  For every natural number n holds domdyad(n) = Seg(2" + 1) and
rng dyad(n) = dyadic(n).
Let us note that DYADIC is non empty.
Let us observe that DOM is non empty.
One can prove the following propositions:

(11)  For every natural number n holds dyadic(n) C dyadic(n + 1).

(12)  For every natural number n holds 0 € dyadic(n) and 1 € dyadic(n).

(13)  For every natural number n and for every natural number ¢ such that
0 < and i < 2" holds 2+ € dyadic(n + 1) \ dyadic(n).

(14)  For every natural number n and for every natural number ¢ such that
0 <iand i < 2" holds 12,%—111 € dyadic(n + 1) \ dyadic(n).

(15)  For every natural number n holds 5 € dyadic(n + 1) \ dyadic(n).

Let n be a natural number and let z be an element of dyadic(n). The functor
axis(z,n) yields a natural number and is defined by:

_axis(z,n)
One can prove the following propositions:

(16)  For every natural number n and for every element x of dyadic(n) holds
x = % and 0 < axis(z,n) and axis(z,n) < 2".
(17)  For every natural number n and for every element x of dyadic(n) holds

i -1 i 1
ax1s(;,ln) <zand z < ax1s(;c;1n)+

(18)  For every natural number n and for every element x of dyadic(n) holds

axis(z,n)—1 < axis(z,n)+1
2n 2

(19)  For every natural number n there exists a natural number £k such that
n==k-2orn==~kF-2+1.

(20) Let m be a natural number and let  be an element of dyadic(n +
1). If z ¢ dyadic(n), then a’(ls(zfiﬂl)_l € dyadic(n) and W €
dyadic(n).

(21)  For every natural number n and for all elements x1, x2 of dyadic(n)
such that z1 < z9 holds axis(z1,n) < axis(za,n).
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(22)  For every natural number n and for all elements x1, x2 of dyadic(n)
such that z; < xo holds 1 < aXlS(x;;")_l and ams(gln’")ﬂ < x9.

(23)  Let n be a natural number and let z1, x2 be elements of dyadic(n + 1).

If 1 < 29 and x; ¢ dyadic(n) and x9 ¢ dyadic(n), then w <

axis(z2,n+1)—1

3. NORMAL SPACES

Let T be a topological space and let x be a point of T'. A subset of the carrier
of T is said to be a neighbourhood of z in T if:

(Def.8)  There exists a subset A of the carrier of 7" such that A is open and
z € Aand A Cit.
One can prove the following propositions:
(24) Let T be a topological space and let A be a subset of the carrier of T

Then A is open if and only if for every point z of T such that z € A there
exists a neighbourhood B of x in T such that B C A.

(25) Let T be a topological space, and let A be a subset of the carrier of
T, and let = be a point of T. If A is open and x € A, then A is a
neighbourhood of z in 7.

(26) Let T be a topological space and let A be a subset of the carrier of
T. Suppose that for every point x of 1" such that x € A holds A is a
neighbourhood of  in T'. Then A is open.

Let T be a topological space. We say that T is a T space if and only if the
condition (Def.9) is satisfied.

(Def.9)  Let p, ¢ be points of T'. Suppose p # q. Then there exist subsets W, V
of the carrier of T such that W is open and V is open and p € W and
g¢WandgeV andp ¢ V.

Next we state the proposition

(27)  For every topological space T holds T is a T space iff for every point
p of T holds {p} is closed.

Let T be a topological space, let F' be a map from T into R, and let = be a
point of 7. Then F(x) is a real number.
The following four propositions are true:

(28) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T. Suppose A # () and A is open and B is open
and A C B. Then there exists a subset C' of the carrier of T such that
C # 0 and C is open and A C C and C C B.

(29) Let T be a topological space. Then T is a T3 space if and only if for
every subset A of the carrier of T" and for every point p of T such that A
is open and p € A there exists a subset B of the carrier of T such that
p € B and B is open and B C A.
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(30) Let T be a topological space. Suppose T is a T4 space and a T space.
Let A be a subset of the carrier of T'. Suppose A is open and A 7&_(2) Then
there exists a subset B of the carrier of T such that B # () and B C A.

(31) Let T be a topological space. Suppose T' is a T4 space. Let A be a
subset of the carrier of T. Suppose A is open and A # (). Let B be a
subset of the carrier of T'. Suppose B is closed and B # () and B C A.
Then there exists a subset C' of the carrier of 1" such that C' is open and
B C(C and C C A.

4. SOME INCREASING FAMILY OF SETS IN NORMAL SPACE

Let T be a topological space and let A, B, C be subsets of the carrier of T'.
We say that C' is between A and B if and only if:
(Def.10)  C # 0 and C is open and A C C and C C B.
One can prove the following proposition
(32) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T. Suppose A # () and A is closed and B is
closed and AN B = (). Let n be a natural number and let G be a function
from dyadic(n) into 2the carrier of T Gyuppose that for all elements 71, ro of
dyadic(n) such that r1 < ro holds G(r1) is open and G(rsz) is open and
G(r1) € G(ry) and A C G(0) and B = Qp \ G(1). Then there exists a
function F from dyadic(n+1) into 2the cartier of T gyich that for all elements
r1, ro, r of dyadic(n + 1) if r; < 7o, then F'(r1) is open and F'(ry) is open
and F(r1) C F(rg) and A C F(0) and B = Qr\F(1) and if r € dyadic(n),
then F(r) = G(r).
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Summary. We continue the formalisation of circuits started by
Piotr Rudnicki, Andrzej Trybulec, Pauline Kawamoto, and the second
author in [16,17,14,15]. The first step in proving properties of full n-bit
adder circuit, i.e. 1-bit adder, is presented. We employ the notation of
combining circuits introduced in [13].
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The terminology and notation used in this paper are introduced in the following
papers: [23], [25], [20], 1], [24], [27], [7], [8], [5], [11], [6], [19], [9], [26], [18], [3],
2], [4], [10], [12], [22], [21], [16], [17], [14], [15], and [13].

1. COMBINING OF MANY SORTED SIGNATURES

A set is pair if:
(Def.1)  There exist sets x, y such that it = (x, y).
Let us mention that every set which is pair is also non empty.
Let z, y be sets. Observe that (z, y) is pair.
Let us mention that there exists a set which is pair and there exists a set
which is non pair.
Let us observe that every natural number is non pair.
A set has a pair if:
(Def.2)  There exists a pair set x such that z € it.
Note that every set which is empty has no pairs. Let x be a non pair set.
Note that {z} has no pairs. Let y be a non pair set. Observe that {x,y} has no
pairs. Let z be a non pair set. One can check that {z,y, z} has no pairs.

!This work was written while the first author visited Shinshu University, July—August 1994.
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Let us note that there exists a non empty set which has no pairs.

Let X, Y be sets with no pairs. One can verify that X UY has no pairs.

Let X be a set with no pairs and let Y be a set. One can verify the following
observations:

* X \'Y has no pairs,
% X NY has no pairs, and
* Y N X has no pairs.

One can verify that every set which is empty is also relation-like. Let z be a
pair set. One can check that {x} is relation-like. Let y be a pair set. Observe
that {z,y} is relation-like. Let z be a pair set. One can check that {z,y, z} is
relation-like.

Let us note that every set which is relation-like and has no pairs is also empty.

A function is nonpair yielding if:

(Def.3)  For every set = such that € domit holds it(x) is non pair.

Let x be a non pair set. Observe that (z) is nonpair yielding. Let y be a non
pair set. One can check that (x,y) is nonpair yielding. Let z be a non pair set.
Observe that (z,y, z) is nonpair yielding.

One can prove the following proposition

(1)  For every function f such that f is nonpair yielding holds rng f has no

pairs.

Let n be a natural number. Observe that there exists a finite sequence with
length n which is one-to-one and nonpair yielding.

One can check that there exists a finite sequence which is one-to-one and
nonpair yielding.

Let f be a nonpair yielding function. Note that rng f has no pairs.

The following propositions are true:

(2) Let Sy, So be non empty many sorted signatures. Suppose S; ~ Sy and
InnerVertices(S7) is a binary relation and InnerVertices(S2) is a binary
relation. Then InnerVertices(S1+-S2) is a binary relation.

(3) Let Si, Sy be unsplit non empty many sorted signatures with ar-
ity held in gates. Suppose InnerVertices(S1) is a binary relation and
InnerVertices(S3) is a binary relation. Then InnerVertices(S14-S3) is a
binary relation.

(4)  For all non empty many sorted signatures Sy, S such that S; ~ S
and InnerVertices(S2) misses InputVertices(S7) holds InputVertices(S7)
InputVertices(S1+4+S2) and InputVertices(S1+-S2) = InputVertices(S7)
(InputVertices(S2) \ InnerVertices(S7)).

(5) For all sets X, R such that X has no pairs and R is a binary relation
holds X misses R.

(6) Let Sy, So be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(Ss)
is a binary relation. Then InputVertices(S;) C InputVertices(S1+-S52)

C
U
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and InputVertices(S1+-S2) = InputVertices(S7) U (InputVertices(S3) \
InnerVertices(S1)).

(7)  Let Sy, S be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(S1) is
a binary relation and InputVertices(S2) has no pairs and InnerVertices(Ss)
is a binary relation. Then InputVertices(S1+-S2) = InputVertices(S7) U
InputVertices(Ss).

(8)  For all non empty many sorted signatures Sp, Se such that S; ~ Sy and
InputVertices(S7) has no pairs and InputVertices(S2) has no pairs holds
InputVertices(S1+-52) has no pairs.

(9) Let Sy, Sy be unsplit non empty many sorted signatures with arity held
in gates. If InputVertices(S7) has no pairs and InputVertices(S2) has no
pairs, then InputVertices(S1+-52) has no pairs.

2. COMBINIG OF CIRCUITS

In this article we present several logical schemes. The scheme 2AryBooleDef
concerns a binary functor F yielding an element of Boolean, and states that:
(i)  There exists a function f from Boolean? into Boolean such
that for all elements z, y of Boolean holds f({z,y)) = F(z,y), and
(ii)  for all functions fi, fo from Boolean? into Boolean such that
for all elements z, y of Boolean holds fi({z,y)) = F(x,y) and for
all elements x, y of Boolean holds fa((z,y)) = F(z,y) holds f1 = f2
for all values of the parameter.
The scheme 3AryBooleDef deals with a ternary functor F yielding an element
of Boolean, and states that:
(i)  There exists a function f from Boolean® into Boolean such
that for all elements x, y, z of Boolean holds f({x,y,z)) =
F(x,y,z), and
(ii)  for all functions fi, fo from Boolean® into Boolean such that
for all elements z, y, z of Boolean holds fi({(z,y,z)) = F(z,y,=2)
and for all elements x, y, z of Boolean holds fa({x,y, z)) = F(z,y, 2)
holds f1 = f2
for all values of the parameter.
The function xor from Boolean? into Boolean is defined by:

(Def.4)  For all elements z, y of Boolean holds xor({x,y)) =z & y.
The function or from Boolean? into Boolean is defined by:
(Def.5)  For all elements z, y of Boolean holds or({(z,y)) = x V y.
The function & from Boolean? into Boolean is defined as follows:
(Def.6)  For all elements x, y of Boolean holds &({z,y)) = x A y.
The function ors from Boolean® into Boolean is defined by:
(Def.7)  For all elements z, y, z of Boolean holds org({x,y,z)) =xVyV z.
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Let = be a set. Then (x) is a finite sequence with length 1. Let y be a set.
Then (x,y) is a finite sequence with length 2. Let z be a set. Then (z,y, z) is
a finite sequence with length 3.

Let n, m be natural numbers, let p be a finite sequence with length n, and
let ¢ be a finite sequence with length m. Then p ™ ¢ is a finite sequence with
length n + m.

3. SIGNATURES WITH ONE OPERATION

The following proposition is true

(10)  Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Then (Following(s))(the result sort of g) = (Den(g, A))(s -
Arity(g)).

Let S be a non void circuit-like non empty many sorted signature, let A be a
non-empty circuit of S, let s be a state of A, and let n be a natural number. The
functor Following(s,n) yielding a state of A is defined by the condition (Def.8).

(Def.8)  There exists a function f from N into [](the sorts of A) such that
Following(s,n) = f(n) and f(0) = s and for every natural number n and
for every state x of A such that z = f(n) holds f(n + 1) = Following(x).

The following propositions are true:

(11)  Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s,0) = s.

(12)  Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of .S, and let s be a state of A, and let n be a
natural number. Then Following(s,n + 1) = Following(Following(s,n)).

(13) Let S be a circuit-like non void non empty many sorted signa-
ture, and let A be a non-empty circuit of S, and let s be a state of
A, and let m, m be natural numbers. Then Following(s,n + m) =
Following(Following(s, n), m).

(14) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 1) = Following(s).

(15)  Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 2) = Following(Following(s)).

(16) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of .S, and let s be a state of A, and let n be a
natural number. Then Following(s,n + 1) = Following(Following(s), n).
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Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, let s be a state of A, and let = be a set. We say that
s is stable at z if and only if:

(Def.9)  For every natural number n holds (Following(s,n))(z) = s(x).
The following propositions are true:

(17)  Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let
x be a set. If s is stable at x, then for every natural number n holds
Following(s,n) is stable at .

(18)  Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let x be
a set. If x € InputVertices(S), then s is stable at .

(19) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Suppose that for every set = such that x € rng Arity(g) holds
s is stable at x. Then Following(s) is stable at the result sort of g.

4. UNSPLIT CONDITION

The following propositions are true:

(20) Let S1, So be non empty many sorted signatures and let v be a vertex
of S1. Then v € the carrier of S1+-S2 and v € the carrier of Sy+-S57.

(21)  Let Si, S2 be unsplit non empty many sorted signatures with arity
held in gates and let z be a set. If # € InnerVertices(S1), then = €
InnerVertices(S1+-S2) and = € InnerVertices(Sa+-S51).

(22)  For all non empty many sorted signatures Sy, Sy and for every set x
such that = € InnerVertices(S2) holds x € InnerVertices(S1+-S52).

(23)  For all unsplit non empty many sorted signatures S, So with arity held
in gates holds S14-Sy = Sa+-5.

(24)  Let Sp, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A; be
a Boolean circuit of S7 with denotation held in gates, and let Ay be a
Boolean circuit of Sy with denotation held in gates. Then Ai+-As; =
Ag+-Aq.

(25) Let Sy, S2, S3 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates, and let A
be a Boolean circuit of S1, and let A be a Boolean circuit of Sy, and let
As be a Boolean circuit of S3. Then (A;+-As)+-As = Ay1+-(Az+-As).

(26)  Let Sp, S be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A; be
a Boolean non-empty circuit of S; with denotation held in gates, and let
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As be a Boolean non-empty circuit of So with denotation held in gates,
and let s be a state of A1+-As. Then s | (the carrier of S7) is a state of
Aj and s | (the carrier of Sy) is a state of As.

(27)  For all unsplit non empty many sorted signatures Sy, Sy with ar-
ity held in gates holds InnerVertices(S1+-S2) = InnerVertices(S;) U
InnerVertices(Ss).

(28) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A; be a Boolean circuit
of S with denotation held in gates, and let A5 be a Boolean circuit of S
with denotation held in gates, and let s be a state of A1+-A5, and let s;
be a state of A;. If s; = s | (the carrier of S7), then Following(s) | (the
carrier of S1) = Following(sy).

(29) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S7) misses InputVertices(S2). Let A; be a Boolean circuit
of S with denotation held in gates, and let A5 be a Boolean circuit of S
with denotation held in gates, and let s be a state of A1+-As, and let s
be a state of Ay. If so = s | (the carrier of S3), then Following(s) | (the
carrier of S2) = Following(sz).

(30) Let S1, Sz be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A; be a Boolean circuit
of S with denotation held in gates, and let A5 be a Boolean circuit of S
with denotation held in gates, and let s be a state of A1+-A5, and let s;
be a state of A;. Suppose s1 = s | (the carrier of S;). Let n be a natural
number. Then Following(s,n) | (the carrier of S1) = Following(sy, n).

(31) Let S1, Sz be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S1) misses InputVertices(S3). Let A; be a Boolean circuit
of S with denotation held in gates, and let Ay be a Boolean circuit of S
with denotation held in gates, and let s be a state of A1+-As, and let sg
be a state of Ay. Suppose sy = s | (the carrier of S). Let n be a natural
number. Then Following(s,n) | (the carrier of S2) = Following(sz, n).

(32) Let S1, Sz be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A; be a Boolean circuit
of S; with denotation held in gates, and let Ay be a Boolean circuit of
Sy with denotation held in gates, and let s be a state of A;+-As, and
let s; be a state of Aj. Suppose s; = s | (the carrier of S7). Let v be
a set. Suppose v € the carrier of S;. Let n be a natural number. Then
(Following(s,n))(v) = (Following(s, n))(v).

(33) Let S1, Sz be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
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InnerVertices(S1) misses InputVertices(S3). Let A; be a Boolean circuit
of S1 with denotation held in gates, and let As be a Boolean circuit of
Sy with denotation held in gates, and let s be a state of A;+-As, and
let so be a state of Ay. Suppose so = s | (the carrier of S3). Let v be
a set. Suppose v € the carrier of Sy. Let n be a natural number. Then
(Following(s,n))(v) = (Following(sz,n))(v).

Let S be a non void non empty many sorted signature with denotation held
in gates and let g be a gate of S. One can verify that go is function-like and
relation-like.

Next we state four propositions:

(34) Let S be a circuit-like non void non empty many sorted signature with
denotation held in gates and let A be a non-empty circuit of S. Suppose
A has denotation held in gates. Let s be a state of A and let g be a gate
of S. Then (Following(s))(the result sort of g) = ga(s - Arity(g)).

(35) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s be
a state of A, and let p be a finite sequence, and let f be a function. If (p,
f) € the operation symbols of S, then (Following(s))({p, f)) = f(s-p).

(36) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s
be a state of A, and let p be a finite sequence, and let f be a function.
Suppose (p, f) € the operation symbols of S and for every set = such that
x € rngp holds s is stable at . Then Following(s) is stable at (p, f).

(37) For every unsplit non empty many sorted signature S holds
InnerVertices(S) = the operation symbols of S.

5. ONE GATE CIRCUITS

We now state a number of propositions:

(38)  For every set f and for every finite sequence p holds
InnerVertices(1GateCircStr(p, f)) is a binary relation.

(39) For every set f and for every nonpair yielding finite sequence p holds
InputVertices(1GateCircStr(p, f)) has no pairs.

(40)  For every set f and for all sets x, y holds Input Vertices(1GateCircStr({x,
), 1)) ={z.y}.

(41)  For every set f and for all non pair sets x, y holds
InputVertices(1GateCircStr({(z,y), f)) has no pairs.

(42)  For every set f and for all sets x, y, z holds
InputVertices(1GateCircStr({(z,y, 2), f)) = {=,y, z}.
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(43) Let x, y, f be sets. Then z € the carrier of 1GateCircStr((z,y), f) and
y € the carrier of 1GateCircStr((z,y), f) and ({x,y), f) € the carrier of
1GateCircStr({z,y), ).

(44) Let x, y, z, f be sets. Then x € the carrier of 1GateCircStr({z,y, z), f)
and y € the carrier of 1GateCircStr((z,y,z), f) and z € the carrier of
1GateCircStr({(z,y, 2), f).

(45)  Let f, x be sets and let p be a finite sequence. Then x € the carrier of
1GateCircStr(p, f, z) and for every set y such that y € rngp holds y € the
carrier of 1GateCircStr(p, f, x).

(46) For all sets f, = and for every finite sequence p holds
1GateCircStr(p, f, z) is circuit-like and has arity held in gates.

(47)  For every finite sequence p and for every set f holds (p, f) €
InnerVertices(1GateCircStr(p, f)).

Let z, y be sets and let f be a function from Boolean? into Boolean. The func-
tor 1GateCircuit(x,y, f) yielding a Boolean strict circuit of 1GateCircStr((z,
y), f) with denotation held in gates is defined by:

(Def.10)  1GateCircuit(z,y, f) = 1GateCircuit({z, y), f).

We adopt the following convention: x, y, z, ¢ denote sets and f denotes a
function from Boolean? into Boolean.

We now state four propositions:

(48) Let X be a finite non empty set, and let f be a function from
X? into X, and let s be a state of 1GateCircuit({z,y), f). Then

(Following(s))({(z, ), f)) = f((s(2),s(y))) and (Following(s))(x) = s(x)
and (Following(s))(y) = s(y).

(49) Let X be a finite non empty set, and let f be a function from X? into
X, and let s be a state of 1GateCircuit({x,y), f). Then Following(s) is

stable.
(50) For every state s of 1GateCircuit(x,y, f) holds (Following(s))({(x,
v, ) = fUs(x),s(y) and (Following(s))(z) = s(x) and

(Following(s))(y) = s(y)-
(51)  For every state s of 1GateCircuit(z,y, f) holds Following(s) is stable.
Let =, vy, z be sets and let f be a function from Boolean® into
Boolean. The functor 1GateCircuit(z,y, z, f) yields a Boolean strict circuit
of 1GateCircStr({x,y, z), f) with denotation held in gates and is defined by:
(Def.11)  1GateCircuit(x, y, 2, f) = 1GateCircuit((x, y, 2), f).
We now state four propositions:

(52)  Let X be a finite non empty set, and let f be a function from X3 into X,
and let s be a state of 1GateCircuit({x,y, z), f). Then (Following(s))({(z,
¥,2), f)) = f((s(x),s(y),s(z))) and (Following(s))(x) = s(z) and
(Following(s))(y) = s(y) and (Following(s))(z) = s(z).

(53)  Let X be a finite non empty set, and let f be a function from X? into
X, and let s be a state of 1GateCircuit({(z,y, z), f). Then Following(s) is
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stable.

(54)  Let f be a function from Boolean® into Boolean and let s be a state
of 1GateCircuit(z,y, z, f). Then (Following(s))({(z,y, 2), f)) = f((s(z),
s(y),s(z))) and (Following(s))(x) = s(z) and (Following(s))(y) = s(y)
and (Following(s))(z) = s(2).

(55)  For every function f from Boolean® into Boolean and for every state s
of 1GateCircuit(z,y, 2, f) holds Following(s) is stable.

