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Summary. The product of two algebras, trivial algebra deter-
mined by an empty set and product of a family of algebras are defined.
Some basic properties are shown.

MML Identifier: PRALG_1.

The terminology and notation used in this paper have been introduced in the
following articles: [14], [6], [3], [7], [11], [15], [12], [9], [5], [8], [1], [2], [10], [4],
and [13]. ‘

1. PrODUCT OF TWO ALGEBRAS

The following proposition is true

(1) For all non-empty set Dl, Dj and for all natural numbers n, m such
~that D™ = D;™ holds n =

For simplicity we follow a convention: U, Us,, Us denote universal algebras,
k, m, v denote natural numbers, z is arbitrary, and h;, hy denote finite sequences
of elements of [ A, B 3.

Let us consider A, B and let us consider hy. The functor m(hy) yielding a
finite sequence of elements of A is defined as follows:

(Def.l) lenmy(hy) = lenhy and for every n such that n € dommy(hy) holds
(m1(h1))(n) = ha(n)a.
The functor w5(hq) yielding a finite sequence of elements of B is defined as
follows:

(Def.2) lenmy(hy) = lenh; and for every n such that n € dom my(hy) holds

(ma(h1))(n) = ha(n)2.
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Let us consider A, B, let f; be a homogeneous quasi total non-empty partial
function from A* to A, and let f; be a homogeneous quasi total non-empty
partial function from B* to B. Let us assume that arity fi = arity fo. The
functor 1] f1, f2[[ yielding a homogeneous quasi total non-empty partial function
from [ A, B]" to [ A, B{is defined by the conditions (Def.3).

. (Def.3) (i) dom]lfi, foll= [ A4, BI"™#, and

(i) for every finite sequence h of elements of [ A, B such that h €
i domT] f1, f2[[ holds T} f1, f2[[(h) = (fi(m1(R)), f2(m2(h)))-
<% In the sequel h; will denote a homogeneous quasi total non-empty partial
 function from (the carrier of U;)* to the carrier of U;.
Let us consider U;, U,;. Let us assume that U; and U; are simi-
lar. The functor Opers(Uy,Us) yielding a finite sequence of elements of
[ the carrier of Uy, the carrier of Uz *>[ the carrier of Uy, the carrier of Us ]
is defined as follows:

(Def.4) - len Opers(Uy,U;) = lenOpersU; and for every n such that n €
dom Opers(Uy, U;) and for all hq, hy such that hy = (Opers Uy)(n) and
hy = (Opers U )(n) holds (Opers(Uy, Us))(n) =]|h1, ha.

The following proposition is true
(2) If U; and U, are similar, then ([the carrier of Uy, the carrier of Uy,
Opers(Uq, Uy)) is a strict universal algebra.
Let us consider Uy, U;. Let us assume that U; and U, are similar. The
functor [ Uy, Uy ] yielding a strict universal algebra is defined as follows:

(Def.5) [ Uy, Uz] = ([