6. BOOLEAN CIRCUITS

Let z, y, ¢ be sets and let f be a function from Boolean? into Boolean. The
functor 2GatesCircStr(z,y, ¢, f) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in
gates is defined as follows:

(Def.12)  2GatesCircStr(z, y, ¢, f) = 1GateCircStr({x, y), f)+- 1GateCircStr({{(z,
y)s fse) f).

Let =, vy, c¢ be sets and let f be a function from Boolean? into
Boolean.  The functor 2GatesCircOutput(z,y,c, f) yields an element of
InnerVertices(2GatesCircStr(z, y, ¢, f)) and is defined as follows:

(Def.13)  2GatesCircOutput(x,y, ¢, f) = ({{{x,y), f), o), ).

Let z, y, ¢ be sets and let f be a function from Boolean? into Boolean. One
can verify that 2GatesCircOutput(z,y, ¢, f) is pair.

One can prove the following two propositions:

(56)  InnerVertices(2GatesCircStr(x, y, ¢, f)) = {{{z,y), f),
2GatesCircOutput(z, y, ¢, f)}.

(57)  If ¢ # ((z,y), f), then InputVertices(2GatesCircStr(z,y, ¢, f)) =
{z,y,c}.

Let z, y, ¢ be sets and let f be a function from Boolean? into
Boolean. The functor 2GatesCircuit(z,y, ¢, f) yields a strict Boolean circuit
of 2GatesCircStr(zx, y, ¢, f) with denotation held in gates and is defined by:

(Def.14)  2GatesCircuit(z,y, ¢, f) = 1GateCircuit(z,y, f)+- 1GateCircuit({(z,
y)s fre f)
We now state four propositions:

(58)  InnerVertices(2GatesCircStr(x,y, ¢, f)) is a binary relation.

(59)  For all non pair sets x, y, ¢ holds Input Vertices(2GatesCircStr(x, y, ¢, f))
has no pairs.

(60) = € the carrier of 2GatesCircStr(z,y,c, f) and y € the carrier of
2GatesCircStr(z, y, ¢, f) and ¢ € the carrier of 2GatesCircStr(z, y, ¢, f).

(61)  ((x,y), f) € the carrier of 2GatesCircStr(z,y, ¢, f) and {({{{(z,y), f),c),
f) € the carrier of 2GatesCircStr(z,y, ¢, f).
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Let S be an unsplit non void non empty many sorted signature, let A be a
Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean.

In the sequel s will be a state of 2GatesCircuit(z,y, ¢, f).

One can prove the following propositions:

(62)  Supposec # ({x,y), f). Then (Following(s, 2))(2GatesCircOutput(z, y, c,
1) = FFs(@),s(),s(0) and (Following(s,2)({(z,9), f)) —
f({s(x),s(y))) and (Following(s,2))(z) = s(z) and (Following(s,2))(y) =
s(y) and (Following(s,2))(c) = s(c).

(63) If ¢ # ((x,y), f), then Following(s,2) is stable.

(64)  Suppose ¢ # ({x,y), xor ). Let s be a state of 2GatesCircuit(x, y, ¢, xor)
and let ai, ag, ag be elements of Boolean. If a; = s(z) and ay = s(y)
and ag = s(c), then (Following(s,2))(2GatesCircOutput(z,y,c,xor)) =
a1 @ az D as.

(65)  Suppose ¢ # ({x,y), or). Let s be a state of 2GatesCircuit(z, y, ¢, or)
and let aj, a2, as be elements of Boolean. If a; = s(x) and ay = s(y) and
ag = s(c), then (Following(s,2))(2GatesCircOutput(z,y,c,or)) = a3 V
as V as.

(66)  Suppose ¢ # ((x,y), &). Let s be a state of 2GatesCircuit(x, y, ¢, &) and
let a1, az, ag be elements of Boolean. If a; = s(x) and ay = s(y) and a3 =
s(c), then (Following(s, 2))(2GatesCircOutput(z,y, ¢, &)) = a1 A ag A as.

7. ONE BIT ADDER

Let x, y, ¢ be sets. The functor BitAdderOutput(z,y,c) yields an element
of InnerVertices(2GatesCircStr(zx, y, ¢, xor)) and is defined as follows:

(Def.15)  BitAdderOutput(z, y, c) = 2GatesCircOutput(z, y, ¢, xor).

Let z, y, ¢ be sets. The functor BitAdderCirc(z,y, ¢) yields a strict Boolean
circuit of 2GatesCircStr(z, y, ¢, xor) with denotation held in gates and is defined
as follows:

(Def.16)  BitAdderCirc(z, y, ¢) = 2GatesCircuit(z, y, ¢, xor).

Let x, y, ¢ be sets. The functor MajorityIStr(z,y,c) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def.17)  MajorityIStr(z,y,c) = 1GateCircStr({z,y), &)+ 1GateCircStr((y,
), &)+ 1GateCircStr({c, z), &).
Let z, y, ¢ be sets. The functor MajorityStr(z, y, ¢) yields an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined as follows:

(Def.18)  MajorityStr(x,y,c) = MajoritylStr(z,y, ¢)+- 1GateCircStr({{{z, y),
&>’ (<ya C>7 &>7 <<Ca :L‘>7 &»a Or3)'
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Let x, y, ¢ be sets. The functor MajorityICirc(z, y, ¢) yields a strict Boolean
circuit of MajorityIStr(z,y,c) with denotation held in gates and is defined as
follows:

(Def.19)  MajorityICirc(z, y, ¢) = 1GateCircuit(z, y, &)+ 1GateCircuit(y, ¢, &)
+- 1GateCircuit(c, z, &).

Next we state several propositions:

(67)  InnerVertices(MajorityStr(z,y,c)) is a binary relation.

(68)  For all non pair sets x, y, ¢ holds InputVertices(MajorityStr(x,y, c))
has no pairs.

(69) For every state s of MajorityICirc(zx,y,c) and for all elements a, b of
Boolean such that a = s(z) and b = s(y) holds (Following(s))({{x,y),
&)) =anb.
(70)  For every state s of MajorityICirc(zx,y,c) and for all elements a, b of
Boolean such that a = s(y) and b = s(c¢) holds (Following(s))({(y, ¢),
&)) =anb.
(71)  For every state s of MajorityICirc(z,y,c) and for all elements a, b of
Boolean such that a = s(c) and b = s(z) holds (Following(s))({{c, ),
&)) =anb.
Let x, y, ¢ be sets. The functor MajorityOutput(x, y, ¢) yields an element of
InnerVertices(MajorityStr(x,y, c)) and is defined by:
(Def.20)  MajorityOutput(z,y, c) = (({{z,y), &), {{y, ), &), {{c, z), &)), ors).
Let z, y, ¢ be sets. The functor MajorityCirc(z, y, ¢) yielding a strict Boolean
circuit of MajorityStr(z,y, c) with denotation held in gates is defined by:
(Def.21)  MajorityCirc(z,y,c) = MajoritylCirc(z,y, ¢)+- 1GateCircuit ({{(z, y),
&>’ (<ya C>7 &)7 (<Ca $>7 &>7 01‘3).
Next we state a number of propositions:

(72) x € the carrier of MajorityStr(z,y,c¢) and y € the carrier of
MajorityStr(z,y,c) and ¢ € the carrier of MajorityStr(z,y, c).

(73)  {((z,y), &) € InnerVertices(MajorityStr(z,y,c)) and ((y,c), &) €
InnerVertices(MajorityStr(z,y, ¢)) and {(c, z), &)
€ InnerVertices(MajorityStr(z, y, ¢)).

(74)  For all non pair sets z, y, ¢ holds x € InputVertices(MajorityStr(zx, y, ¢))
and y € InputVertices(MajorityStr(z, y,c)) and
¢ € InputVertices(MajorityStr(x, y, c)).

(75)  For all non pair sets z, y, ¢ holds InputVertices(MajorityStr(z,y,c)) =
{z,y,c} and InnerVertices(MajorityStr(x,y,c)) = {{((z,v), &), {{y,¢),
&), (¢, z), &)} U {MajorityOutput(z,y,c)}.

(76)  Let z, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let aj, ag be elements of Boolean. If a; = s(x) and as = s(y), then
(Following(s))({(x,vy), &)) = a1 A ax.

(77)  Let z, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let ag, az be elements of Boolean. If ay = s(y) and az = s(c), then
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(Following(s))({(y, c), &)) = az A as.

(78)  Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let a1, ag be elements of Boolean. If a1 = s(x) and az = s(c), then
(Following(s))({{c, x), &)) = a3 A a1.

(79) Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let aj, a2, az be elements of Boolean. If a3 = s({(z,
y), &)) and ay = s({{y,c), &)) and a3 = s({{(c,z), &)), then
(Following(s))(MajorityOutput(z,y,c)) = a1 V az V as.

(80) Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let a1, ag be elements of Boolean. If a; = s(x) and as = s(y), then
(Following(s, 2))({(z,y), &)) = a1 A as.

(81)  Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let ay, ag be elements of Boolean. If ay = s(y) and ag = s(c), then
(Following(s, 2))({(y, ¢), &)) = aa A as.

(82) Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let a1, az be elements of Boolean. If a; = s(x) and a3z = s(c), then
(Following(s, 2))({{c, z), &)) = az A a;.

(83) Let x, y, ¢ be non pair sets, and let s be a state of MajorityCirc(z, y, ¢),
and let ay, as, as be elements of Boolean. If a; = s(x) and ay = s(y) and
az = s(c), then (Following(s, 2))(MajorityOutput(x,y,c)) = a1 Aaz Vaz A
az Vaz A ai.

(84)  For all non pair sets z, y, ¢ and for every state s of MajorityCirc(z, y, c)
holds Following(s, 2) is stable.

Let z, y, ¢ be sets. The functor BitAdderWithOverflowStr(z, y, ¢) yields an
unsplit non void strict non empty many sorted signature with arity held in gates
and Boolean denotation held in gates and is defined as follows:

(Def.22)  BitAdderWithOverflowStr(x,y, ¢) = 2GatesCircStr(x, y, ¢, xor)
+- MajorityStr(zx, y, c).

The following three propositions are true:

(85)  For all non pair sets x, y, ¢ holds InputVertices(BitAdderWithOverflowStr
(z,y,¢)) ={z,y,c}.

(86)  For all non pair sets z, y, ¢ holds InnerVertices(BitAdder WithOverflowStr
(z,y,¢)) = {{(z,y), xor), 2GatesCircOutput(z,y, c,xor)} U {{{(z,y),
&), ((y, ¢), &), {{c,x), &)} U {MajorityOutput(z,y,c)}.

(87) Let S be a non empty many sorted signature. Suppose S =
BitAdderWithOverflowStr(x, y, ¢). Then x € the carrier of S and y € the
carrier of S and ¢ € the carrier of S.

Let z, y, ¢ be sets. The functor BitAdderWithOverflowCirc(z, y, ¢) yielding a
strict Boolean circuit of BitAdderWithOverflowStr(x,y, ¢) with denotation held
in gates is defined as follows:

(Def.23)  BitAdderWithOverflowCirc(z, y, ¢) = BitAdderCirc(z, y, ¢)
+- MajorityCirc(z, y, ¢).
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We now state several propositions:
(88)  InnerVertices(BitAdderWithOverflowStr(x,y, c)) is a binary relation.

(89)  For all non pair sets x, y, ¢ holds InputVertices(BitAdderWithOverflowStr
(x,y,c)) has no pairs.

(90) BitAdderOutput(z,y,c) € InnerVertices(BitAdderWithOverflowStr(z,
y, c)) and MajorityOutput(z, y, ¢) € InnerVertices(BitAdderWithOverflow
Str(z, y,c)).

(91) Let x, y, ¢ be non pair sets, and let s be a state of
BitAdderWithOverflowCirc(z, y, ¢), and let a1, ag, ag be elements of
Boolean. Suppose a1 = s(z) and ag = s(y) and az = s(c).

Then (Following(s,2))(BitAdderOutput(z,y,c)) = a1 ® a2 & a3 and
(Following(s, 2))(MajorityOutput(z,y,¢)) = a1 Aag Vaz Aaz V az A ay.

(92)  For all non pair sets z, y, ¢ and for every state s of

BitAdderWithOverflowCirc(z, y, ¢) holds Following(s, 2) is stable.
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1. DIRECTED SETS

One can check that there exists a coherent space which is finite. Let us
observe that a set is binary complete if:

(Def.1)  For every set A such that for all sets a, b such that a € A and b € A
holds a U b € it holds |J A € it.

Let X be a set. The functor FlatCoh(X) yielding a set is defined as follows:
(Def.2)  FlatCoh(X) = CohSp(Ax).
The functor SubFin(X) yielding a subset of X is defined by:
(Def.3)  For every set = holds x € SubFin(X) iff z € X and z is finite.
One can prove the following three propositions:

(1) For all sets X, z holds x € FlatCoh(X) iff x = () or there exists a set y
such that z = {y} and y € X.

(2)  For every set X holds |JFlatCoh(X) = X.

(3)  For every finite down-closed set X holds SubFin(X) = X.

One can check that {0} is down-closed and binary complete. Let X be a set.
One can check that 2% is down-closed and binary complete and FlatCoh(X) is
non empty down-closed and binary complete.
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Let C be a non empty down-closed set. Observe that SubFin(C) is non
empty and down-closed.
We now state the proposition
(4)  Web({0}) = 0.
The scheme MinimalElement wrt Incl concerns sets A, B and a unary pred-
icate P, and states that:
There exists a set a such that a € B and Pla] and for every set b
such that b € B and P[b] and b C a holds b =a
provided the following requirements are met:
o A€ B,
o P[A],
e A is finite.
Let X be a set. One can check that there exists a subset of X which is finite.
Let C be a coherent space. Observe that there exists an element of C' which
is finite.
Let X be a set. We say that X is U-directed if and only if:
(Def.4)  For every finite subset Y of X there exists a set a such that Y C a
and a € X.

We say that X is N-directed if and only if:
(Detf.5)  For every finite subset Y of X there exists a set a such that for every
set y such that y € Y holds ¢ C y and a € X.
Let us note that every set which is U-directed is also non empty and every
set which is N-directed is also non empty.
We now state several propositions:
(5) Let X be a set. Suppose X is U-directed. Let a, b be sets. If a € X
and b € X, then there exists a set ¢ such that a Ub C c and ¢ € X.

(6) Let X be a non empty set. Suppose that for all sets a, b such that
a € X and b € X there exists a set ¢ such that aUb C ¢ and ¢ € X. Then
X is U-directed.
(7) Let X be a set. Suppose X is N-directed. Let a, b be sets. If a € X
and b € X, then there exists a set ¢ such that c CaNband c € X.
(8) Let X be a non empty set. Suppose that for all sets a, b such that
a € X and b € X there exists a set ¢ such that ¢ C anNb and ¢ € X. Then
X is N-directed.
(9) For every set x holds {z} is U-directed and N-directed.
(10)  For all sets z, y holds {z,y,x Uy} is U-directed.
(11)  For all sets x, y holds {z,y,z Ny} is N-directed.
Let us observe that there exists a set which is U-directed N-directed and
finite.
Let C be a non empty set. Observe that there exists a subset of C' which is
U-directed N-directed and finite.
We now state the proposition
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(12)  For every set X holds Fin X is U-directed and N-directed.
Let X be a set. Observe that Fin X is U-directed and N-directed.
Let C be a down-closed non empty set. Note that there exists a subset of C
which is preboolean and non empty.
Let C be a down-closed non empty set and let a be an element of C. Then
Fina is a preboolean non empty subset of C.
One can prove the following proposition
(13) Let X be a non empty set and let Y be a set. Suppose X is U-directed
and Y C UX and Y is finite. Then there exists a set Z such that Z € X
and Y C Z.
Let X be a set. We say that X is N-closed if and only if:
(Def.6)  For all sets x, y such that x € X and y € X holds x Ny € X.
We say that X is closed under directed unions if and only if:
(Def.7)  For every subset A of X such that A is U-directed holds JA € X.
One can check that every set which is down-closed is also N-closed.
Next we state two propositions:
(14)  For every coherent space C and for all elements x, y of C holds xNy € C.
(15)  For every coherent space C' and for every U-directed subset A of C holds
UAdecC.
Let us note that every coherent space is closed under directed unions.
Let us note that there exists a coherent space which is N-closed and closed
under directed unions.
Let C be a closed under directed unions non empty set and let A be a U-
directed subset of C. Then [J A is an element of C.
Let X, Y be sets. We say that X includes lattice of Y if and only if:

(Def.8)  For all sets a, b such that « € Y and b € Y holds anNb € X and aUb € X.
The following proposition is true

(16)  For every non empty set X such that X includes lattice of X holds X
is U-directed and N-directed.

Let X, z, y be sets. We say that X includes lattice of x, y if and only if:
(Def.9) X includes lattice of {z,y}.
One can prove the following proposition

(17)  For all sets X, z, y holds X includes lattice of z, y iff z € X and y € X
and zxNye X and zUy € X.

2. CONTINUOUS, STABLE, AND LINEAR FUNCTIONS

Let f be a function. We say that f is preserving arbitrary unions if and only
if:
(Def.10)  For every subset A of dom f such that |JA € dom f holds f(UA) =
U(f°A).
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We say that f is preserving directed unions if and only if:
(Def.11)  For every subset A of dom f such that A is U-directed and |J A € dom f
holds f(JA) =U(f°A).

Let f be a function. We say that f is C-monotone if and only if:

(Def.12)  For all sets a, b such that a € dom f and b € dom f and a C b holds
fla) € f(b).
We say that f is preserving binary intersections if and only if:
(Def.13)  For all sets a, b such that dom f includes lattice of a, b holds f(anb) =
fla) N f(b).

Let us note that every function which is preserving directed unions is also
C-monotone and every function which is preserving arbitrary unions is also
preserving directed unions.

Next we state two propositions:

(18) Let f be a function. Suppose f is preserving arbitrary unions. Let
z, y be sets. If x € domf and y € dom f and z Uy € dom f, then
flaUy) = fz) U fy).

(19)  For every function f such that f is preserving arbitrary unions holds
f0)=9.

Let C1, Cy be coherent spaces. Note that there exists a function from C; into
C5 which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted
set indexed by C which is preserving arbitrary unions and preserving binary
intersections.

Let f be a function. We say that f is continuous if and only if:

(Def.14)  dom f is closed under directed unions and f is preserving directed
unions.

Let f be a function. We say that f is stable if and only if:

(Def.15)  dom f is N-closed and f is continuous and preserving binary intersec-
tions.

Let f be a function. We say that f is linear if and only if:
(Def.16)  f is stable and preserving arbitrary unions.
One can check the following observations:
x  every function which is continuous is also preserving directed unions,

*  every function which is stable is also preserving binary intersections and
continuous, and
%  every function which is linear is also preserving arbitrary unions and
stable.
Let X be a closed under directed unions set. Note that every many sorted
set indexed by X which is preserving directed unions is also continuous.

Let X be a N-closed set. Observe that every many sorted set indexed by X
which is continuous and preserving binary intersections is also stable.
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Let us note that every function which is stable and preserving arbitrary
unions is also linear.

Note that there exists a function which is linear. Let C' be a coherent space.
One can check that there exists a many sorted set indexed by C' which is linear.
Let B be a coherent space. One can check that there exists a function from B
into C' which is linear.

Let f be a continuous function. One can verify that dom f is closed under
directed unions.

Let f be a stable function. One can verify that dom f is N-closed.

We now state several propositions:

(20)  For every set X holds [JFin X = X.

(21)  For every continuous function f such that dom f is down-closed and for
every set a such that a € dom f holds f(a) = U(f°Fina).

(22) Let f be a function. Suppose dom f is down-closed. Then f is contin-
uous if and only if the following conditions are satisfied:
(i) dom f is closed under directed unions,
(ii)  f is C-monotone, and
(i)  for all sets a, y such that a € dom f and y € f(a) there exists a set b
such that b is finite and b C a and y € f(b).

(23) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is stable if and only if the following conditions
are satisfied:

(i)  f is C-monotone, and

(ii) for all sets a, y such that a € dom f and y € f(a) there exists a set b
such that b is finite and b C a and y € f(b) and for every set ¢ such that
cCaandyée f(c) holds b C c.

(24) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is linear if and only if the following conditions
are satisfied:

(i)  fis C-monotone, and

(ii) for all sets a, y such that a € dom f and y € f(a) there exists a set
such that € a and y € f({z}) and for every set b such that b C a and
y € f(b) holds = € b.

3. GRAPH OF CONTINUOUS FUNCTION

Let f be a function. The functor graph(f) yielding a set is defined as follows:
(Def.17)  For every set x holds z € graph(f) iff there exists a finite set y and
there exists a set z such that z = (y, z) and y € dom f and z € f(y).
Let Cy, C5 be non empty sets and let f be a function from C4 into C5. Then
graph(f) is a subset of [ Cy, JC2].
Let f be a function. Note that graph(f) is relation-like.
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Next we state several propositions:

(25)  For every function f and for all sets x, y holds (x, y) € graph(f) iff x
is finite and = € dom f and y € f(z).

(26) Let f be a C-monotone function and let a, b be sets. Suppose b € dom f
and a C b and b is finite. Let y be a set. If (a, y) € graph(f), then (b,
y) € graph(f).

(27)  Let C1, Cy be coherent spaces, and let f be a function from Cy into Co,
and let a be an element of Cq, and let y1, y2 be sets. If (a, y1) € graph(f)
and (a, y2) € graph(f), then {y1,y2} € Cs.

(28) Let Ci, Cy be coherent spaces, and let f be a C-monotone function
from C7 into Cy, and let a, b be elements of C;. Suppose a Ub € Cj.
Let y1, y2 be sets. If (a, y1) € graph(f) and (b, y2) € graph(f), then
{y1, 92} € Co.

(29)  For all coherent spaces C, Cs and for all continuous functions f, g from
C4 into Cy such that graph(f) = graph(g) holds f = g.

(30) Let Cy, C2 be coherent spaces and let X be a subset of [ C1, |JC2].
Suppose that

(i) for every set = such that x € X holds z is finite,
(ii)  for all finite elements a, b of C; such that a C b and for every set y
such that (a, y) € X holds (b, y) € X, and
(i)  for every finite element a of Cy and for all sets yi, y2 such that (a,
y1) € X and (a, y2) € X holds {y1,y2} € Ca.
Then there exists a continuous function f from C7 into Cy such that
X = graph(f).

(31) Let Cq, C be coherent spaces, and let f be a continuous function from

C into Cy, and let a be an element of Cy. Then f(a) = (graph(f))° Fina.

4. TRACE OF STABLE FUNCTION

Let f be a function. The functor Trace(f) yields a set and is defined by the
condition (Def.18).
(Def.18)  Let = be a set. Then x € Trace(f) if and only if there exist sets a, y
such that x = (a, y) and a € dom f and y € f(a) and for every set b such
that b € dom f and b C a and y € f(b) holds a = b.
Next we state the proposition
(32) Let f be a function and let a, y be sets. Then (a, y) € Trace(f) if and
only if the following conditions are satisfied:
(i) a€domf,
(i) y€ f(a), and
(iii)  for every set b such that b € dom f and b C a and y € f(b) holds a = b.

Let C1, C5 be non empty sets and let f be a function from C; into Cy. Then
Trace(f) is a subset of [ C1, JC2 .
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Let f be a function. One can check that Trace(f) is relation-like.
Next we state a number of propositions:

(33)  For every continuous function f such that dom f is down-closed holds
Trace(f) C graph(f).

(34) Let f be a continuous function. Suppose dom f is down-closed. Let a,
y be sets. If (a, y) € Trace(f), then a is finite.

(35)  Let C1, C5 be coherent spaces, and let f be a C-monotone function from
C4 into (9, and let a1, ao be sets. Suppose a1 Uas € Cy. Let y1, yo be
sets. If (a1, y1) € Trace(f) and (a2, y2) € Trace(f), then {y1,y2} € Cs.

(36) Let C7, Cy be coherent spaces, and let f be a preserving binary inter-
sections function from C7 into Csy, and let a1, as be sets. If aq Uay € C1,
then for every set y such that (a;, y) € Trace(f) and (aqg, y) € Trace(f)
holds a; = as.

(37)  Let Cq, Co be coherent spaces and let f, g be stable functions from Cy
into Cy. If Trace(f) C Trace(g), then for every element a of C; holds
fla) € g(a).

(38)  For all coherent spaces Cy, Cy and for all stable functions f, g from Cy
into Cy such that Trace(f) = Trace(g) holds f = g.

(39) Let Cy, C2 be coherent spaces and let X be a subset of [Cy, |JCq2 .

Suppose that

(i)  for every set = such that € X holds z is finite,

(ii)  for all elements a, b of Cy such that a Ub € C; and for all sets y1, y2
such that (a, y1) € X and (b, y2) € X holds {y1,y2} € Cs, and

(iii)  for all elements a, b of C such that aUb € C; and for every set y such
that (a, y) € X and (b, y) € X holds a = b.
Then there exists a stable function f from C; into Cs such that X =
Trace(f).

(40)  Let C1, Cy be coherent spaces, and let f be a stable function from Cy
into Co, and let a be an element of Cy. Then f(a) = (Trace(f))° Fina.

(41)  Let Cj, Cy be coherent spaces, and let f be a stable function from C;
into Co, and let a be an element of C, and let y be a set. Then y € f(a)
if and only if there exists an element b of C such that (b, y) € Trace(f)
and b C a.

(42)  For all coherent spaces C7, Cs there exists a stable function f from Cy
into C5 such that Trace(f) = 0.

(43)  Let C1, Cq be coherent spaces, and let a be a finite element of C', and
let y be a set. If y € |JC9, then there exists a stable function f from C
into Cy such that Trace(f) = {(a, y)}.

(44)  Let Cq, Cy be coherent spaces, and let a be an element of C, and let y
be a set. Suppose y € |JCs. Let f be a stable function from C; into Cos.
Suppose Trace(f) = {{a, y)}. Let b be an element of C7. Then if a C b,
then f(b) = {y} and if a Z b, then f(b) = 0.
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(45)  Let C, Cy be coherent spaces, and let f be a stable function from C4
into Cy, and let X be a subset of Trace(f). Then there exists a stable
function ¢ from C into Co such that Trace(g) = X.

(46) Let C7, Cy be coherent spaces and let A be a set. Suppose that for all
sets x, y such that x € A and y € A there exists a stable function f from
C4 into Cy such that x Uy = Trace(f). Then there exists a stable function
f from Cy into Cy such that |J A = Trace(f).

Let Cy, Cs be coherent spaces. The functor StabCoh(C1, C3) yielding a set
is defined as follows:
(Def.19)  For every set x holds x € StabCoh(Cy,Cy) iff there exists a stable
function f from Cj into Cy such that z = Trace(f).
Let Cq, Cy be coherent spaces. Note that StabCoh(Cq,C>) is non empty
down-closed and binary complete.
We now state three propositions:

(47)  For all coherent spaces C, Cy and for every stable function f from C
into Cy holds Trace(f) C [ SubFin(C1), UCa .

(48)  For all coherent spaces C, C holds |J StabCoh(C1, Cy) = [ SubFin(Cy),
UC21.

(49)  Let Cy, Cy be coherent spaces, and let a, b be finite elements of C'y, and
let y1, y2 be sets. Then ({a, y1), (b, y2)) € Web(StabCoh(C1,C>)) if and
only if one of the following conditions is satisfied:

(i) aUb¢Ciandy; € UCy and y2 € |JCq, or
(i)  (y1, y2) € Web(Cy) and if y1 = y2, then a = b.

5. TRACE OF LINEAR FUNCTION

The following proposition is true
(50)  Let Cy, Cy be coherent spaces and let f be a stable function from C4
into Co. Then f is linear if and only if for all sets a, y such that {(a,
y) € Trace(f) there exists a set = such that a = {z}.
Let f be a function. The functor LinTrace(f) yielding a set is defined as
follows:
(Def.20)  For every set z holds = € LinTrace(f) iff there exist sets y, z such that
x = (y, z) and ({y}, z) € Trace(f).
Next we state three propositions:
(51)  For every function f and for all sets x, y holds (z, y) € LinTrace(f) iff
({z}, y) € Trace(f).
(52)  For every function f such that f(0)) = () and for all sets z, y such that
{z} € dom f and y € f({z}) holds (z, y) € LinTrace(f).
(53)  For every function f and for all sets x, y such that (z, y) € LinTrace(f)
holds {z} € dom f and y € f({z}).
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Let C7, C5 be non empty sets and let f be a function from C7 into Cs. Then
LinTrace(f) is a subset of [ JCq, JC2 1.

Let f be a function. One can verify that LinTrace(f) is relation-like.

Let Cy, C be coherent spaces. The functor LinCoh(Cy, C3) yielding a set is
defined as follows:

(Def.21)  For every set  holds « € LinCoh(Cy, Cy) iff there exists a linear function
f from C into Cy such that x = LinTrace(f).

Next we state a number of propositions:

(54) Let C1, Cy be coherent spaces, and let f be a C-monotone function
from C; into Cy, and let x1, xo be sets. Suppose {z1,z2} € Cy. Let yi,
y2 be sets. If (x1, y1) € LinTrace(f) and (x2, y2) € LinTrace(f), then
{y1,92} € Co.

(55) Let Cy, Cy be coherent spaces, and let f be a preserving binary
intersections function from C;7 into Cy, and let z1, =9 be sets. If
{x1,22} € C4, then for every set y such that (z;, y) € LinTrace(f) and
(2, y) € LinTrace(f) holds 1 = z2.

(56)  For all coherent spaces C1, Co and for all linear functions f, g from Cy
into Cy such that LinTrace(f) = LinTrace(g) holds f = g.

(57)  Let C1, Cy be coherent spaces and let X be a subset of [ |JC4, JC2 .

Suppose that

(i)  for all sets a, b such that {a,b} € C7 and for all sets y1, y2 such that
(a, y1) € X and (b, y2) € X holds {y1,y2} € Cs, and

(ii)  for all sets a, b such that {a,b} € C7 and for every set y such that {a,
y) € X and (b, y) € X holds a = b.
Then there exists a linear function f from Cp into Cy such that X =
LinTrace(f).

(58) Let C7, Cy be coherent spaces, and let f be a linear function from Cj
into Cy, and let a be an element of C;. Then f(a) = (LinTrace(f))°a.

(59)  For all coherent spaces Cy, Cy there exists a linear function f from Cy
into Cy such that LinTrace(f) = 0.

(60) Let Cy, Cy be coherent spaces, and let x be a set, and let y be a set.
Suppose z € |JC1 and y € |JCs. Then there exists a linear function f
from C into Cy such that LinTrace(f) = {(z, y)}.

(61) Let Cp, Cy be coherent spaces, and let « be a set, and let y be a set.
Suppose xz € |JC; and y € |JCs. Let f be a linear function from C; into
(. Suppose LinTrace(f) = {(z, y)}. Let a be an element of C;. Then if
x € a, then f(a) = {y} and if = ¢ a, then f(a) = 0.

(62) Let C71, Cy be coherent spaces, and let f be a linear function from Cy
into Cq, and let X be a subset of LinTrace(f). Then there exists a linear
function g from C into Cy such that LinTrace(g) = X.

(63) Let Cq, Co be coherent spaces and let A be a set. Suppose that for
all sets =, y such that z € A and y € A there exists a linear function f
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from C4 into C9 such that z Uy = LinTrace(f). Then there exists a linear
function f from Cj into Cy such that (J A = LinTrace(f).

Let Cy, Cy be coherent spaces. One can check that LinCoh(Cy,C2) is non
empty down-closed and binary complete.
One can prove the following propositions:
(64)  For all coherent spaces C, Cy holds |JLinCoh(C1,Cs) = fUJC1, UCa 1.
(65) Let C7, Cy be coherent spaces, and let 1, x2 be sets, and let y1, y2 be
sets. Then ((x1, y1), (x2, y2)) € Web(LinCoh(C1, Cs)) if and only if the
following conditions are satisfied:
(i) =1 €U0y,
(i) z2€UCh, and
(iii)  (z1, z2) ¢ Web(Ci) and y; € UC2 and yo, € UCs or (y1, y2) €
Web(Cs) and if y; = ys, then z1 = z5.

6. NEGATION OF COHERENCE SPACES

Let C be a coherent space. The functor ~C' yielding a set is defined by:
(Def.22)  —=C = {a : a ranges over subsets of UC, Ap. clement of ¢ Va:set @MN0 C

{z}}.

One can prove the following proposition

(66) Let C be a coherent space and let « be a set. Then z € —=C'if and only

if the following conditions are satisfied:

(i) xCUC, and

(ii)  for every element a of C' there exists a set z such that x Na C {z}.

Let C be a coherent space. Observe that —C' is non empty down-closed and

binary complete.
Next we state several propositions:

(67)  For every coherent space C holds |J-C = |JC.

(68)  For every coherent space C' and for all sets z, y such that x # y and
{z,y} € C holds {z,y} ¢ ~C.

(69)  For every coherent space C' and for all sets x, y such that {z,y} CUC
and {z,y} ¢ C holds {x,y} € =C.

(70)  For every coherent space C' and for all sets x, y holds (z, y) € Web(—=C)
iff : e JC buty e JC but z =y or (z, y) ¢ Web(C).

(71)  For every coherent space C holds -—=C = C.

(72) {0} = {0}.

(73)  For every set X holds - FlatCoh(X) = 2% and —(2%) = FlatCoh(X).
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7. PropUCT AND COPRODUCT ON COHERENCE SPACES

Let z, y be sets. The functor z W y yielding a set is defined by:
(Def.23) x Wy = Jdisjoint(z,y).
We now state a number of propositions:
(74)  For all sets z, y holds s Wy =[x, {1} U}y, {2}].
(75)  For every set z holds s W) =[x, {1} ] and QW = [z, {2}].
(76)  For all sets x, y, z such that z € z Wy holds z = (27, 22) but 2z =1
and z1 €Ex or 2z =2 and 21 € y.

(77)  For all sets z, y, z holds (z, 1) € z Wy iff z € x.
(78)  For all sets z, y, z holds (z, 2) e x Wy iff z € y.
(79)  For all sets x1, y1, 2, y2 holds x1 Wy C xoWys iff 1 C 29 and y; C yo.
(80)  For all sets x, y, z such that z C x Wy there exist sets z1, y1 such that

z=x1 Wy and 1 C x and y; C y.

(81)  For all sets x1, y1, 2, y2 holds x1 Wy; = xoWys iff 1 = x5 and y; = yo.

(82)  For all sets x1, y1, x2, y2 holds (x1 Wy1) U (z2 Wys) = 21 Uz Wy Uys.

(83)  For all sets x1, y1, 2, y2 holds (x1 Wy1) N (22 Wys) = 21 Nxo Wy Nyo.

Let C'1, C5 be coherent spaces. The functor C1MC5 yields a set and is defined
by:
(Def.24)  C1MCy = {aWb: aranges over elements of C7, b ranges over elements
of CQ}
The functor C7 U Cy yielding a set is defined as follows:
(Def.25)  C1UCy ={aWi: aranges over elements of C1} U{0Wb : b ranges over
elements of Cy}.
The following propositions are true:

(84) Let C1, Cy be coherent spaces and let x be a set. Then z € Cy M Cy if
and only if there exists an element a of C; and there exists an element b
of Cy such that £ = a Wb.

(85)  For all coherent spaces C1, Co and for all sets x, y holds zwy € C1MCy
iff z € C7 and y € Cb.

(86)  For all coherent spaces C1, Cy holds J(C1 M Cy) =UJCrL W JCs.

(87)  For all coherent spaces C1, Co and for all sets x, y holds zwy € C1UC,
ifreCiandy=0orz=0andy e Cs.

(88)  Let Cy, Cy be coherent spaces and let x be a set. Suppose x € Cq LI Cs.
Then there exists an element a of C7 and there exists an element b of Cs
such that z = awWbbut a =0 or b = 0.

(89)  For all coherent spaces C7, Cy holds J(C1 L Cy) = U Cr W JCa.

Let Ci, C5 be coherent spaces. Observe that Cq M Cy is non empty down-
closed and binary complete and C; LI C5 is non empty down-closed and binary
complete.
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In the sequel Cy, Cy will be coherent spaces.
We now state several propositions:
(90)  For all sets z, y holds ({x, 1), (y, 1)) € Web(C; M Cq) iff (z, y) €
Web(C'l).
(91)  For all sets x, y holds ({(z, 2), (y, 2)) € Web(Cy 1 Cy) iff (z,y) €
Web(Cg)
(92) For all sets x, y such that z € JC; and y € |JC2 holds ({(z, 1), (v,
2)) € Web(C; 1 Cy) and ((y, 2), (z, 1)) € Web(C1 M Cy).
(93)  For all sets z, y holds ((z, 1), (y, 1)) € Web(Cy U Cy) iff (z, y) €
Web(C'l).
(94) For all sets x, y holds ({(x, 2), (y, 2)) € Web(Cy U Cy) iff (z,y) €
Web(Cg)
(95)  For all sets x, y such that z € JC; and y € |JC2 holds ({(z, 1), (v,
2)) ¢ Web(C; U Cy) and ((y, 2), (z, 1)) ¢ Web(C; U Cy).
(96) —(C1NCy) =-C1U—=Ch.
Let Cy1, C be coherent spaces. The functor C7 ® C5 yielding a set is defined
as follows:

(Def.26) Oy @ Cy = {201 : @ ranges over elements of Cj, b ranges over
elements of Cy}.
We now state the proposition
(97)  Let C1, Co be coherent spaces and let « be a set. Then z € C; ® Cy if
and only if there exists an element a of C; and there exists an element b
of Cy such that x C [ a, b].
Let C1, Cs be coherent spaces. One can check that Cy ® C5 is non empty.
Next we state the proposition
(98)  For all coherent spaces C1, Co and for every element a of C; ® Cy holds
m1(a) € Cy and ma(a) € Cy and a C [ 7i(a), ma(a)].
Let C1, Cy be coherent spaces. One can check that C; ® Cy is down-closed
and binary complete.
Next we state two propositions:

(99)  For all coherent spaces Cy, Cy holds |J(C ® Co) = U C1, U2 1.

(100)  For all sets 1, y1, T2, y2 holds ({z1, x2), (y1, y2)) € Web(Cy ® Cy) iff
(1, y1) € Web(Cy) and (x2, y2) € Web(Cy).
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The notation and terminology used here are introduced in the following papers:
[11], [12], [5], [13], [2], [3], [4], [6], [1], [10], [9], [8], and [7].

1. PRELIMINARIES

For simplicity we follow a convention: ¢ will be arbitrary, I will be a set, f
will be a function, z, x1, x2, y, A, B, X, Y, Z will be many sorted sets indexed
by I, J will be a non empty set, and N1 will be a many sorted set indexed by
J.

We now state three propositions:

(1)  For every set X and for every many sorted set M indexed by I such

that ¢ € I holds dom(M+-(i—— X)) = 1.

(2) If f =0, then f is a many sorted set indexed by 0.

(3) If I is non empty, then there exists no X which is empty yielding and

non-empty.

2. SINGELTON AND UNORDERED PAIRS

Let us consider I, A. The functor {A} yielding a many sorted set indexed
by I is defined as follows:

(Def.1)  For every i such that i € T holds {A}(i) = {A(4)}.
Let us consider I, A. Observe that {A} is non-empty and locally-finite.
Let us consider I, A, B. The functor {A, B} yields a many sorted set indexed
by I and is defined as follows:

© 1996 Warsaw University - Bialystok
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(Def.2)
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For every i such that i € I holds {A, B} (i) = {A(7), B(4)}.

Let us consider I, A, B. One can verify that {4, B} is non-empty and
locally-finite.
We now state a number of propositions:

(4)
()
(6)

AN AN N N N N N N AN N AN N N N N N N N N N N N N N N N /S

W W W W W W W W N NDNDNDNDNDNDNNDNRERE R~ =B B~ B 2 B B B2 ~. —~ —~
N OO W N O O 00O O R WO © 00O R WN R O © 0
R N N N W W e D e i e W O i e i S e i I N e N N

X = {y} iff for every z holds z € X iff z = y.

If for every x holds x € X iff z = x1 or = 9, then X = {1, z2}.

If X = {x1,22}, then for every x such that © = z; or x = x5 holds
rz e X.

{N1} # 05

If z € {A}, then z = A.

z € {x}.

If z=Aor z =B, then z € {4, B}.

{A}U{B} = {4, B}.

{z, 2} = {z}.

{A,B} = {B, A}.

If {A} C {B}, then A= B.

If {z} = {y}, then z = y.

If {x} = {A, B}, then z = A and z = B.

If {} = {A, B}, then A = B.

{z} € {z,y} and {y} C {z,y}.

If {z} Uy} = {«} or {z} U{y} = {y}, then z =y.
{z} U {z,y} = {z,y}.

{yt Uiz, y} = {z,y}.

If I is non empty and {z} N {y} = 07, then = # y.
If {z} n{y} = {«} or {z} N {y} = {y}, then z =y.
{z} N{z,y} = {z} and {y} N {z,y} = {y}.

If I is non empty and {z} \ {y} = {z}, then = # y.
If {}\ {y} =0r, then z = y.

{z} \{z,y} =07 and {y} \ {z,y} = 0r.

It {z} € {y}, then {z} = {y}.

If {x,y} C {A}, then z = A and y = A.

If {x,y} C {A}, then {z,y} = {A}.

2t7h = {0y, {z}}.

{A} C 24,

Ufz} = .

U{z} {y}} = {=,9}-

U{A4,B} =AUB.

{z} C X iff x € X.

{r1,22} C X iff z; € X and 29 € X.
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(38) IfA=0;or A={x1} or A={xs} or A= {x1, 22}, then A C {x1, 22}

3. SUM OF UNORDERED PAIRS (OR A SINGELTON) AND A SET

One can prove the following propositions:
(39) Ifxe Aorz=B,thenx e AU{B}.
(40) AU{z}CBiffz € Band AC B.
(41) If{z}UX =X, then z € X.

(42) Ifz € X, then {z}UX = X.

(43) {z,yjUA=Aifz € Aand y € A.
(44)  If I is non empty, then {z} U X # 0;.
(45)  If I is non empty, then {x,y} U X # 0.

4. INTERSECTION OF UNORDERED PAIRS (OR A SINGELTON) AND A SET

We now state several propositions:
46) If X Nn{x} = {z}, then z € X.
) Ifxe X, then X N{z} = {z}.
) zeXandye X iff {z,y}NX ={z,y}.
49) If I is non empty and {z} N X = @, then = ¢ X.
) If I is non empty and {z,y} N X =0, then ¢ X and y ¢ X.

5. DIFFERENCE OF UNORDERED PAIRS (OR A SINGELTON) AND A SET

The following propositions are true:
51) Ifye X\ {z}, theny € X.

(

(52) If I is non empty and y € X \ {z}, then y # z.

(63)  If I is non empty and X \ {z} = X, then = ¢ X.

(54) If I is non empty and {z} \ X = {z}, then x ¢ X.

(55) {z}\X=0;iff z € X.

(56) If I is non empty and {z,y} \ X = {z}, then x ¢ X.

(57)  If I is non empty and {z,y} \ X = {y}, then y ¢ X.

(58)  If I is non empty and {z,y} \ X = {x,y}, then z ¢ X and y ¢ X.

(59) {z,y}\ X =0;iff zr € X and y € X.

(60) IfX=070r X ={a}or X ={y} or X ={z,y}, then X\ {z,y} = 0.
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6. CARTESIAN PRODUCT

One can prove the following propositions:
(61) I X =0;orY =0, then [X,Y] = 0;.
(62) If X is non-empty and Y is non-empty and [X,Y] = [Y,X], then

X=Y.

(63) If [X,X] = [Y,Y], then X = Y.
(64) If Z is non-empty and if [X,Z] C [Y.Z] or [Z,X] C [Z,Y], then
XCv.

If X C Y, then [X, Z] C [V, Z] and [Z, X] C [Z,Y].

If 1 C A and x5 C B, then [x1,z2] C [A, B].

[XUY,Z] =[X,Z]U[Y,Z] and [Z, X UY] = [Z, X] U [Z, Y]

[[5171 Uz, AU B]] = Ile,A]] @] [[:Cl,B]] U [[I'Q,A]] U [[:CQ,B]].

[XNnY,Z] =X, Z]N[Y,Z] and [Z, X NY] =[Z,X] N [Z,Y].

[[1'1 Nxo, AN B]] = [[:El,A]] N [$2,BH.

If AC X and B CY, then [A,Y]N[X, B] = [A, B].

[X\Y, Z] = [X, Z]\ [\, Z] and [Z, X \ Y] = [Z, X]\ [Z,Y].

[[371,552]] \ [[A,B]] = [[xl \A,.rg]] U [[51;1,3;2 \ B]]

If 21 Nxe =07 or AN B = 0y, then [z1, A] N [z2, B] = 0.

If X is non-empty, then [{z}, X] is non-empty and [X,{z}] is non-
empty.
(76)  [z,y}, X] = [{=}, XJU[{y}, X] and [X,{=z,y}] = [X {=}]U[X, {y}].
(77)  If 21 is non-empty and A is non-empty and [z, A] = [z2, B], then

r1 = x9 and A = B.

(78) I X C[X,Y]or X C[Y,X], then X = 0.
(79) IfAexr,y] and A€ [X,Y], then A e [zNX,yNY].
(80) If [z, X] C [y, Y] and [z, X] is non-empty, then z C y and X C Y.
(81) If AC X, then [A, A] C [X, X].
(82)
(83)

N N e N e N N I TR
=1 SO DD
= o g O Ot

— O~~~ Y N~ N Y —

D
=)

N 3 = I
U I W N =

If XNY =0, then [X,Y] N [Y, X] = 0;.

If A is non-empty and if [A, B] C [X,Y] or [B,A] C [Y,X], then
BCY.
(84) IfzCJA,B]Jand y C[X,Y], thenzUy CJ[AUX,BUY].
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The notation and terminology used in this paper are introduced in the following
papers: [8], [9], [6], [10], [5], [7], [4], [1], [3], and [2].

We follow the rules: T', T1 will denote trees, P will denote an antichain of
prefixes of T', and p, q, r will denote finite sequences of elements of N.

We now state the proposition

(1)  For all finite sequences p, ¢, r, s such that p =~ ¢ = s~ r holds p and s
are comparable.

Let us consider T', T} and let us consider P. Let us assume that P # (). The

functor T'(P/Ty) yields a tree and is defined as follows:
(Def.1) q € T(P/Ty) iff ¢ € T and for every p such that p € P holds p £ q or
there exist p, r such that pe Pand r € Ty and g=p " 7.
One can prove the following propositions:

(2)  Suppose P # (). Then T(P/Ty) = {t1 : t; ranges over elements of T,
Np PEP = pAti}U{p~s:pranges over elements of T, s ranges over
elements of 11, p € P}.

(3)  {t1 : t1 ranges over elements of T, A, p€ P = p At1} C{t1: 1
ranges over elements of T, A\, p€ P = p £ t1}.

(4) P C{t1:t ranges over elements of T, A, p€ P = p A t1}.

(5)  {t1 :t1 ranges over elements of ', A, p € P = p A t1}\{t1 : t1 ranges
over elements of T, A\, p€ P = pAti1} =P.

(6) Forall T, Ty, P holds P C {p~s: pranges over elements of T', s ranges
over elements of T, p € P}.
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(7)  Suppose P # (). Then T(P/Ty) = {t1 : t; ranges over elements of T,
Np PEP = pAti}U{p~ s:pranges over elements of T, s ranges over
elements of 11, p € P}.

(8) Ifpe PandqeTy, thenp~qeT(P/Th).

(9) Ifpe P, then Ty =T(P/Ty) | p.

Let us consider T'. Observe that there exists an antichain of prefixes of T

which is non empty.

Let us consider T' and let ¢ be an element of 7. Then {t} is a non empty

antichain of prefixes of T'.

In the sequel ¢t will be an element of T.

We now state the proposition

(10)  T{t}/T1) =T(t/T1).

In the sequel T, T7 denote decorated trees, P denotes an antichain of prefixes

of dom T, and ¢ denotes an element of domT.

Let us consider T, P, T}. Let us assume that P # (). The functor T'(P/T})

yields a decorated tree and is defined by the conditions (Def.2).
(Def.2) (i) dom(7T(P/Ty)) = (domT)(P/domT}), and
(ii)  for every ¢ such that ¢ € (domT')(P/domTy) holds for every p such
that p € P holds p £ ¢ and T(P/T1)(q) = T'(q) or there exist p, r such
that p € P and r € dom T} and ¢ = p "~ r and T(P/T1)(q) = T1(r).

We now state several propositions:

(11) If P # 0, then dom(T'(P/T1)) = (dom T)(P/ dom Ty).

(12) If p e domT, then dom(T'(p/T1)) = (dom T')(p/ dom T7).

(13)  Suppose P # (). Given q. Suppose ¢ € dom(T(P/T})). Then for every
p such that p € P holds p A ¢ and T(P/T1)(q) = T(q) or there exist p, r
such that p € P and r € dom T and ¢ = p "~ r and T'(P/T1)(q) = T1(r).

(14)  Suppose p € domT. Given g. Suppose g € dom(T'(p/T1)). Then p £ ¢
and T'(p/T1)(q) = T(q) or there exists r such that » € dom T and ¢ = p~r
and T'(p/T1)(q) = Ti(r).

(15)  Suppose P # (). Given g. Suppose ¢ € dom(T'(P/T1)) and ¢q € {t; : t1
ranges over elements of dlom T, A\, p € P = p A t1}. Then T(P/T1)(q) =
T(q).

(16) Ifp € domT, then for every ¢ such that ¢ € dom(T'(p/T1)) and ¢q € {t; :
t1 ranges over elements of dom T, p £ ¢1} holds T'(p/T1)(q) = T(q).

(17)  Suppose P # (). Given q. Suppose ¢ € dom(T(P/Ty)) and g€ {p~s:p
ranges over elements of dom 7', s ranges over elements of domT4,p € P}.
Then there exists an element p’ of dom T and there exists an element 7 of
dom Ty such that ¢ =p' ~r and p’ € P and T(P/T1)(q) = T1(r).

(18)  Suppose p € domT. Given q. Suppose ¢ € dom(T(p/T})) and ¢q €
{p ™ s : s ranges over elements of dom7y,s = s}. Then there exists an
element r of dom 7} such that ¢ = p~r and T'(p/T1)(q) = T1(r).

(19)  T({t}/T1) = T(t/Th).
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In the sequel D will denote a non empty set, T, T} will denote trees decorated
with elements of D, and P will denote an antichain of prefixes of dom T

Let us consider D, T, P, T;. Let us assume that P # (). The functor T'(P/T)
yields a tree decorated with elements of D and is defined by:

(DefS) T(P/Tl) = T(P/Tl).
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Summary. The concept of characterizing of partial algebras by
many sorted signature is introduced, i.e. we say that a signature S char-
acterizes a partial algebra A if there is an S-algebra whose sorts form
a partition of the carrier of algebra A and operations are formed from
operations of A by the partition. The main result is that for any partial
algebra there is the minimal many sorted signature which characterizes
the algebra. The minimality means that there are signature endomor-
phisms from any signature which characterizes the algebra A onto the
minimal one.
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[11], [2], [4], [15], [14], and [10] provide the notation and terminology for this
paper.

1. PRELIMINARY

Let f be a non empty binary relation. Observe that dom f is non empty and
rng f is non empty.

Let f be a non-empty function. One can verify that rng f has non empty
elements.

Let X, Y be non empty sets. One can verify that there exists a partial
function from X to Y which is non empty.

Let X be a set with non empty elements. Note that every finite sequence of
elements of X is non-empty.

Let A be a non empty set. One can verify that there exists a finite sequence
of operational functions of A which is homogeneous quasi total non-empty and
non empty.
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Let us observe that every universal algebra structure which is non-empty is
also non empty.
Let X be a non empty set with non empty elements. One can verify that
every element of X is non empty.
Next we state two propositions:
(1)  For all non-empty functions f, g such that []f C [[¢ holds dom f =
dom ¢ and for every set = such that x € dom f holds f(z) C g(z).

(2)  For all non-empty functions f, g such that [[ f =[] ¢ holds f = g.

Let A be a non empty set and let f be a finite sequence of operational
functions of A. Then rng f is a subset of A*5A.

Let A, B be non empty sets and let S be a non empty subset of A—>B. We
see that the element of S is a partial function from A to B.

Let A be a non-empty universal algebra structure. An operation symbol of A
is an element of dom (the characteristic of A). An operation of A is an element
of rng (the characteristic of A).

Let A be a non-empty universal algebra structure and let o be an operation
symbol of A. The functor Den(o, A) yielding an operation of A is defined by:

(Def.1)  Den(o, A) = (the characteristic of A)(o).

2. PARTITIONS

Let X be a set. Note that every partition of X has non empty elements.

Let X be a non empty set. One can verify that every partition of X is non
empty.

Let X be a set and let R be an equivalence relation of X. Then Classes R is
a partition of X.

Next we state a number of propositions:

(3) Let X be a set, and let P be a partition of X, and let z, a, b be sets.
Ifreaanda€ Pand x € band b € P, then a = b.

(4) Let X,Y besets. Suppose X is finer than Y. Let p be a finite sequence
of elements of X. Then there exists a finite sequence ¢ of elements of Y
such that [[p C[Ig-.

(5) Let X be aset, and let P, @ be partitions of X, and let f be a function
from P into ). Suppose that for every set a such that a € P holds
a C f(a). Let p be a finite sequence of elements of P and let ¢ be a finite
sequence of elements of (). Then [[p C [[q if and only if f-p =gq.

(6) For every set P and for every function f such that rng f C |J P there
exists a function p such that domp = dom f and rngp C P and f € [ p.

(7)  Let X be a set, and let P be a partition of X, and let f be a finite se-
quence of elements of X. Then there exists a finite sequence p of elements
of P such that f € []p.



MINIMAL SIGNATURE FOR PARTIAL ALGEBRA 407

(8) Let X, Y be non empty sets, and let P be a partition of X, and let @
be a partition of Y. Then {[p, ¢] : p ranges over elements of P, q ranges
over elements of @} is a partition of [ X, Y {.

(9)  For every non empty set X and for every partition P of X holds {[[p: p
ranges over elements of P*} is a partition of X*.

(10) Let X be a non empty set, and let n be a natural number, and let P be
a partition of X. Then {[]p : p ranges over elements of P"} is a partition
of X™.

(11) Let X be a non empty set and let Y be a set. Suppose Y C X. Let P
be a partition of X. Then {a NY : a ranges over elements of P, a meets
Y} is a partition of Y.

(12)  Let f be a non empty function and let P be a partition of dom f. Then
{f 1 a: a ranges over elements of P} is a partition of f.

Let X be a set. The functor SmallestPartition(X) yielding a partition of X

is defined as follows:

(Def.2)  SmallestPartition(X) = Classes(Ax).
One can prove the following propositions:
(13)  For every non empty set X holds SmallestPartition(X) = {{z} : «
ranges over elements of X}.
(14) Let X be a set and let p be a finite sequence of elements of
SmallestPartition(X). Then there exists a finite sequence g of elements
of X such that [[p = {q}.
Let X be a set. A function is said to be an indexed partition of X if:
(Def.3)  rngit is a partition of X and it is one-to-one.

Let X be a set. Note that every indexed partition of X is one-to-one and
non-empty. Let P be an indexed partition of X. Then rng P is a partition of
X.

Let X be a non empty set. Observe that every indexed partition of X is non
empty.

Let X be a set and let P be a partition of X. Then Ap is an indexed
partition of X.

Let X be a set, let P be an indexed partition of X, and let  be a set. Let
us assume that x € X. The P-index of x is a set and is defined by:

(Def.4)  The P-index of z € dom P and = € P(the P-index of z).
Next we state two propositions:

(15) Let X be a set and let P be a non-empty function. Suppose JP = X
and for all sets x, y such that x € dom P and y € dom P and x # y holds
P(zx) misses P(y). Then P is an indexed partition of X.

(16) Let X, Y be non empty sets, and let P be a partition of Y, and let f
be a function from X into P. If P C rng f and f is one-to-one, then f is
an indexed partition of Y.
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3. RELATIONS GENERATED BY OPERATIONS OF PARTIAL ALGEBRA

In this article we present several logical schemes. The scheme RelationEz
concerns non empty sets A, B and a binary predicate P, and states that:
There exists a relation R between A and B such that for every
element = of A and for every element y of B holds (z, y) € R if and
only if P[z,y]
for all values of the parameters.
The scheme IndRelationFx concerns non empty sets A, BB, a natural number
C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:
There exists a relation R between A and B and there exists a many
sorted set F' indexed by N such that
() R=F(Q)
(i) F(0) =D, and
(iii)  for every natural number i and for every relation R between
A and B such that R = F (i) holds F(i + 1) = F(R,1)
for all values of the parameters.
The scheme RelationUniq concerns non empty sets A, B and a binary pred-
icate P, and states that:
Let Ry, Ry be relations between A and . Suppose that
(i) for every element = of A and for every element y of B holds
<$7 y) € Ry iff ’P[:Evy}’ and
(ii) for every element x of A and for every element y of B holds
(z, y) € Ry iff Plz,y].
Then R; = R»
for all values of the parameters.
The scheme IndRelation Uniq concerns non empty sets A, B, a natural number
C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:
Let Ry, Ry be relations between A and B. Suppose that
(i)  there exists a many sorted set F' indexed by N such that
Ry = F(C) and F(0) = D and for every natural number i and
for every relation R between A and B such that R = F(i) holds
F(i+1)=F(R,i), and
(ii)  there exists a many sorted set I’ indexed by N such that
Ry = F(C) and F(0) = D and for every natural number i and
for every relation R between A and B such that R = F(i) holds
F(i+1) =F(R,i).
Then R; = Ry
for all values of the parameters.
Let A be a partial non-empty universal algebra structure. The functor
DomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.5).
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(Def.5)  Let x, y be elements of the carrier of A. Then (z, y) € DomRel(A)
if and only if for every operation f of A and for all finite sequences p, g
holds p~ (x) ~ ¢ € dom f iff p~ (y) ~ g € dom f.
Let A be a partial non-empty universal algebra structure. Note that
DomRel(A) is equivalence relation-like.
Let A be a non-empty partial universal algebra structure and let R be a

binary relation on the carrier of A. The functor R4 yielding a binary relation
on the carrier of A is defined by the condition (Def.6).

(Def.6)  Let x, y be elements of the carrier of A. Then (z, y) € R4 if and only

if the following conditions are satisfied:

(i) (z,y) € R, and

(ii)  for every operation f of A and for all finite sequences p, ¢ such that
1]7%" (r)"q € dom f and p~(y)~q € dom f holds {f(p~(z)"q), f(p~(y)"q)) €
Let A be a non-empty partial universal algebra structure, let R be a binary
relation on the carrier of A, and let i be a natural number. The functor R4?
yielding a binary relation on the carrier of A is defined by the condition (Def.7).

(Def.7)  There exists a many sorted set F' indexed by N such that
() R =F(),
(i) F(0) =R, and
(iii)  for every natural number i and for every binary relation R on the
carrier of A such that R = F(i) holds F(i + 1) = R4,

Next we state several propositions:

(17)  Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then R4? = R and R4 = RA.

(18) Let A be a non-empty partial universal algebra structure, and let i be a
natural number, and let R be a binary relation on the carrier of A. Then
RATT — (RA)A,

(19) Let A be a non-empty partial universal algebra structure, and let i, j
be natural numbers, and let R be a binary relation on the carrier of A.
Then R4 = (RAV)AI,

(20) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. If R C DomRel(A), then R4
is equivalence relation-like.

(21) Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then R4 C R.

(22) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. Suppose R C DomRel(A). Let
i be a natural number. Then R4 is equivalence relation-like.

Let A be a non-empty partial universal algebra structure. The functor
LimDomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.8).
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(Def.8)  Let z, y be elements of the carrier of A. Then (z, y) € LimDomRel(A)
if and only if for every natural number 4 holds (z, y) € (DomRel(A))?.

The following proposition is true
(23) For every non-empty partial universal algebra structure A holds
LimDomRel(A) C DomRel(A).
Let A be a non-empty partial universal algebra structure. Note that
LimDomRel(A) is equivalence relation-like.

4. PARTITABILITY

Let X be a non empty set, let f be a partial function from X* to X, and let
P be a partition of X. We say that f is partitable w.r.t. P if and only if:
(Detf.9)  For every finite sequence p of elements of P there exists an element a
of P such that f°[[p C a.
Let X be a non empty set, let f be a partial function from X* to X, and let
P be a partition of X. We say that f is exactly partitable w.r.t. P if and only
if:
(Def.10)  f is partitable w.r.t. P and for every finite sequence p of elements of P
such that []p meets dom f holds [[p C dom f.

We now state the proposition
(24) Let A be a non-empty partial universal algebra structure. Then every
operation of A is exactly partitable w.r.t. SmallestPartition(the carrier
of A).
The scheme FiniteTransitivity concerns finite sequences A, B, a unary pred-
icate P, and a binary predicate Q, and states that:

P(B]
provided the following conditions are met:
o P[A]
e len A =lenB,

e For all finite sequences p, ¢ and for all sets z1, z2 such that P[p °
(21) " q] and Q[z1, 22] holds P[p ™ (22) " ql,
e For every natural number i such that ¢ € dom A holds Q[A(%), B(7)].
One can prove the following proposition
(25)  For every non-empty partial universal algebra structure A holds every
operation of A is exactly partitable w.r.t. Classes LimDomRel(A).
Let A be a partial non-empty universal algebra structure. A partition of the
carrier of A is said to be a partition of A if:
(Def.11)  Every operation of A is exactly partitable w.r.t. it.
Let A be a partial non-empty universal algebra structure. An indexed par-
tition of the carrier of A is called an indexed partition of A if:
(Def.12)  rngit is a partition of A.
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Let A be a partial non-empty universal algebra structure and let P be an
indexed partition of A. Then rng P is a partition of A.
One can prove the following propositions:

(26) For every non-empty partial universal algebra structure A holds
Classes LimDomRel(A) is a partition of A.

(27)  Let X be a non empty set, and let P be a partition of X, and let p be
a finite sequence of elements of P, and let ¢1, g2 be finite sequences, and
let z, y be sets. Suppose g1 ~ (z) "~ g2 € [[p and there exists an element
a of P such that x € a and y € a. Then ¢1 ~ (y) ~gq2 € [Ip.

(28)  For every partial non-empty universal algebra structure A holds every
partition of A is finer than Classes LimDomRel(A).

5. SIGNATURE MORPHISMS

Let S1, S2 be many sorted signatures and let f, g be functions. We say that
f and g form morphism between S; and Sy if and only if the conditions (Def.13)
are satisfied.
(Def.13) (i) dom f = the carrier of S,
(i) dom g = the operation symbols of Sy,
(ili)) rng f C the carrier of So,
v) rngg C the operation symbols of Sy,
) f - (the result sort of S;) = (the result sort of S3) - (¢), and
) for every set o and for every function p such that o € the operation
symbols of S; and p = (the arity of S1)(0) holds f - p = (the arity of
S2)(g(0))-

Next we state two propositions:

(29) Let S be a non void non empty many sorted signature. Then

1d(thc carrier of ) and 1d(thc operation symbols of S) form morphlsm between S
and S.

(30) Let Sy, Sy, S3 be many sorted signatures and let f1, f2, g1, g2 be
functions. Suppose fi1 and g; form morphism between S; and So and fo
and go form morphism between Sy and S3. Then f5 - fi and go - g1 form
morphism between S; and Ss.

Let S1, S be many sorted signatures. We say that Sp is rougher than So if
and only if the condition (Def.14) is satisfied.

(Def.14)  There exist functions f, g such that f and g form morphism between S5
and S7 and rng f = the carrier of S; and rng g = the operation symbols
of Sl.

Let S1, S9 be non void non empty many sorted signatures. Let us observe
that the predicate defined above is reflexive.
One can prove the following proposition
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(31)  For all many sorted signatures S, Sz, S3 such that Sy is rougher than
Sy and S5 is rougher than Ss holds 57 is rougher than Ss.

6. MANY SORTED SIGNATURE OF PARTIAL ALGEBRA

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. The functor MSSign(A, P) yields a strict many sorted signature
and is defined by the conditions (Def.15).

(Def.15) (i)  The carrier of MSSign(A4, P) = P,

(ii)  the operation symbols of MSSign(A, P) = {(o, p) : o ranges over
operation symbols of A, p ranges over elements of P*, [[p meets
dom Den(o, A)}, and

(ili)  for every operation symbol o of A and for every element p of P* such
that [ p meets dom Den(o, A) holds (the arity of MSSign(A, P))({o, p)) =
p and (Den(o, A))°[Ip C (the result sort of MSSign(A4, P))({o, p)).

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. One can verify that MSSign(A, P) is non empty and non void.

Let A be a partial non-empty universal algebra structure, let P be a partition
of A, and let o be an operation symbol of MSSign(A, P). Then o7 is an operation
symbol of A. Then o9 is an element of P*.

Let A be a partial non-empty universal algebra structure, let S be a non
void non empty many sorted signature, let G be an algebra over S, and let P
be an indexed partition of the operation symbols of S. We say that A can be
characterized by S, G, and P if and only if the conditions (Def.16) are satisfied.

(Def.16) (i) The sorts of G is an indexed partition of A,
(i) dom P = dom (the characteristic of A), and
(i)  for every operation symbol o of A holds (the characteristics of G)[ P(0)
is an indexed partition of Den(o, A).

Let A be a partial non-empty universal algebra structure and let S be a non
void non empty many sorted signature. We say that A can be characterized by
S if and only if the condition (Def.17) is satisfied.

(Def.17)  There exists an algebra G over S and there exists an indexed partition
P of the operation symbols of S such that A can be characterized by S,
G, and P.
One can prove the following propositions:

(32)  Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Then A can be characterized by MSSign(A, P).

(33) Let A be a partial non-empty universal algebra structure, and let S be
a non void non empty many sorted signature, and let G be an algebra
over S, and let () be an indexed partition of the operation symbols of S.
Suppose A can be characterized by S, G, and Q). Let o be an operation
symbol of A and let r be a finite sequence of elements of rng (the sorts of
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G). Suppose [[r € dom Den(o, A). Then there exists an operation symbol
s of S such that (the sorts of G) - Arity(s) = r and s € Q(0).

Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Suppose P = Classes LimDomRel(A). Let S be a non

void non empty many sorted signature. If A can be characterized by S,
then MSSign(A, P) is rougher than S.
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Summary. A continuation of [12]. The notions of list of immediate
constituents of a formula and subformula tree of a formula are introduced.
The some propositions related to these notions are proved.
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[2], and [16].

1. PRELIMINARIES

The following propositions are true:

(1)  For all real numbers z, y, z such that x < y and y < z holds z < z.
(2)  For all natural numbers m, k holds m+ 1 < k iff m < k.

(3)  For every finite sequence r holds r = r | Seglenr.
(

—_

N

) For every natural number n and for every finite sequence r there exists
a finite sequence ¢ such that ¢ =r | Segn and ¢ < r.

(5)  For all finite sequences p, g, r such that ¢ < r holdsp~q¢ <p~r.

(6) Let D be a non empty set, and let r be a finite sequence of elements
of D, and let r1, 7o be finite sequences, and let k& be a natural number.
Suppose k + 1 < lenr and r; = r | Seg(k + 1) and r9 = r | Segk. Then
there exists an element x of D such that r1 =72~ (x).

(7)  Let D be a non empty set, and let r be a finite sequence of elements of

D, and let 71 be a finite sequence. If 1 < lenr and r; = r | Seg1, then

there exists an element x of D such that r; = (z).
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Let D be a non empty set and let T" be a tree decorated with elements of D.
Observe that every element of dom T is function-like and relation-like.

Let D be a non empty set and let T' be a tree decorated with elements of D.
One can verify that every element of dom T is finite sequence-like.

Let D be a non empty set. One can check that there exists a tree decorated
with elements of D which is finite.

In the sequel T will be a decorated tree and p will be a finite sequence of
elements of N.

Next we state the proposition

(8) If pedomT, then T'(p) = (T | p)(e).

In the sequel T' is a finite-branching decorated tree, t is an element of dom T,
x is a finite sequence, and n is a natural number.

The following propositions are true:

(9) suce(T,t) =T - Succt.
10)  dom(7T - Succt) = dom Succt.
11)  domsucc(T,t) = dom Succt.
12) ¢t~ (n) edomT iff n + 1 € dom Succt.
13) For all T, z, n such that x = (n) € dom7 holds T(x ~ (n)) =
(suce(T,z))(n + 1).
In the sequel z, 2’ will be elements of dom T and 3’ will be arbitrary.
One can prove the following two propositions:
(14) If 2/ € succz, then T'(z') € rngsuce(T, x).
(15) If y' € rngsucc(T,z), then there exists x’ such that v = T'(2’) and
x’ € succx.

~—~~
~— ~— — ~— ~—

In the sequel n, k, m will denote natural numbers.
The scheme FExDecTrees deals with a non empty set A, an element B of A,
and a unary functor F yielding a finite sequence of elements of A4, and states
that:
There exists a finite-branching tree T decorated with elements of A
such that T'(¢) = B and for every element t of dom 7" and for every
element w of A such that w = T'(t) holds succ(T,t) = F(w)

for all values of the parameters.

The following propositions are true:

(16)  For every tree T' and for every element ¢ of 7" holds Seg~(t) is a finite
chain of T -

(17)  For every tree T holds T-level(0) = {e}.

(18)  For every tree T holds T-level(n + 1) = U{succw : w ranges over ele-
ments of T, lenw = n}.

(19)  For every finite-branching tree T" and for every natural number n holds
T-level(n) is finite.

(20)  For every finite-branching tree 7' holds 7T is finite iff there exists a
natural number n such that T-level(n) = 0.
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(21)  For every finite-branching tree T such that 7" is not finite holds there
exists chain of T" which is not finite.

(22)  For every finite-branching tree T such that 7" is not finite holds there
exists branch of T" which is not finite.

(23) Let T be a tree, and let C be a chain of T, and let ¢ be an element of
T. If t € C and C is not finite, then there exists an element t’ of T such
that ' € C and t < t'.

(24) Let T be a tree, and let B be a branch of T, and let ¢ be an element of
T. Suppose t € B and B is not finite. Then there exists an element ¢’ of
T such that ¢ € B and t’ € succt.

(25) Let f be a function from N into N. Suppose that for every n holds
f(n+ 1) qua natural number < f(n) qua natural number. Then there
exists m such that for every n such that m < n holds f(n) = f(m).

The scheme FinDecTree concerns a non empty set A, a finite-branching tree
B decorated with elements of A, and a unary functor F yielding a natural
number, and states that:
B is finite
provided the parameters meet the following requirement:
e For all elements ¢, t' of dom B and for every element d of A such
that ¢ € succt and d = B(t') holds F(d) < F(B(t)).
In the sequel D will denote a non empty set and 7" will denote a tree decorated
with elements of D.
Next we state two propositions:
(26)  For arbitrary y such that y € rngT holds y is an element of D.

(27)  For arbitrary x such that z € domT holds T'(x) is an element of D.

2. SUBFORMULA TREE

In the sequel F', G, H will denote elements of WFF.
One can prove the following propositions:
(28)  If F is a subformula of G, then len(®F) < len(°G).
(29) If F is a subformula of G and len(®F) = len(“G), then F = G.
Let p be an element of WFF. The list of immediate constituents of p yields
a finite sequence of elements of WFF and is defined by:
(Def.1) (i)  The list of immediate constituents of p = ewpr if p = VERUM or p
is atomic,
(ii)  the list of immediate constituents of p = (Arg(p)) if p is negative,
(i)  the list of immediate constituents of p = (LeftArg(p), RightArg(p)) if
p is conjunctive,
(iv)  the list of immediate constituents of p = (Scope(p)), otherwise.
Next we state two propositions:
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(30) Suppose k € dom (the list of immediate constituents of F) and G =
(the list of immediate constituents of F')(k). Then G is an immediate
constituent of F'.

(31)  rng(the list of immediate constituents of F') = {G : G ranges over
elements of WFF, GG is an immediate constituent of F'}.

Let p be an element of WFFE. The tree of subformulae of p yields a finite tree

decorated with elements of WFF and is defined by the conditions (Def.2).
(Def.2) (i)  (The tree of subformulae of p)(e) = p, and

(ii)  for every element z of dom (the tree of subformulae of p) holds succ(the
tree of subformulae of p, x) = the list of immediate constituents of (the
tree of subformulae of p)(z).

In the sequel ¢, ¢’ will be elements of dom (the tree of subformulae of F).

One can prove the following propositions:

(32)  (The tree of subformulae of F)(¢) = F.

(33)  succ(the tree of subformulae of F, t) = the list of immediate con-
stituents of (the tree of subformulae of F')(t).

(34) F € rng(the tree of subformulae of F).

(35)  Suppose t~ (n) € dom (the tree of subformulae of F). Then there exists
G such that

(i) G = (the tree of subformulae of F')(t ~ (n)), and
(i) G is an immediate constituent of (the tree of subformulae of F')(t).
(36)  The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of F)(t),
(ii)  there exists n such that ¢ ~ (n) € dom (the tree of subformulae of F)
and H = (the tree of subformulae of F')(t ~ (n)).

(37)  Suppose G € rng (the tree of subformulae of F') and H is an immediate
constituent of G. Then H € rng (the tree of subformulae of F).

(38) If G € rng(the tree of subformulae of F') and H is a subformula of G,
then H € rng (the tree of subformulae of F).

(39) G € rng (the tree of subformulae of F) iff G is a subformula of F.

(40)  rng (the tree of subformulae of F') = Subformulae F.

(41)  Suppose t' € succt. Then (the tree of subformulae of F))(t') is an im-
mediate constituent of (the tree of subformulae of F')(t).

(42) Ift < t/, then (the tree of subformulae of F)(t') is a subformula of (the
tree of subformulae of F')(t).

(43) If t < #', then len(®(the tree of subformulae of F')(#)) < len(®(the tree
of subformulae of F)(t)).

(44) Ift < t/, then (the tree of subformulae of F))(t') # (the tree of subfor-
mulae of F')(t).

(45) Ift < t/, then (the tree of subformulae of F')(¢) is a proper subformula
of (the tree of subformulae of F')(t).

(46)  (The tree of subformulae of F)(t) = F iff t = ¢.
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(47)  Suppose t # t' and (the tree of subformulae of F)(t) = (the tree of
subformulae of F)(¢'). Then ¢ and ¢’ are not comparable.

Let F, G be elements of WFF. The F-entry points in subformula tree of
G yields an antichain of prefixes of dom (the tree of subformulae of F') and is
defined by the condition (Def.3).

(Def.3)  Let t be an element of dom (the tree of subformulae of F'). Then ¢ €
the F-entry points in subformula tree of G if and only if (the tree of
subformulae of F)(t) = G.

We now state several propositions:

(48) t € the F-entry points in subformula tree of G iff (the tree of subfor-
mulae of F')(t) = G.

(49)  The F-entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F'), (the tree of subformulae of F')(t) =
G}.
(50) G is a subformula of F' iff the F-entry points in subformula tree of
G # 0.
(51)  Suppose t' =t~ (m) and (the tree of subformulae of F)(t) is negative.
Then (the tree of subformulae of F)(t') = Arg((the tree of subformulae
of F)(t)) and m = 0.
(52)  Supposet’ =t~ (m) and (the tree of subformulae of F')(t) is conjunctive.
Then
(i)  (the tree of subformulae of F')(t') = LeftArg((the tree of subformulae
of F)(t)) and m =0, or
(i)  (the tree of subformulae of F')(t') = RightArg((the tree of subformulae
of F)(t)) and m = 1.
(53)  Suppose t’ =t~ (m) and (the tree of subformulae of F')(t) is universal.
Then (the tree of subformulae of F')(t') = Scope((the tree of subformulae
of F)(t)) and m = 0.

(54)  Suppose (the tree of subformulae of F')(¢) is negative. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F'), and
(ii)  (the tree of subformulae of F)(t ~ (0)) = Arg((the tree of subformulae
of F)(t)).
(55)  Suppose (the tree of subformulae of F')(t) is conjunctive. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F),
(ii)  (the tree of subformulae of F)(t ~ (0)) = LeftArg((the tree of subfor-
mulae of F)(t)),
(i) ¢~ (1) € dom (the tree of subformulae of F), and
(iv)  (the tree of subformulae of F')(t ~ (1)) = RightArg((the tree of subfor-
mulae of F)(t)).
(56)  Suppose (the tree of subformulae of F)(t) is universal. Then
(i) ¢t~ (0) € dom (the tree of subformulae of F'), and
(ii)  (the tree of subformulae of F')(t~(0)) = Scope((the tree of subformulae
of F)(t)).
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In the sequel ¢ will be an element of dom (the tree of subformulae of F') and
s will be an element of dom (the tree of subformulae of G).
Next we state the proposition

(57)  Suppose t € the F-entry points in subformula tree of G and s € the
G-entry points in subformula tree of H. Then t ~ s € the F-entry points
in subformula tree of H.

In the sequel ¢ will be an element of dom (the tree of subformulae of F') and
s will be a finite sequence.
Next we state several propositions:

(58)  Suppose t € the F-entry points in subformula tree of G and ¢ ~ s € the
F-entry points in subformula tree of H. Then s € the G-entry points in
subformula tree of H.

(59) Given F', G, H. Then {t " s : t ranges over elements of dom (the tree of
subformulae of F'), s ranges over elements of dom (the tree of subformulae
of G), t € the F-entry points in subformula tree of G A s € the G-entry
points in subformula tree of H} C the F-entry points in subformula tree
of H.

(60)  (The tree of subformulae of F') [ t = the tree of subformulae of (the tree
of subformulae of F)(t).

(61) t € the F-entry points in subformula tree of G if and only if (the tree
of subformulae of F') | t = the tree of subformulae of G.

(62)  The F-entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F'), (the tree of subformulae of F) [t =
the tree of subformulae of G}.

In the sequel C' is a chain of dom (the tree of subformulae of F').
Next we state the proposition
(63) Given F, G, H, C. Suppose that

(i) G € {(the tree of subformulae of F)(t) : ¢t ranges over elements of
dom (the tree of subformulae of F'), t € C'}, and

(i) H € {(the tree of subformulae of F')(t) : ¢t ranges over elements of
dom (the tree of subformulae of F'), t € C'}.
Then G is a subformula of H or H is a subformula of G.

Let F be an element of WFF. An element of WEF is said to be a subformula
of F if:

(Def.4) Tt is a subformula of F'.

Let F' be an element of WFF and let G be a subformula of F. An element
of dom (the tree of subformulae of F') is said to be an entry point in subformula
tree of G if:

(Def.5)  (The tree of subformulae of F)(it) = G.

In the sequel G will denote a subformula of F'.
Next we state the proposition
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(64) tis an entry point in subformula tree of G iff (the tree of subformulae
of F)(t) = G.
In the sequel ¢, t' are entry points in subformula tree of G.
The following proposition is true

(65) Ift #t', then t and ¢’ are not comparable.

Let F' be an element of WFF and let G be a subformula of F. The en-
try points in subformula tree of G yields a non empty antichain of prefixes of
dom (the tree of subformulae of F') and is defined as follows:

(Def.6)  The entry points in subformula tree of G = the F-entry points in sub-
formula tree of G.

We now state three propositions:

(66) The entry points in subformula tree of G = the F-entry points in sub-
formula tree of G.

(67) t € the entry points in subformula tree of G.

(68)  The entry points in subformula tree of G = {t : ¢ ranges over entry
points in subformula tree of G, t = t}.

In the sequel G1, G5 will denote subformulae of F', t; will denote an entry
point in subformula tree of G, and s will denote an element of dom (the tree of
subformulae of G).

We now state the proposition

(69) If s € the Gi-entry points in subformula tree of Gg, then ¢; ~ s is an
entry point in subformula tree of Ga.

In the sequel s will be a finite sequence.
Next we state three propositions:

(70)  Ift; " s is an entry point in subformula tree of Gg, then s € the Gp-entry
points in subformula tree of Gs.

(71)  Given F, G1, G2. Then {t" s : t ranges over entry points in subformula
tree of G, s ranges over elements of dom (the tree of subformulae of G1),
s € the Gy-entry points in subformula tree of Go} = {t ™ s : t ranges over
elements of dom (the tree of subformulae of F), s ranges over elements of
dom (the tree of subformulae of G1), t € the F-entry points in subformula
tree of G; A s € the Gy-entry points in subformula tree of Ga}.

(72)  Given F, Gy, Go. Then {t~ s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s € the Gp-entry points in subformula tree of G5} C the entry points in
subformula tree of Gs.

In the sequel Gy, Go will denote subformulae of F', t; will denote an entry
point in subformula tree of G4, and t2 will denote an entry point in subformula
tree of Gs.

The following two propositions are true:
(73)  If there exist t1, t2 such that ¢; < t9, then Gy is a subformula of G;.



422

(74)
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If G4 is a subformula of Gy, then for every t; there exists to such that
t1 X to.
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The Steinitz Theorem and the Dimension
of a Vector Space

Mariusz Zynel
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Biatystok

Summary. The main purpose of the paper is to define the dimen-
sion of an abstract vector space. The dimension of a finite-dimensional
vector space is, by the most common definition, the number of vectors in
a basis. Obviously, each basis contains the same number of vectors. We
prove the Steinitz Theorem together with Exchange Lemma in the second
section. The Steinitz Theorem says that each linearly-independent subset
of a vector space has cardinality less than any subset that generates the
space, moreover it can be extended to a basis. Further we review some of
the standard facts involving the dimension of a vector space. Addition-
ally, in the last section, we introduce two notions: the family of subspaces
of a fixed dimension and the pencil of subspaces. Both of them can be
applied in the algebraic representation of several geometries.

MML Identifier: VECTSP_9.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [23], [12], [8], [2], [6], [24], [4], [5], [22], [1]. [7], [3]. [17);
[19], [9], [21], [15], [10], [20], [16], [18], [14], and [11].

1. PRELIMINARIES

For simplicity we follow the rules: GG7 is a field, V is a vector space over G,
W is a subspace of V, x is arbitrary, and n is a natural number.

Let S be a non empty 1-sorted structure. Observe that there exists a subset
of S which is non empty.

One can prove the following proposition

(1)  For every finite set X such that n < X there exists a finite subset A of
X such that A = n.

© 1996 Warsaw University - Bialystok
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In the sequel f, g will be functions.
We now state a number of propositions:

(2)  For every f such that f is one-to-one holds if x € rng f, then f —1 {z} =
1

(3)  For every f such that = ¢ rng f holds f —1 {z} =0.

(4) For all f, g such that rng f = rngg and f is one-to-one and g is one-to-
one holds f and g are fiberwise equipotent.

(5) Let L be a linear combination of V', and let F'; G be finite sequences
of elements of the carrier of V', and let P be a permutation of dom F. If
G =F P, then ) (LF) =3 (LG).

(6) Let L be a linear combination of V' and let F' be a finite sequence of
elements of the carrier of V. If support L misses rng F, then > (L F') = Oy .

(7)  Let F be a finite sequence of elements of the carrier of V. Suppose F'
is one-to-one. Let L be a linear combination of V. If support L C rng F),
then > (L F) =3 L.

(8) Let L be a linear combination of V' and let F' be a finite sequence of
elements of the carrier of V. Then there exists a linear combination K of
V such that support K = rng F Nsupport L and L ' = K F.

(9) Let L be alinear combination of V', and let A be a subset of V', and let F’
be a finite sequence of elements of the carrier of V. Suppose rng F' C the
carrier of Lin(A). Then there exists a linear combination K of A such
that > (L F) =Y K.

(10)  Let L be a linear combination of V' and let A be a subset of V. Suppose
support L C the carrier of Lin(A). Then there exists a linear combination
K of A such that Y L =Y K.

(11)  Let L be a linear combination of V. Suppose support L C the carrier of
W. Let K be a linear combination of W. If K = L | (the carrier of W),
then support L = support K and > L = > K.

(12)  For every linear combination K of W there exists a linear combination
L of V such that support K = support L and >_ K =>_ L.

(13)  Let L be a linear combination of V. Suppose support L C the carrier of
W. Then there exists a linear combination K of W such that support K =
support L and > K = > L.

(14)  For every basis I of V' and for every vector v of V holds v € Lin(7).

(15)  Let A be a subset of W. Suppose A is linearly independent. Then there
exists a subset B of V such that B is linearly independent and B = A.

(16) Let A be asubset of V. Suppose A is linearly independent and A C the
carrier of W. Then there exists a subset B of W such that B is linearly
independent and B = A.

(17)  For every basis A of W there exists a basis B of V such that A C B.

(18) Let A be a subset of V. Suppose A is linearly independent. Let v be a
vector of V. If v € A, then for every subset B of V' such that B = A\ {v}
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holds v ¢ Lin(B).

(19) Let I be a basis of V and let A be a non empty subset of V. Suppose
A misses I. Let B be a subset of V. If B =1U A, then B is linearly-
dependent.

(20)  For every subset A of V' such that A C the carrier of W holds Lin(A)
is a subspace of W.

(21)  For every subset A of V and for every subset B of W such that A = B
holds Lin(A) = Lin(B).

2. THE STEINITZ THEOREM

The following two propositions are true:

(22) Let A, B be finite subsets of V' and let v be a vector of V. Suppose
v € Lin(AU B) and v ¢ Lin(B). Then there exists a vector w of V such
that w € A and w € Lin(((AU B) \ {w}) U {v}).

(23) Let A, B be finite subsets of V. Suppose the vector space structure of
V = Lin(A) and B is linearly independent. Then B < A and there exists
a finite subset C of V such that C C A and C = A — B and the vector
space structure of V' = Lin(B U C).

3. FINITE-DIMENSIONAL VECTOR SPACES

Let G1 be a field and let V' be a vector space over G;. Let us observe that
V is finite dimensional if and only if:
(Def.1)  There exists finite subset of V' which is a basis of V.
Next we state several propositions:
(24) If V is finite dimensional, then every basis of V' is finite.
(25) If V is finite dimensional, then for every subset A of V such that A is
linearly independent holds A is finite.
(26) If V is finite dimensional, then for all bases A, B of V' holds A=1.
(27) Oy is finite dimensional.
(28) If V is finite dimensional, then W is finite dimensional.
Let GG1 be a field and let V' be a vector space over GG;. Observe that there
exists a subspace of V' which is strict and finite dimensional.
Let G1 be a field and let V' be a finite dimensional vector space over G1.
Note that every subspace of V is finite dimensional.

Let 1 be a field and let V' be a finite dimensional vector space over G1. One
can check that there exists a subspace of V' which is strict.
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4. THE DIMENSION OF A VECTOR SPACE

Let G1 be a field and let V' be a vector space over G1. Let us assume that
V is finite dimensional. The functor dim(V') yields a natural number and is
defined by:
(Def.2)  For every basis I of V holds dim(V') = T.

We adopt the following rules: V denotes a finite dimensional vector space
over G, W, Wy, W5 denote subspaces of V', and u, v denote vectors of V.
The following propositions are true:

(29) dim(W) < dim(V).

(30)  For every subset A of V such that A is linearly independent holds
A = dim(Lin(A)).

(31) dim(V) = dim(Qy).

(32) im(V) = dim(W) iff Qy = Q.

(33) dlm(V) 0 iff Qy = 0y .

(34) dim(V) =1 iff there exists v such that v # Oy and Qy = Lin({v}).

(35) ) =

dim(V') = 2 iff there exist u, v such that u # v and {u,v} is linearly
independent and Qy = Lin({u,v}).

(36) dim(W1 + Wg) + dim(W1 N WQ) = dim(Wl) + dim(Wg).

(37)  dim(Wp N Wa) > (dim(Wy) 4+ dim(Ws)) — dim(V).

(38) If V is the direct sum of W; and Wh, then dim(V) = dim(W;) +
dim(Wg).

5. THE FIXED-DIMENSIONAL SUBSPACE FAMILY AND THE PENCIL OF
SUBSPACES

One can prove the following proposition
(39) n < dim(V) iff there exists a strict subspace W of V such that
dim(W) = n.
Let G1 be a field, let V' be a finite dimensional vector space over G, and

let n be a natural number. The functor Sub, (V') yields a set and is defined as
follows:

(Def.3)  x € Sub, (V) iff there exists a strict subspace W of V' such that W =z
and dim(W) = n.
We now state three propositions:
(40) If n < dim(V), then Sub, (V) is non empty.
(41)  If dim(V) < n, then Sub, (V) = 0.
(42)  Sub, (W) C Sub, (V).
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Let GG1 be a field, let V' be a finite dimensional vector space over G1, let Wy

be a subspace of V, and let W7 be a strict subspace of W5. Let us assume that
dim(W3) = dim(W7) + 2. The functor P(W7, W3) yields a non empty set and is
defined by:

(Def.4)

(44)

[1]
2]

3]
[4]
[5]
(6]

[7]
8]

[9]
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[11]

[12]
[13]

[14]
[15]
[16]
[17]
18]
[19]

[20]

x € P(Wy,Ws) iff there exists a strict subspace W of Wy such that
W =z and dim(W) = dim(W;) + 1 and W is a subspace of W.

We now state two propositions:
(43)

Let Wi be a strict subspace of Wy. Suppose dim(Ws) = dim(W7) + 2.
Then x € P(Wy, Wy) if and only if there exists a strict subspace W of V/
such that W = z and dim(W') = dim(WW7) + 1 and W7 is a subspace of W
and W is a subspace of Ws.

For every strict subspace W; of Wy such that dim(Ws) = dim(W;) + 2
holds p(Wl, Ws) C SUbdim(Wl)-i-l(V)-
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MML Identifier: GOBOARD7.

The articles [21], [24], [5], [23], [9], [2], [19], [17], [1], [4], [3], [7], [22], [10], [11],
[18], [25], [6], [8], [12], [13], [15], [20], [16], and [14] provide the terminology and
notation for this paper.

1. PRELIMINARIES

For simplicity we adopt the following convention: f will denote a standard
special circular sequence, i, j, k, n, i1, i2, j1, jo will denote natural numbers, r,
s, 71, 1o will denote real numbers, p, ¢, p1 will denote points of £%, and G will
denote a Go-board.

The following propositions are true:

(1) If|ry —ro| > s, thenry +s <rgorry+s<ry.

(2) |r—s|=0iff r=s.

(3)  For all points p, p1, ¢ of EF such that p+ p; = ¢+ p; holds p = g¢.

(4)  For all points p, p1, ¢ of EF such that p; +p = p; + ¢ holds p = ¢.

(5) Ifpy € L(p,q) and p1 = qq, then (p1)1 = q1.

(6) If p1 € L(p,q) and pa = g2, then (p1)2 = ga.

(1) 3-(p+q) € Lpq)

(8) Ifp1 =qqand g = (p1)1 and p2 < g2 and g2 < (p1)2, then ¢ € L(p,p1).

(9) Ifp1 <q1and g1 < (p1)1 and p2 = g2 and g2 = (p1)2, then ¢ € L(p, p1).
(10) Let D be a non empty set, and given i, j, and let M be a matrix over

D.Ifl1<iandi<lenM and 1 < j and j < width M, then (i, j) € the
indices of M.

© 1996 Warsaw University - Bialystok
429 ISSN 1426-2630
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(11) 1 <iand i+ 1 <lenG and 1 < j and j + 1 < widthG, then
37 (Gij+Givrj41) = 5 (Giga + G )

(12)  Suppose L(f, k) is horizontal. Then there exists j such that 1 < j and
j < widththe Go-board of f and for every p such that p € L(f, k) holds
p2 = ((the Go-board of ) ;)2.

(13)  Suppose L(f,k) is vertical. Then there exists ¢ such that 1 < i and
i < lenthe Go-board of f and for every p such that p € L(f, k) holds
p1 = ((the Go-board of f);1)1.

(14) If ¢ < lenthe Go-board of f and j < widththe Go-board of f, then
Int cell(the Go-board of f, 4, j) misses L(f).

2. SEGMENTS ON A GO-BOARD

Next we state a number of propositions:

(15) If 1 < dand i < lenG and 1 < j and j + 2 < widthG, then
L(Gij, Gijr1) N L(Gijr1, Gijr2) = {Gije}

(16) If 1 < diand i+ 2 < lenG and 1 < j and j < widthG, then
L(Gij, Git1,5) N L(Giyj, Givaj) = {Giy15}-

(17) Ifl1 <iand i+ 1 <lenG and 1 < j and j+ 1 < widthG, then
L(Gij, Gij+1) N L(Gijt1, Gigrj+1) = {Gijj1}

(18) Ifl1 <iand i+ 1 <lenG and 1 < j and j+ 1 < widthG, then
L(Gij+1,Gir1,5+1) N L(Giv1j, Giv1j+1) = {Giv1j+1}

(19) Ifl1 <iand i+ 1 <lenG and 1 < j and j+ 1 < widthG, then
L(Gij, Giv1,5) N L(Gij, Gijj+1) = {Gij}-

(200 Ifl1 <iand i+ 1 <lenG and 1 < j and j+ 1 < widthG, then
L(Gij, Git15) N L(Giv1,j, Giv1,j+1) = {Gig1,5}-

(21)  Let i1, j1, i2, j2 be natural numbers. Suppose 1 < i; and i1 < lenG
and 1 < j; and j1+1 < width G and 1 < iy and i < lenG and 1 < js and
jo +1 < width G and £(Gi1,j1,Gi1,j1+1) meets £(Gi27j2,Gi27j2+1). Then
i1 =12 and [j; — jof < 1.

(22)  Let i1, j1, 92, j2 be natural numbers. Suppose 1 <ij andi; +1 <lenG
and 1 < j; and j; < widthG and 1 < ip and is +1 <lenG and 1 < 5
and j2 S width G and ‘C(Gi1,j1’Gi1+1,j1) meets E(Gi2,j2,Gi2+1,j2). Then
j1 :j2 and |i1 —i2| < 1.

(23)  Let i1, j1, 92, j2 be natural numbers. Suppose 1 < i; and i; < lenG
and 1 < jpand j1+1<widthGand 1 <isandis+1<lenG and 1 < j,
and j2 S width G and ‘C(Gi1,j1’Gi1,j1+1) meets E(Gi2,j2,Gi2+1,j2). Then
i1 =19 or i1 =19 + 1 but j; = jg or j1 + 1 = jo.

(24)  Let i1, j1, 92, j2 be natural numbers. Suppose 1 < i; and i; < lenG
and 1 < jjand j1+1 < widthG and 1 <9 and i3 < lenG and 1 < j5 and
jo +1 < width G and ‘C(Gil,jlth,jl-l-l) meets £(Gi2,j2, Gi2,j2+1). Then
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(i) j1= g2 and L(G4y j1, Giy ji+1) = L(Giy gy, Gi jot1), OF
(ii) J1=J2+1and £(Gi17j1’ Gil,jl-l-l) N E(Giz,jzv Gi27j2+1) = {Gil,j1}7 or
(i)  j1+1=j2 and L(Giy j1, Giyji+1) N L(Gig oy Gig 1) = { Gz }-

(25)  Let 41, j1, i2, jo be natural numbers. Suppose 1 <i; and i1 +1 <lenG
and 1 < j; and j; < widthG and 1 < iy and io +1 <lenG and 1 < j
and jo < widthG and L(G;, j,, Gi,+1,5,) meets L(Gi, jy, Gigt1,j,)- Then

(i) i1 =iz and ‘C(Gh,jp Gi1+17j1) = ﬁ(Gimjz? Gi2+17j2)7 or
(ii) i1 =iz + 1 and E(Gi17j17 Gi1+1,j1) N ‘C(GiQJQ’ Gi2+17j2) = {Gihjl}? or
(iii) 41+ 1 =iz and L(Gy, jy, Giy41,5:) N L(Giy oy Gig1,52) = {Gin o }-

(26)  Let i1, j1, 92, j2 be natural numbers. Suppose 1 < i; and i; < len G
and 1 < jpand j;+1 <widthGand 1 <isandis+1<lenG and 1 < j
and j2 S width G and ‘C(Gihijil,jl—i-l) meets E(Gi2,j2,Gi2+1,j2). Then
J1 = je and L(G4, j1, Giy ji+1)NL(Giy oy Giny1,5o) = {Giy i} or ji+1 = jo
and L(Giy j1, Gy ji+1) N L(Giy gn> Gigr1,2) = {Giy jiv1 )

(27)  Suppose 1 < i; and i3 <lenG and 1 < j; and j; + 1 < widthG and
1 <49 and iy <lenG and 1 < jp and jo + 1 < width G and % (G gy +
Gi17j1+1) c ,C(Gi27j2,Gi27j2+1). Then il = ig and jl = jg.

(28) Suppose 1 < i3 and i3 +1 <lenG and 1 < j; and j; < widthG and
1<igandig+1<lenG and 1 < j5 and jo < width G and % (G +
Gi1+17j1) S ‘C(Giz,jzaGiz-i-l,jz)- Then i1 = 49 and j; = jo.

(29)  Suppose 1 <ij and i3 +1 <lenG and 1 < j; and j; < widthG. Then
it is not true that there exist iy, jo such that 1 < i and is < len G and
1 <jgand jo+1 < width G and §-(Giy j, +Giy11,51) € L(Giy oy Giy o 41)-

(30)  Supposel <ijandi; <lenG and 1 < j; and j; +1 < width G. Then it
is not true that there exist is, jo such that 1 <is and is +1 < len G and
1 <j2and ja < width G and % ’ (Gi17j1 + Gi17j1+1) € ‘C(Ginzv Gi2+1,j2)’

3. STANDARD SPECIAL CIRCULAR SEQUENCES

In the sequel f will be a non constant standard special circular sequence.
The following propositions are true:

(31)  For every standard non empty finite sequence f of elements of 5% such
that ¢ € dom f and i + 1 € dom f holds 7; f # w11 f.

(32)  There exists i such that ¢ € dom f and (7;f)1 # (m1.f)1-

(33)  There exists i such that i € dom f and (7;f)g # (7m1.f)2.

(34) lenthe Go-board of f > 1.

(35)  widththe Go-board of f > 1.

(36) len f > 4.

(37) Let f be a circular s.c.c. finite sequence of elements of 5%. Suppose

len f > 4. Let 4, j be natural numbers. If 1 <7 and 7 < j and j < len f,
then TFZ‘f 75 7ij.
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(38)  For all natural numbers i, j such that 1 < i and ¢ < j and j < len f
holds m; f # =; f.

(39) For all natural numbers 4, j such that 1 < i and i < j and j < len f
holds 7Tif 75 TI'jf.

(40)  For every natural number ¢ such that 1 < ¢ and i <len f and 7;f = m f
holds i = len f.

(41)  Suppose that

(1) 1<,
(ii) 4 <lenthe Go-board of f,
(i) 1<)
(iv) j+1 < widththe Go-board of f, and
(v) 1 ((the Go-board of f);; + (the Go-board of f); ;1) € L(f).

Then there exists k such that 1 < k and k+1 < len f and £((the Go-board
of f)i;,(the Go-board of f); j+1) = L(f, k).
(42)  Suppose that

() 1<i,
(ii) i+ 1 <lenthe Go-board of f
(i) 1<,
(iv) j < widththe Go-board of f and
(v) 1 ((the Go-board of f);; + (the Go-board of f)i41;) € L(f).

Then there exists k such that 1 < k and k+1 < len f and £((the Go-board
of f)ij,(the Go-board of f)i11;) = L(f, k).
(43)  Suppose that

(i) 1<i,

(ii) i+ 1 <lenthe Go-board of f

(i) 1<y,

(iv) j+ 1 < widththe Go-board of f

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f); j+1, (the Go-board of f);y1 1) = L(f, k), and
(vili)  L£((the Go-board of f)it1 j, (the Go-board of f);y1,+1) = L(f, k+1).

Then 7 f = (the Go-board of f); 41 and w41 f = (the Go-board of
f)it1,j+1 and m4of = (the Go-board of f);y1 ;.
(44)  Suppose that

(i) 1<i,

(ii)) i <lenthe Go-board of f,

(i) 1<)

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) E+1<lenf,

(vii)  L((the Go-board of f); j4+1, (the Go-board of f); j+2) = L(f, k), and
(viii)  L((the Go-board of f); ;, (the Go-board of f); ;+1) = L(f, k+1).

Then 7, f = (the Go-board of f); j42 and 741 f = (the Go-board of
f)ij+1 and myof = (the Go-board of f); ;.
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(45)  Suppose that

(i) 1<i,

(i) ¢+ 1 <lenthe Go-board of f,

(i) 1<)

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f); j;+1, (the Go-board of f);y1,+1) = L(f, k), and
(vili)  L£((the Go-board of f); ;, (the Go-board of f); j+1) = L(f,k + 1).

Then 7, f = (the Go-board of f);y1 41 and w41 f = (the Go-board of
f)ij+1 and m o f = (the Go-board of f); ;.
(46)  Suppose that

(1) 1<i,

(ii) ¢+ 1 <lenthe Go-board of f,

(i) 1< j,

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f);1,;, (the Go-board of f);11,+1) = L(f, k), and
(vili)  L£((the Go-board of f); j+1, (the Go-board of f);y1,+1) = L(f, k+1).

Then 7 f = (the Go-board of f);41,; and w41 f = (the Go-board of
f)it1,j+1 and 4o f = (the Go-board of f); j41.
(47)  Suppose that

(i) 1<4,
(i) i+ 1 < lenthe Go-board of f,
(i) 1<)
(iv) j < widththe Go-board of f,
(v) 1<k,
(vi) k+1<lenf,
(vii)  L((the Go-board of f);;1,, (the Go-board of f);r2;) = L(f, k), and

L((the Go-board of f); ;, (the Go-board of f);11 ;) = L(f,k+1).
Then 7 f = (the Go-board of f);42; and w1 f = (the Go-board of
f)it1,; and myof = (the Go-board of f); ;.

(48)  Suppose that

(i 1<4,
(ii) ¢+ 1 <lenthe Go-board of f,
(i) 1<)
(iv)  j+1 < widththe Go-board of f,
(v) 1<k,
(vi) k+1<lenf,
(vii)  L((the Go-board of f);y1,j, (the Go-board of f);y1,+1) = L(f, k), and

L((the Go-board of f); ;, (the Go-board of f);11 ;) = L(f,k+1).
Then 7, f = (the Go-board of f);y1 41 and w41 f = (the Go-board of
f)it1,; and w4 f = (the Go-board of f); ;.
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(49)  Suppose that

(i) 1<i,

(i) i+ 1 <lenthe Go-board of f,

(i) 1<)

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f);y1,j, (the Go-board of f);y1 1) = L(f, k), and
(viii)  L£((the Go-board of f); j+1, (the Go-board of f);y1 1) = L(f, k+1).

Then 7, f = (the Go-board of f);41,; and w1 f = (the Go-board of
[it1,j+1 and mpyof = (the Go-board of f); ;1.
(50)  Suppose that

(1) 1<i,

(ii) 4 <lenthe Go-board of f,

(i) 1<,

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f); ;, (the Go-board of f); j+1) = L(f, k), and
(vili)  L£((the Go-board of f); j+1, (the Go-board of f); j12) = L(f,k+1).

Then 7, f = (the Go-board of f); ; and w41 f = (the Go-board of f); j+1
and 4o f = (the Go-board of f); j;o.

(51)  Suppose that

(i) 1<i,
(i) i+ 1 <lenthe Go-board of f,
(i) 1<)
(iv)  j+1 < widththe Go-board of f,
(v) 1<k,
(vi) k+1<lenf,
(vii)  L((the Go-board of f); ;, (the Go-board of f); j+1) = L(f,k), and

L((the Go-board of f); j+1, (the Go-board of f)i41,41) = L(f, k + 1).
Then 7, f = (the Go-board of f); ; and 7441 f = (the Go-board of f); j4+1
and 4o f = (the Go-board of f);y1 j41.

(52)  Suppose that

(i) 1<i,

(i) i+ 1 <lenthe Go-board of f,

(i) 1<)

(iv)  j+1 < widththe Go-board of f,

(v) 1<k,

(vi) k+1<lenf,

(vii)  L((the Go-board of f); j+1, (the Go-board of f);y1,j+1) = L(f, k), and
(vili)  L£((the Go-board of f)it1;, (the Go-board of f)iy1,+1) = L(f, k+1).

Then 7, f = (the Go-board of f); j+1 and 71 f = (the Go-board of
[it1,j+1 and mpyof = (the Go-board of f)i;1 ;.
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(53)  Suppose that

() 1<i,
(i) i+ 1 < lenthe Go-board of f,
(i) 1< j,
(iv) j < widththe Go-board of f,
v) 1<k,
(vi) k+1<lenf,
(vii)  L((the Go-board of f); j, (the Go-board of f);+1,;) = L(f, k), and
(viii)  L((the Go-board of f);y1,;, (the Go-board of f)i2;) = L(f, k+ 1).

Then 7, f = (the Go-board of f); ; and 741 f = (the Go-board of f)it1 ;
and 742 f = (the Go-board of f);y2 ;.

(54)  Suppose that

(1) 1<i,
(ii) i+ 1 <lenthe Go-board of f,
(i) 1< j,
(iv)  j+1 < widththe Go-board of f,
(v) 1<k,
(vi) k+1<lenf,
(vii)  L((the Go-board of f); j, (the Go-board of f)i+1;) = L(f, k), and
)

L((the Go-board of f);11 j, (the Go-board of f)14+1) = L(f, k+1).
Then 7, f = (the Go-board of f); ; and 7441 f = (the Go-board of f)it1;
and 7o f = (the Go-board of f)i11 j41.
(55)  Suppose that
) 1<,

) i <lenthe Go-board of f,
(i) 1<)
(iv)  j+1 < widththe Go-board of f,
) L((the Go-board of f); j, (the Go-board of f); j+1) C L(f), and
) L((the Go-board of f); j41, (the Go-board of f); j42) C L(f).
Then
(vii) 1 f = (the Go-board of f); j+1 but mof = (the Go-board of f);; and
Ten f—1.f = (the Go-board of f); j12 or mof = (the Go-board of f); jio
and Tiey /1 f = (the Go-board of f); j, or
(viii)  there exists k such that 1 < k and k+ 1 < len f and 71 f = (the
Go-board of f); j11 and 7, f = (the Go-board of f);; and 7 yof = (the
Go-board of f); jy2 or m,f = (the Go-board of f); j12 and mj4of = (the
Go-board of f); ;.

(56)  Suppose that

—

o Do/~
— e

() 1<i,
(ii) ¢+ 1 <lenthe Go-board of f,
(i) 1< 7,
(iv)  j+1 < widththe Go-board of f,
(v)  L((the Go-board of f); ;, (the Go-board of f); j4+1) € L(f), and
(vi)  L((the Go-board of f); j+1, (the Go-board of f);1,4+1) C L(f).
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Then

(vii) mf = (the Go-board of f); 41 but mof = (the Go-board of f);;
and ey -1 f = (the Go-board of f)iy1,4+1 or mof = (the Go-board of
f)it1,j+1 and Tiey 1 f = (the Go-board of f); ;, or

(viii)  there exists k such that 1 < k and k+1 < len f and 741 f = (the Go-
board of f); j+1 and 7 f = (the Go-board of f); ; and 7442 f = (the Go-
board of f);y1,j4+1 or T, f = (the Go-board of f);41 j4+1 and mpyof = (the
Go-board of f); ;.

(57)  Suppose that

(i) 1<i,
ii) i+ 1 <lenthe Go-board of f,
(i) 1<)
(iv)  j+1 < widththe Go-board of f,
(v)  L((the Go-board of f); i1, (the Go-board of f)i1141) € L(f), and
(vi)  L((the Go-board of f);y1 11, (the Go-board of f)ir1,) C L(f).

Then

(vii) 1 f = (the Go-board of f);11 j4+1 but mof = (the Go-board of f); j+1
and Ten p—1f = (the Go-board of f);41; or mof = (the Go-board of
f)it1,; and men p—r1 f = (the Go-board of f); j41, or

(viii)  there exists k such that 1 < k and k+1 < len f and 711 f = (the Go-
board of f)it1,;4+1 and 7 f = (the Go-board of f); j4+1 and my4of = (the
Go-board of f);y1,; or m,f = (the Go-board of f);11; and mpiof = (the
Go-board of f); jy1.

(58)  Suppose that

(i) 1<i,
ii) i+ 1 < lenthe Go-board of f,
(i) 1<,
(iv) j < widththe Go-board of f,
(v)  L((the Go-board of f); ;, (the Go-board of f);y1,;) C L(f), and
(vi)  L((the Go-board of f)i11, (the Go-board of f)iia;) C L(f).

Then
(vii) i f = (the Go-board of f);11; but maof = (the Go-board of f);; and
Ten f—1.f = (the Go-board of f);12; or mof = (the Go-board of f);12;
and e, /1 f = (the Go-board of f); ;, or
(viii)  there exists k such that 1 < k and k + 1 < len f and mg41f = (the
Go-board of f);;1; and 7 f = (the Go-board of f); ; and m4of = (the
Go-board of f)iyo; or mf = (the Go-board of f);12; and mpiof = (the
Go-board of f); ;.
(59)  Suppose that
() 1<i,
ii) i+ 1 <lenthe Go-board of f,
i) 1<j,
) 7+ 1< widththe Go-board of f,
) L((the Go-board of f); j, (the Go-board of f);+1,;) C L(f), and
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(vi)  L((the Go-board of f);41j, (the Go-board of f)1,4+1) € L(f).
Then

(vii) mf = (the Go-board of f);1; but mf = (the Go-board of f);;
and ey -1 f = (the Go-board of f)iy1, 41 or maf = (the Go-board of
f)it1,j+1 and Tiey 1 f = (the Go-board of f); ;, or

(viii)  there exists k such that 1 < k and k+1 < len f and 741 f = (the Go-
board of f);+1,; and 7 f = (the Go-board of f);; and 742 f = (the Go-
board of f);y1,j4+1 or m,f = (the Go-board of f);y1 j4+1 and mpyof = (the
Go-board of f); ;.

(60)  Suppose that

() 1<i,
(i) ¢+ 1 <lenthe Go-board of f,
(i) 1<)
(iv)  j+1 < widththe Go-board of f,
(v)  L((the Go-board of f)i11j, (the Go-board of f);11,4+1) C L(f), and
(vi)  L((the Go-board of f);y1 41, (the Go-board of f); j+1) C L(f).

Then
(vii) w1 f = (the Go-board of f);y1 j4+1 but maf = (the Go-board of f);y1;
and Ten p—r1f = (the Go-board of f); 41 or maf = (the Go-board of
f)ij+1 and Ten 1 f = (the Go-board of f);41;, or
(viii)  there exists k such that 1 < k and k+1 < len f and 711 f = (the Go-
board of f);t1 41 and 7 f = (the Go-board of f);y1,; and m4of = (the
Go-board of f); j+1 or mf = (the Go-board of f); j4+1 and mpiof = (the
Go-board of f)iy1 ;.
(61) Suppose 1 < i and i < lenthe Go-board of f and 1 < jand j+1 <
width the Go-board of f. Then N
(i)  L((the Go-board of f); j, (the Go-board of f); j+1) € L(f), or
(i)  £((the Go-board of f); ji1, (the Go-board of f); ji+a) Z L(f), or
(iti)  £((the Go-board of f); j+1, (the Go-board of f)is14+1) Z L(f).
(62) Suppose 1 < i and i < lenthe Go-board of f and 1 < jand j+1 <
width the Go-board of f. Then N
(i)  L((the Go-board of f);y1,;, (the Go-board of f)it1+1) € L(f), or
(i)  £((the Go-board of f)i+1j+1,(the Go-board of f)iv149)  L(f), or
(ili)  L((the Go-board of f); jt1,(the Go-board of f);11,4+1) € L(f).
(63) Suppose 1 < j and j < widththe Go-board of f and 1 <iandi+ 1<
len the Go-board of f. Then
(i)  L((the Go-board of f); ;, (the Go-board of f)i11;) Z L(f), or
(i)  L((the Go-board of f);t1 , (the Go-board of f)iy2 ;) L(f), or
(i)  L((the Go-board of f)i11j, (the Go-board of f);11,4+1) € L(f).
(64) Suppose 1 < j and j < widththe Go-board of f and 1 <iandi+ 1<
len the Go-board of f. Then N
(i)  L((the Go-board of f); j4+1, (the Go-board of f)it+1+1) € L(f), or
(i)  L((the Go-board of f)it1 j+1,(the Go-board of f);1241) L(f), or
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(ili)  L((the Go-board of f)it1 j, (the Go-board of f);41,j4+1) L(f).
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The articles [17], [7], [18], [5], [6], [4], [14], [16], [1], [12], [3], [10], [11], [8], [9],
[2], [13], and [15] provide the terminology and notation for this paper.
In this paper U; is a universal algebra and f is a function from U; into Uj.
Let us consider U;. The functor end(U;) yields a non empty set of functions
from the carrier of U; to the carrier of U; and is defined as follows:
(Def.1)  For every function h from U; into U; holds h € end(U;) iff h is a
homomorphism of Uy into Uj.
Next we state four propositions:
(1) end(U;) C (the carrier of Uy)the carrier of Ur,
(2) For every f holds f € end(Uy) iff f is a homomorphism of U; into Uj.
(3) id(thc carrier of Uy) € end(U1)~
(4) For all elements f1, fo of end(U;) holds fi - fo € end(Uy).
Let us consider U;. The functor Comp(U;) yielding a binary operation on
end(U,) is defined as follows:
(Def.2)  For all elements z, y of end(U;) holds (Comp(Uy))(z, y) =y - .
Let us consider U;. The functor End(Uy) yields a strict multiplicative loop
structure and is defined by:
(Def.3)  The carrier of End(U;) = end(U;) and the multiplication of End(U;) =
Comp(Uy) and the unity of End(U1) = idshe carrier of U7)-
Let us consider U;. One can check that End(U;) is non empty.
Let us consider U;. One can verify that End(U;) is left unital well unital and
associative.
Next we state two propositions:
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(5) Let x, y be elements of the carrier of End(U;) and let f, g be elements
ofend(Uy). f x = fand y =g, thenx-y=g¢g- f.

(6) id(thc carrier of U1) — 1End(U1)'

In the sequel S will be a non void non empty many sorted signature and Us
will be a non-empty algebra over S.

Let us consider S, Us. The functor end(Us) yields a set of many sorted
functions from the sorts of Us into the sorts of Us and is defined by the conditions
(Def.4).

(Def.4) (i) Every element of end(Uz) is a many sorted function from Us into Uy,
and

(ii)  for every many sorted function h from Uj into Uy holds h € end(Usz)

iff A is a homomorphism of Us into Us.

One can prove the following propositions:

(7)  For every many sorted function F' from Uj into Us holds F' € end(Us)

iff F'is a homomorphism of Uy into Us.

(8) For every element f of end(Us) holds f € [] MSFuncs(the sorts of Us,

the sorts of Us).

end(Usz) C [] MSFuncs(the sorts of Uy, the sorts of Us).

)
) id(thc sorts of U2) € end(U2)’
(11)  For all elements f1, fa of end(Uz) holds fi o fa € end(Us).

) For every many sorted function F' from MSAlg(U;) into MSAlg(Us)
and for every element f of end(U;) such that F = {0} —— f holds
F € end(MSAlg(Uy)).

Let us consider S, Us. The functor Comp(Us) yielding a binary operation
on end(Us) is defined as follows:

(Def.5)  For all elements z, y of end(Us) holds (Comp(Us))(z, y) =y o x.
Let us consider S, Us. The functor End(Us) yields a strict multiplicative
loop structure and is defined by:
(Def.6)  The carrier of End(Us) = end(Uz) and the multiplication of End(Usy) =
Comp(Uz) and the unity of End(Uz) = idhe sorts of Un)-
Let us consider S, Us. Note that End(Us) is non empty.
Let us consider S, Us. Note that End(Usz) is left unital well unital and
associative.
The following four propositions are true:
(13)  Let z, y be elements of the carrier of End(Usz) and let f, g be elements
of end(Us). If x = f and y =g, then -y =go f.
(14) id(the sorts of Us2) = 1End(U2)‘
(15) Let Us, Uy be universal algebras. Suppose Us and Uy are sim-
ilar.  Let F be a many sorted function from MSAlg(Us) into
(MSAlg(Uy) over MSSign(Us)). Then F(0) is a function from Us into Uy.

(16)  For every element f of end(U;) holds {0} — f is a many sorted func-
tion from MSAlg(U;) into MSAlg(Uy).
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Let G, H be multiplicative loop structures.
(Def.7) A function from the carrier of G into the carrier of H is called a map
from G into H.
Let G, H be non empty multiplicative loop structures. A map from G into
H is multiplicative if:
(Def.8)  For all elements z, y of the carrier of G holds it(x - y) = it(z) - it(y).
A map from G into H is unity-preserving if:
(Def.9) It(lg) = 1g.
Let us mention that there exists a non empty multiplicative loop structure
which is left unital.
Let GG, H be left unital non empty multiplicative loop structures. Observe
that there exists a map from G into H which is multiplicative and unity-
preserving.

Let G, H be left unital non empty multiplicative loop structures. A homo-

morphism from G to H is a multiplicative unity-preserving map from G into
H.

Let G, H be left unital non empty multiplicative loop structures and let h
be a map from G into H. We say that h is a monomorphism if and only if:

(Def.10) A is one-to-one.
We say that h is an epimorphism if and only if:
(Def.11)  rngh = the carrier of H.

Let GG, H be left unital non empty multiplicative loop structures and let A
be a map from G into H. We say that h is an isomorphism if and only if:

(Def.12)  h is an epimorphism and a monomorphism.
We now state the proposition

(17)  Let G be a left unital non empty multiplicative loop structure. Then
id (the carrier of ) 18 @ homomorphism from G to G.

Let G, H be left unital non empty multiplicative loop structures. We say
that G and H are isomorphic if and only if:

(Def.13)  There exists homomorphism from G to H which is an isomorphism.
Let us observe that this predicate is reflexive.
One can prove the following propositions:

(18) Let h be a function. Suppose dom h = end(U7) and for arbitrary x such
that € end(U;) holds h(x) = {0} —— x. Then h is a homomorphism
from End(U;) to End(MSAlg(Uy)).

(19)  Let h be a homomorphism from End(U;) to End(MSAlg(Uy)). Suppose
that for arbitrary = such that « € end(U;) holds h(x) = {0} — x. Then
h is an isomorphism.

(20)  End(U;) and End(MSAlg(U;)) are isomorphic.
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Summary. We continue the preparatory work for the Jordan
Curve Theorem.

MML Identifier: GOBOARDS.

The terminology and notation used here are introduced in the following articles:
[20], [23], [22], [8], [2], [18], [16], [1], [4], [3], [6], [21], [9], [10], [17], [24], [5], [7],
[11], [12], [14], [19], [15], and [13].
We adopt the following rules: 4, j, k will be natural numbers, p will be a
point of £2, and f will be a non constant standard special circular sequence.
One can prove the following propositions:

(1)  Given k. Suppose 1 < k and k + 2 < len f. Given i, j. Suppose that

1<,
(i) ¢+ 1 <lenthe Go-board of f,
(i) 1<j,
(iv)  j+ 2 < width the Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f)i11,; and mppof = (the Go-board of

fit1,j+2 or mpyof = (the Go-board of f);41,; and 7 f = (the Go-board
of f)i+1,j+2-
Then L(3 - ((the Go-board of f); ; + (the Go-board of f);11,+1), % - ((the

Go-board of f); j41 + (the Go-board of f);y1,42)) misses L(f).
(2)  Given k. Suppose 1 < k and k + 2 < len f. Given i, j. Suppose that

(i) 1<,
(ii) ¢+ 2 <lenthe Go-board of f,
(i) 1<)
(iv)  j+ 2 < width the Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and

© 1996 Warsaw University - Bialystok
443 ISSN 1426-2630



444

ANDRZEJ TRYBULEC

(vi)  mpf = (the Go-board of f);42,4+1 and mpof = (the Go-board of
fit1,j+2 or mpyof = (the Go-board of f)it2 41 and mpf = (the Go-
board of f)i+1,j+2-

Then L(3 - ((the Go-board of f);; + (the Go-board of f)i41,+1), 5 - ((the

Go-board of f); j+1 + (the Go-board of f); 11 ;+2)) misses L(f).
(3)  Given k. Suppose 1 < k and k + 2 <len f. Given i, j. Suppose that

(i) 1<i,
(ii) i+ 2 <lenthe Go-board of f,
(i) 1<j,
(iv)  j+ 2 < widththe Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f);42,4+1 and mpof = (the Go-board of

f)it1,j or mpiof = (the Go-board of f);y2 41 and 7 f = (the Go-board

of f)i—i—l,j-
Then £(3 - ((the Go-board of f);; + (the Go-board of f);41,+1), 5 - ((the

Go-board of f); j+1 + (the Go-board of f); 11 ;42)) misses L(f).
(4)  Given k. Suppose 1 < k and k + 2 <len f. Given i, j. Suppose that

(i) 1<i,
(ii) 741 <lenthe Go-board of f,
(i) 1<)
(iv)  j+ 2 < width the Go-board of f,
(v) 741 f = (the Go-board of f); j+1, and
)

m,f = (the Go-board of f); ; and 7 yof = (the Go-board of f); j42 or
Tgr2f = (the Go-board of f);; and 7 f = (the Go-board of f); jo.
Then £(3 - ((the Go-board of f);; + (the Go-board of f);41,+1), 5 - ((the

Go-board of f); j41 + (the Go-board of f);y1,;+2)) misses L(f).
(5)  Given k. Suppose 1 < k and k + 2 < len f. Given i, j. Suppose that

(i) 1<i,
(ii) i+ 2 <lenthe Go-board of f,
(i) 1<)
(iv)  j+ 2 < width the Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f);;11 and my4of = (the Go-board of

fit1,j+2 or mpyof = (the Go-board of f); j41 and 7 f = (the Go-board

of f)it1,j+2-
Then £(3 - ((the Go-board of f);4+1,;+ (the Go-board of f);12j+1), 5 ((the

Go-board of f);y1,+1 + (the Go-board of f);t2 j+2)) misses L(f).
(6) Given k. Suppose 1 <k and k + 2 < len f. Given i, j. Suppose that

(1) 1<i,
(ii) i+ 2 <lenthe Go-board of f,
(i) 1<)
(iv)  j+ 2 < width the Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
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(vi)  mpf = (the Go-board of f); j+1 and w42 f = (the Go-board of f)it1;
or 4o f = (the Go-board of f); j41 and 7 f = (the Go-board of f)2+1 -
Then £(4 - ((the Go-board of f);}1,;+ (the Go-board of f)H_gJH), 5+ ((the

Go-board of f);y1,j+1 + (the Go-board of f);42 42)) misses L(f).
(7)  Given k. Suppose 1 < k and k + 2 < len f. Given i. Suppose that

(i) 1<i,
(ii) ¢+ 2 <lenthe Go-board of f,
(ili) w41 f = (the Go-board of f);41.1, and
(iv)  mif = (the Go-board of f);121 and m4of = (the Go-board of f);112

or myof = (the Go-board of f);y21 and 7 f = (the Go-board of f);41 2.
Then L(3 - ((the Go-board of f);1 + (the Go-board of f);+1.1) — [0,1], 3
((the Go-board of f);1 + (the Go-board of f);12)) misses L(f).

(8)  Given k. Suppose 1 < k and k + 2 < len f. Given i. Suppose that

i) 1<i
(ii) i+ 2 <lenthe Go-board of f,
(i)  mg+1f = (the Go-board of f);11,1, and
(iv)  mf = (the Go-board of f); 1 and mi4of = (the Go-board of f);112 or

Tr+of = (the Go-board of f);; and 7 f = (the Go-board of f);;12.
Then £(3 - ((the Go-board of f);+1,1 + (the Go-board of f)iy21) — [0,

1], 1 - ((the Go-board of f);+1,1 + (the Go-board of f);422)) misses L(f).
(9)  Given k. Suppose 1 < k and k + 2 < len f. Given i. Suppose that

(i) 1<4q,
(ii) i+ 2 <lenthe Go-board of f,
(iii)  mpy1f = (the Go-board of f)i-i—l,widththe Go-board of f> and
(iv) mef = (the Go-board of f)i+2,widththe Goboard of f and Tpiof =
(the Go-board of f)i-l—l,widththe Go-board of f—'1 OF Tpiof = (the Go-
board of f)iy2 widththe Goboard of f and mpf = (the Go-board of

J)ist1,width the Go-board of f—'1-
Then .C(% -((the Go-board of f); width the Go-board of f—'1 + (the Go-board of

f)i—l—l,widththc Go-board of f)7 % : ((the Go—board of f)i,widththc go-board of f +
(the Go-board of f);41 widththe Go-board of f) + [0, 1]) misses L(f).
(10)  Given k. Suppose 1 < k and k + 2 < len f. Given i. Suppose that

1) 1<i,
(ii) ¢+ 2 <lenthe Go-board of f,
(iii)  mry1f = (the Go-board of f)i-l—l,widththe Go-board of f> and
(iv) mef = (the Go-board of f )i,widththe Goboard of f and Tpyof =
(the Go-board of f)i+1,widththc Go-board of f—'1 OI 7Tk+2f = (the Go-
board of f); widththe Go-board of f and mpf = (the Go-board of

f)i—l—l,widththc Go-board of f—'1-
Then L(5 L. ((the Go-board of f)z+1 width the Go-board of f—1 1 (the Go-board

of f)i42,width the Go-board of f), 5-((the Go-board of f); 41 width the Go-board of f+

(the Go-board of f)z+2,w1dththe Go-board of f) [0,1]) misses ﬁ(f)
(11)  Given k. Suppose 1 < k and k + 2 <len f. Given i, j. Suppose that
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(i 1<y,
(i) j+ 1 < widththe Go-board of f,
(i) 1<4,
(iv) i+ 2 <lenthe Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f);;11 and my4of = (the Go-board of

fit2,j+1 or mpyof = (the Go-board of f); j41 and 71 f = (the Go-board

of fliva,jt1-
Then £(3 - ((the Go-board of f);; + (the Go-board of f);41,11), 5 - ((the

Go-board of f);y1,; + (the Go-board of f);y2 11)) misses L(f).
(12)  Given k. Suppose 1 < k and k + 2 < len f. Given j, i. Suppose that

0 1<j
(ii)  j+ 2 < width the Go-board of f,
(i) 1<,
(iv) i+ 2 <lenthe Go-board of f,
(v) w41 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f);41,4+2 and mpyof = (the Go-board of

f)it2,j+1 or mpyof = (the Go-board of f)it142 and 7, f = (the Go-
board of f)i+2,j+1-
Then £(3 - ((the Go-board of f);; + (the Go-board of f);t1,+1), 5 - ((the

Go-board of f);y1,; + (the Go-board of f); 12 ;11)) misses L(f).
(13)  Given k. Suppose 1 < k and k + 2 < len f. Given j, i. Suppose that

(i 1<y,
(ii)  j+ 2 < width the Go-board of f,
(i) 1<,
(iv) 7+ 2 <lenthe Go-board of f,
(v) 741 f = (the Go-board of f)it1 41, and
(vi)  mpf = (the Go-board of f);41,4+2 and mpof = (the Go-board of

f)ij+1 or mpprof = (the Go-board of f);y1 j4+2 and 7 f = (the Go-board

of f)ij+1.
Then £(3 - ((the Go-board of f);; + (the Go-board of f);41,+1), 5 - ((the

Go-board of f);y1,; + (the Go-board of f);y2;11)) misses L(f).
(14)  Given k. Suppose 1 < k and k + 2 < len f. Given j, i. Suppose that

(i) 1<y
(i) j+ 1 < widththe Go-board of f,
(i) 1<,
(iv) 7+ 2 <lenthe Go-board of f,
(v)  7py1f = (the Go-board of f);11 ;, and
)

7, f = (the Go-board of f); ; and myof = (the Go-board of f);42; or
Tg+of = (the Go-board of f); ; and 7 f = (the Go-board of f);y2 ;.
Then L(3 - ((the Go-board of f); ; + (the Go-board of f);11,+1), 5 - ((the

Go-board of f);y1,; + (the Go-board of f);y2 11)) misses L(f).
(15)  Given k. Suppose 1 < k and k + 2 < len f. Given j, i. Suppose that
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) 7+ 2 < widththe Go-board of f,
(i) 1<4,

) i+ 2 <lenthe Go-board of f,

) 741 f = (the Go-board of f)it1,+1, and

) mrf = (the Go-board of f);11; and mpiof = (the Go-board of
fit2,j+1 or mpyof = (the Go-board of f);y1,; and 7 f = (the Go-board
of f)i+2,j+1-

Then £(3 - ((the Go-board of f); j+1+ (the Go-board of f);11 j42), 5 ((the

Go-board of f);y1,j+1 + (the Go-board of f);42 42)) misses L(f).

(16) Given k. Suppose 1 < k and k + 2 <len f. Given j, i. Suppose that
G 1</
ii) j+ 2 < widththe Go-board of f,

(i) 1<i,

) i+ 2 <lenthe Go-board of f,

) Tit1f = (the Go-board of f);41,+1, and

) mpf = (the Go-board of f);1; and mp1of = (the Go-board of f); j+1
or myof = (the Go-board of f);y1; and 7 f = (the Go-board of f); ji1.

Then £(4 - ((the Go-board of f); j+1+ (the Go-board of f);11,j42), 5 ((the

Go-board of f);y1,j+1 + (the Go-board of f);42 42)) misses L(f).

(17)  Given k. Suppose 1 < k and k + 2 < len f. Given j. Suppose that

(i) 1<4,

(ii)  j+ 2 < width the Go-board of f,
(ili) w41 f = (the Go-board of f)q 11, and

) m,f = (the Go-board of f); j+2 and mpyof = (the Go-board of f)2 11
or mpof = (the Go-board of f)i j12 and 7, f = (the Go-board of f)2 j41.

Then L(3 - ((the Go-board of f)1,; + (the Go-board of f) ;1) —[1,0], 5 -

((the Go-board of f)1 ; + (the Go-board of f)a j41)) misses L(f).

(18)  Given k. Suppose 1 < k and k + 2 < len f. Given j. Suppose that

G 1</

(ii) 7+ 2 < width the Go-board of f,
(ili) w41 f = (the Go-board of f)q 11, and

) 7rf = (the Go-board of f);; and mpi2f = (the Go-board of f)s 11
or Ty f = (the Go-board of f);; and 7 f = (the Go-board of f)2 1.
Then L£(3 - ((the Go-board of f)1 41 + (the Go-board of f) ;12) — [1,
0], 3 - ((the Go-board of f); ;11 + (the Go-board of f)s +2)) misses L(f).
(19)  Given k. Suppose 1 < k and k + 2 <len f. Given j. Suppose that

i 1<j,

(ii) j+ 2 < widththe Go-board of f,
(iii)  mp41f = (the Go-board of f)ienthe Go-board of f, j+1, and

)

(iV ﬂ-k‘f = (the Go—board Of f)lenthe Go-board of f, j+2 and 7Tk+2f =
(the Go-board Of f)lon the Go-board of f—'1,j+1 or 7Tk‘+2f = (the GO_



448

ANDRZEJ TRYBULEC

board of f)ienthe Go-board of f, j+2 and mpf = (the Go-board of

f)lcnthc Go-board of f—'1,j4+1-
Then E(% - ((the Go-board of f)ien the Go-board of f—11,; + (the Go-board of

f)lon the Go-board of f, j+1)7 % : ((the Go-board of f)ien the ‘Go-board of f, j + (the
Go-board of f)ienthe Go-board of f, j+1) + [1,0]) misses L£(f).
(20)  Given k. Suppose 1 < k and k + 2 < len f. Given j. Suppose that
) 1<,
(ii)  j+ 2 < width the Go-board of f,
iii)  7g41f = (the Go-board of f)ientne Go-board of f, j+1, and
)

(iv mrf = (the Go-board of f)ienthe Go-board of f.5 and mpiof =
(the Go-board Of f)lcn the Go-board of f—'1,j+1 or 7Tk‘+2f = (the GO_
board of f)ienthe Go-board of f,j and wrf = (the Go-board of

flenthe Go-board of f—'1,j+1-
Then E(% - ((the Go-board of f)ienthe Go-board of f—'1,j+1 1 (the Go-board
of f)len the Go-board of f j+2)7 %-((the Go-board of f)ienthe Go-board of £+l Tt
(the Go-board of f)ien the Go-board of f. j+2) + [1,0]) misses L(f).

In the sequel P will be a subset of the carrier of 5%.

We now state a number of propositions:

(21)  If for every p such that p € P holds p; < ((the Go-board of f)11)1,
then P misses L(f).

(22)  If for every p such that p € P holds
p1 > ((the Go-board of f)ien the Go-board o 1, 1)1, then P misses Z(f)

(23)  If for every p such that p € P holds pa < ((the Go-board of f)i1)2,
then P misses L(f).

(24)  If for every p such that p € P holds
p2 > ((the Go-board of f)1 widththe Go-board of £)2, then P misses £(f).

(25)  Given 4. Suppose 1 < i and ¢ + 2 < lenthe Go-board of f. Then
L(% - ((the Go-board of f);1 + (the Go-board of f);41,1) — [0,1], 3 - ((the
Go-board of f)i111 + (the Go-board of f);19.1) — [0,1]) misses L(f).

(26)  L((the Go-board of f)1,1 — [1,1], 1 - ((the Go-board of f)11 + (the Go-
board of f)a1) — [0,1]) misses L(f).

(27) E(% - ((the Go-board of f)ienthe Go-board of f—'1,1 + (the Go-board of
f)lon the Go-board of f, 1) - [07 1], (the Go-board of f)lon the Go-board of f, 1 T [1,
—1]) misses L(f).

(28) Given 1. Suppose 1 < ¢ and ¢ + 2 < lenthe Go-board
of f. Then E(% - ((the Go-board of f); widththe Go-board of f + (the
Go-board of f)it1,widththe Go-board of £) + [0,1], % - ((the Go-board of
J)it1,width the Go-board of #+(the Go-board of f); 12 width the Go-board of £)+[0,
1]) misses L(f).

(29)  L((the Go-board of f)1 widththe Go-board of f + [—1,1], % - ((the Go-board
of f)1,width the Go-board of £ + (the Go-board of f)a width the Go-board of £) + [0,



MORE ON SEGMENTS ON A GO-BOARD 449

1]) misses L(f).

(30) ﬁ(% - ((the Go-board of f)ien the Go-board of f—'1,width the Go-board of f 1 (the
Go-board of f )lenthe Go-board of f, widththe Go-board of f) + [07 1], (Ehe Go-
board of f)ienthe Go-board of f, width the Go-board of f T [1,1]) misses L(f).

(31)  Given j. Suppose 1 < j and j + 2 < widththe Go-board of f. Then
L(5 - ((the Go-board of f)1 ; + (the Go-board of f)1 j+1) — [1,0], 3 - ((the

Go-board of f)1 41 + (the Go-board of f); j12) — [1,0]) misses L(f).

(32)  L((the Go-board of f)1,1 — [1,1], 2 - ((the Go-board of f)1 1 + (the Go-
board of f)12) — [1,0]) misses L£(f).

(33) E(% - ((the Go-board of f )1, width the Go-board of f—/1 T (the Go-board of
f )1,width the Go-board of f )—[1,0], (the Go-board of f )1,width the Go-board of f 1
[—1,1]) misses L(f).

(34) Given j. Suppose 1 < j and j + 2 < widththe Go-board
of f. Then E(% - ((the Go-board of f)ienthe Go-board of f,; + (the
Go-board of f)ienthe Go-board of £, j+1) + [1,0], % - ((the Go-board of
S )len the Go-board of f, j+1 T (the Go-board of f)ienthe Go-board of f, j+2) + [1,
0]) misses L(f).

(35)  L((the Go-board of f)ienthe Go-board of f,1 + [1, —1],% - ((the Go-board
of f)len the Go-board of f, 1 T (the Go-board of f)len the Go-board of f, 2) + [1» 0])

misses L(f).

(36) ‘C(% : ((the Go-board of f)lcnthc Go-board of f, widththe Go-board of f—'1 +

(the Go-board of f)ienthe Go-board of f, width the Go-board of f)+[1a 0], (the Go-
board of f)ienthe Go-board of f, widththe Go-board of £ 1 [1,1]) misses Z(f )-
(37) If1<kandk+1<lenf, then Intleftcell(f, k) misses £(f).
(38) If1<kandk+1<lenf, then Int rightcell(f, k) misses L(f).
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The terminology and notation used in this paper are introduced in the following
papers: (22], [23], [6], [19], [16], [24], [3], [4], [2], [7], 18], [5], [21], [20], [1], [12],
[13], [14], [10], [15], [9], [17], [8], and [11].

1. PRELIMINARIES

For simplicity we follow the rules: I, G, H will denote sets, 7 will be arbitrary,
A, B, M will denote many sorted sets indexed by I, s1, s2, s3 will denote families
of subsets of I, v, w will denote subsets of I, and F' will denote a many sorted
function of 1.

The scheme MSFExFunc deals with a set A, a many sorted set B indexed
by A, a many sorted set C indexed by A, and a ternary predicate P, and states
that:

There exists a many sorted function F' from B into C such that for
arbitrary ¢ if i € A, then there exists a function f from B(i) into
C(7) such that f = F(i) and for arbitrary z such that z € B(7)
holds P[f(x), x, 1]
provided the following condition is satisfied:

e Let ¢ be arbitrary. Suppose i € A. Let x be arbitrary. If x € B(i),
then there exists arbitrary y such that y € C(¢) and Py, z, i].

We now state a number of propositions:

(1) If 51 # (), then Intersect(s1) C U s1.
(2) If G € s1, then Intersect(s;) C G.
(3) If 0 € sq, then Intersect(sy) = 0.
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(4) For every subset Z of I such that for arbitrary Z; such that Z; € $;
holds Z C Z; holds Z C Intersect(sy).

(5) If s; # 0 and for every set Z; such that Z; € sy holds G C Zj, then
G C Intersect(sy).

If G € sy and G C H, then Intersect(s;) C H.

If G € sy and GN H = (), then Intersect(s;) N H = .

If s3 = s1 U sg, then Intersect(ss) = Intersect(s1) N Intersect(ss).
If s; = {v}, then Intersect(s1) = v.

If s1 = {v,w}, then Intersect(s1) = v Nw.

If A € B, then A is an element of B.

=~~~
oo

o ©
—_— — T T D T

(12)  For every non-empty many sorted set B indexed by I such that A is an
element of B holds A € B.

(13) For every function f such that ¢ € I and f = F\(i) holds
(xng, F(7))(i) = g .

(14) For every function f such that ¢ € I and f = F\(i) holds

(dom,, F'(k))(i) = dom f.
(15)  For all many sorted functions F', G of I holds G o F' is a many sorted
function of 1.

(16) Let A be a non-empty many sorted set indexed by I and let F' be a
many sorted function from A into ;. Then F = ;.

(17)  If A is transformable to B and F' is a many sorted function from A into
B, then dom,, F'(k) = A and rng, F'(x) C B.

2. FINITE MANY SORTED SETS

Let us consider I. Note that every many sorted set indexed by I which is
empty yielding is also locally-finite.

Let us consider I. Note that (); is empty yielding and locally-finite.

Let us consider I, A. Note that there exists a many sorted subset of A which
is empty yielding and locally-finite.

Next we state the proposition

(18) If AC B and B is locally-finite, then A is locally-finite.

Let us consider I and let A be a locally-finite many sorted set indexed by I.
One can check that every many sorted subset of A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Note that AU B is locally-finite.

Let us consider I, A and let B be a locally-finite many sorted set indexed by
1. Note that AN B is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by
I. Observe that AN B is locally-finite.
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Let us consider I, B and let A be a locally-finite many sorted set indexed by
I. Note that A\ B is locally-finite.
Let us consider I, F' and let A be a locally-finite many sorted set indexed by
I. Observe that F'° A is locally-finite.
Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Observe that [A, B] is locally-finite.
The following propositions are true:
(19) If B is non-empty and [A, B] is locally-finite, then A is locally-finite.
(20) If A is non-empty and [A4, B] is locally-finite, then B is locally-finite.
(21) A is locally-finite iff 24 is locally-finite.

Let us consider I and let M be a locally-finite many sorted set indexed by
I. Observe that 2M is locally-finite.
The following propositions are true:
(22) Let A be a non-empty many sorted set indexed by I. Suppose A is
locally-finite and for every many sorted set M indexed by I such that
M € A holds M is locally-finite. Then [J A is locally-finite.

(23) If U A is locally-finite, then A is locally-finite and for every M such that
M € A holds M is locally-finite.

(24)  If domy F'(k) is locally-finite, then rng, F(k) is locally-finite.

(25)  Suppose A C rng,, F'(k) and for arbitrary ¢ and for every function f such
that i € I and f = F(i) holds f ~! A(i) is finite. Then A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Observe that MSFuncs(A, B) is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Note that A= B is locally-finite.

In the sequel X, Y, Z denote many sorted sets indexed by I.

One can prove the following propositions:

(26)  Suppose X is locally-finite and X C [Y, Z]. Then there exist A, B such
that A is locally-finite and A C Y and B is locally-finite and B C Z and
X C [A, B].

(27)  Suppose X is locally-finite and Z is locally-finite and X C [Y, Z]. Then
there exists A such that A is locally-finite and A CY and X C [A, Z].

(28) Let M be a non-empty locally-finite many sorted set indexed by I.
Suppose that for all many sorted sets A, B indexed by I such that A € M
and B € M holds A C B or B C A. Then there exists a many sorted
set m indexed by I such that m € M and for every many sorted set K
indexed by I such that K € M holds m C K.

(29) Let M be a non-empty locally-finite many sorted set indexed by I.
Suppose that for all many sorted sets A, B indexed by I such that A € M
and B € M holds A C B or B C A. Then there exists a many sorted
set m indexed by I such that m € M and for every many sorted set K
indexed by I such that K € M holds K C m.
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(30) If Z is locally-finite and Z C rng,. F(k), then there exists Y such that
Y C domy F (k) and Y is locally-finite and F °Y = Z.

3. A FAMILY OF SUBSETS OF MANY SORTED SETS

Let us consider I, M.
(Def.1) A many sorted subset of 2 is said to be a subset family of M.

Let us consider I, M. Note that there exists a subset family of M which is
non-empty.

Let us consider I, M. Then 2™ is a subset family of M.

Let us consider I, M. One can check that there exists a subset family of M
which is empty yielding and locally-finite.

One can prove the following proposition

(31) 07 is an empty yielding locally-finite subset family of M.

Let us consider I and let M be a locally-finite many sorted set indexed by
I. Note that there exists a subset family of M which is non-empty and locally-
finite.

We follow the rules: Sp, S3, S3 will be subset families of M, S4 will be a
non-empty subset family of M, and V', W will be many sorted subsets of M.

Let I be a non empty set, let M be a many sorted set indexed by I, let Sy
be a subset family of M, and let ¢ be an element of I. Then S (i) is a family of
subsets of M (7).

The following propositions are true:

(32) Ifi eI, then Si(7) is a family of subsets of M (7).

(33) If A€ Sy, then A is a many sorted subset of M.

(34) S7U S is a subset family of M.

(35) S1N Sy is a subset family of M.

(36)  S1\ A is a subset family of M.

(37)  S1—S55 is a subset family of M.

(38) If AC M, then {A} is a subset family of M.

(39) If AC M and B C M, then {A, B} is a subset family of M.
(40) US € M.

4. INTERSECTION OF A FAMILY OF MANY SORTED SETS

Let us consider I, M, S1. The functor (.57 yields a many sorted set indexed
by I and is defined by:

(Def.2)  For arbitrary ¢ such that ¢ € I there exists a family @ of subsets of
M (i) such that @ = S1(i) and ((N.S1)(¢) = Intersect(Q).
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Let us consider I, M, S;. Then (5] is a many sorted subset of M.
We now state a number of propositions:

(41) 1t S; =0, then N S1 = M.

(42) NSiCUSs.

(43) If A€ Sy, then NS C A

(44) If @[ S Sl, then ﬂSl = @[.

(45) Let Z, M be many sorted sets indexed by I and let S; be a non-empty

subset family of M. Suppose that for every many sorted set Z; indexed
by I such that Z; € S holds Z C Z;. Then Z C [ 5].

If 51 - Sg, then ﬂSQ - ﬂSl

If A€ Sy and A C B, then 51 C B.

IfAe Sy and ANB :®1, then N1S1NB = 0.

If S3=51US,, then NS5 =51 NNSs.

If S ={V}, then NS =V.

If Sy ={V,W}, then NS; =V NW.

If A € NS, then for every B such that B € S holds A € B.

Let A, M be many sorted sets indexed by I and let S; be a non-empty
subset family of M. Suppose A € M and for every many sorted set B
indexed by I such that B € S holds A € B. Then A € ) 5;.

Let us consider I, M. A subset family of M is additive if:

(Detf.3)  For all A, B such that A € it and B € it holds AU B € it.

A subset family of M is absolutely-additive if:

(Def.4)  For every subset family F' of M such that F' C it holds |J F € it.

A subset family of M is multiplicative if:

(Detf.5)  For all A, B such that A € it and B € it holds AN B € it.

A subset family of M is absolutely-multiplicative if:

(Def.6)  For every subset family F' of M such that F' C it holds ( F' € it.

A subset family of M is properly-upper-bound if:

(Def.7) M € it.
A subset family of M is properly-lower-bound if:
(Def.8) 0 € it.

Let us consider I, M. Observe that there exists a subset family of M which is
non-empty additive absolutely-additive multiplicative absolutely-multiplicative
properly-upper-bound and properly-lower-bound.

Let us consider I, M. Then 2™ is an additive absolutely-additive multi-
plicative absolutely-multiplicative properly-upper-bound properly-lower-bound
subset family of M.

Let us consider I, M. Note that every subset family of M which is absolutely-
additive is also additive.

Let us consider I, M. Note that every subset family of M which is absolutely-
multiplicative is also multiplicative.

N
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Let us consider I, M. One can check that every subset family of M which is
absolutely-multiplicative is also properly-upper-bound.

Let us consider I, M. Observe that every subset family of M which is
properly-upper-bound is also non-empty.

Let us consider I, M. Note that every subset family of M which is absolutely-
additive is also properly-lower-bound.

Let us consider I, M. Note that every subset family of M which is properly-

lower-bound is also non-empty. REFERENCES
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1. INTRODUCTION

In this paper A will be a set and k, m, n will be natural numbers.

The scheme Regrl concerns a natural number A and a unary predicate P,
and states that:

For every k such that k£ < A holds P[k]
provided the parameters meet the following conditions:

o PlA],

e For every k such that k < A and P[k + 1] holds P[k].

Let n be a natural number. Observe that Seg(n + 1) is non empty.

Let X be a non empty set and let R be an order in X. Note that (X, R) is
non empty.

One can prove the following proposition

(1) 0P2A=0.

Let X be a set. Note that there exists a subset of Fin X which is non empty.

Let X be a non empty set. Note that there exists a subset of Fin X which is
non empty and has non empty elements.

Let X be a non empty set and let F' be a non empty subset of Fin X with
non empty elements. Observe that there exists an element of F' which is non
empty.

A set has a non-empty element if:
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(Def.1)  There exists a non empty set X such that X € it.

Let us mention that there exists a set which has a non-empty element.

Let X be a set with a non-empty element. Note that there exists an element
of X which is non empty.

One can check that every set which has a non-empty element is non empty.

Let X be a non empty set. Note that there exists a subset of Fin X which
has a non-empty element.

Let X be a non empty set, let F' be a subset of Fin X with a non-empty
element, let R be an order in X, and let A be an element of F. Then R |? A is
an order in A.

The scheme SubFinite concerns a set A, a subset B of A, and a unary pred-
icate P, and states that:

PIB]
provided the following conditions are satisfied:

e 3 is finite,

o Pl

e For every element = of A and for every subset B of A such that

x € Band B C B and P[B] holds P[B U {z}].

We now state the proposition

(2) Let F be a non empty poset and let A be a subset of F. Suppose A
is finite and A # () and for all elements B, C of F such that B € A and
C € Aholds B < C or C < B. Then there exists an element m of F' such
that m € A and for every element C of F such that C' € A holds m < C.

Let X be a non empty set and let F' be a subset of Fin X with a non-empty
element. Observe that there exists an element of F' which is finite and non
empty.

Let A be a non empty poset and let aq, as be elements of A. We introduce
az > aq as a synonym of a1 < as We introduce as > a1 as a synonym of a1 < as.

Let P be a non empty poset. Note that there exists a subset of P which is
non empty and finite.

Let P be a non empty poset, let A be a non empty finite subset of P, and
let  be an element of P. One can check that InitSegm(A, x) is finite.

The following proposition is true

(3) For all finite sets A, B such that A C B and card A = card B holds

A=B.

Let A, B be non empty sets, let f be a function from A into B, and let x be
an element of A. Then f(x) is an element of B.

Let F be a non empty poset and let A be a non empty subset of F'. We see
that the element of A is an element of F.

Let X be a non empty set, let F' be a subset of Fin X with a non-empty
element, let A be a non empty element of F, and let R be an order in X. Let
us assume that R linearly orders A. The functor SgmX(R, A) yields a finite
sequence of elements of the carrier of (A, R|? A) and is defined by the conditions
(Def.2).
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(Def.2) (i) rngSgmX(R,A) = A, and

(ii)  for all natural numbers n, m and for all elements p, ¢ of (A, R |2 A)
such that n € dom SgmX(R, A) and m € dom SgmX(R,A) and n < m
and p = 7, SgmX(R, A) and ¢ = 7, SgmX(R, A) holds p > q.

Next we state the proposition

(4) Let X be a non empty set, and let F' be a subset of Fin X with a non-
empty element, and let A be a non empty element of F', and let R be an
order in X, and let f be a finite sequence of elements of the carrier of
(X, R). Suppose that

(i) rmmgf=A, and

(ii)  for all natural numbers n, m and for all elements p, ¢ of (X, R) such
that n € dom f and m € dom f and n < m and p = m,f and ¢ = m, f
holds p > gq.
Then f = SgmX(R, A).

2. ABSTRACT COMPLEXES

Let C' be a non empty poset. The functor symplexes(C) yields a subset of
Fin (the carrier of C') and is defined by:

(Def.3)  symplexes(C) = {A : A ranges over elements of Fin (the carrier of C),
the internal relation of C linearly orders A}.
Let C' be a non empty poset. Note that symplexes(C) has a non-empty
element.
In the sequel C denotes a non empty poset.
Next we state three propositions:
(5)  For every element x of C holds {z} € symplexes(C).
(6) 0 € symplexes(C).
(7)  For arbitrary x, s such that + C s and s € symplexes(C) holds =z €
symplexes(C).
Let us consider C. Observe that every element of symplexes(C') is finite.
One can prove the following propositions:
(8)  For every non empty poset C' and for every non empty element A of
symplexes(C) holds SgmX(the internal relation of C, A) is one-to-one.
(9) Let C be a non empty poset and let A be a non empty element of
symplexes(C). If A= n, then len SgmX(the internal relation of C, A) =
n.
(10) Let C be a non empty poset and let A be a non empty element of
symplexes(C). If A = n, then dom SgmX(the internal relation of C,
A) = Segn.
Let C be a non empty poset. One can verify that there exists an element of
symplexes(C') which is non empty.



460 BEATA MADRAS

3. TRIANGULATIONS

A set sequence is a many sorted set indexed by N.
A set sequence is lower non-empty if:

(Def.4)  For every m such that it(n) is non empty and for every m such that
m < n holds it(m) is non empty.
Let us observe that there exists a set sequence which is lower non-empty.
Let X be a set sequence. The functor FuncsSeq(X) yields a set sequence and
is defined by:
(Def.5)  For every natural number n holds (FuncsSeq(X))(n) = X (n)X(+1),
Let X be a lower non-empty set sequence and let n be a natural number.
Observe that (FuncsSeq(X))(n) is non empty.

Let us consider n and let f be an element of (Seg(n + 1))5". The functor
@ f yields a finite sequence of elements of R and is defined as follows:

(Def.6) ©f=f.
The set sequence NatEmbSeq is defined by:

(Detf.7)  For every natural number n holds (NatEmbSeq)(n) = {f : f ranges
over elements of (Seg(n + 1))5¢8", ©f is increasing}.
Let us consider n. Observe that (NatEmbSeq)(n) is non empty.

Let n be a natural number. Note that every element of NatEmbSeq(n) is
function-like and relation-like.

Let X be a set sequence.

(Def.8) A many sorted function from NatEmbSeq into FuncsSeq(X) is called a
triangulation of X.
We consider triangulation structures as systems
( a skeleton sequence, a faces assignment ),

where the skeleton sequence is a set sequence and the faces assignment is a many
sorted function from NatEmbSeq into FuncsSeq(the skeleton sequence).

Let T be a triangulation structure. We say that T is lower non-empty if and

only if:
(Def.9)  The skeleton sequence of T is lower non-empty.

Let us note that there exists a triangulation structure which is lower non-
empty and strict.

Let T be a lower non-empty triangulation structure. Note that the skeleton
sequence of T is lower non-empty.

Let S be a lower non-empty set sequence and let F' be a many sorted function
from NatEmbSeq into FuncsSeq(S). Note that (S, F') is lower non-empty.
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4. RELATIONSHIP BETWEEN ABSTRACT COMPLEXES AND TRIANGULATIONS

Let T be a triangulation structure and let n be a natural number. A symplex

of T and n is an element of (the skeleton sequence of T')(n).

Let n be a natural number. A face of n is an element of (NatEmbSeq)(n).
Let T be a lower non-empty triangulation structure, let n be a natural num-

ber, let « be a symplex of T and n + 1, and let f be a face of n. Let us assume
that (the skeleton sequence of T')(n + 1) # 0. The functor face(z, f) yields a
symplex of T" and n and is defined by:

(Def.10)

For all functions F', G such that F' = (the faces assignment of T")(n)
and G = F(f) holds face(x, f) = G(z).

Let C' be a non empty poset. The functor Triang(C') yielding a lower non-

empty strict triangulation structure is defined by the conditions (Def.11).
(Def.11) (i)  (The skeleton sequence of Triang(C))(0) = {0},

(ii) for every natural number n such that n > 0 holds (the skeleton sequence

of Triang(C))(n) = {SgmX(the internal relation of C, A) : A ranges over
non empty elements of symplexes(C), A =n}, and

(iii)  for every natural number n and for every face f of n and for every

[1]
2]

3]
[4]
[5]
(6]
[7]
8]
[9]
[10]
[11]
[12]

[13]

element s of (the skeleton sequence of Triang(C'))(n+1) such that s € (the
skeleton sequence of Triang(C))(n + 1) and for every non empty element
A of symplexes(C) such that SgmX(the internal relation of C, A) = s
holds face(s, f) = SgmX(the internal relation of C, A) - f.
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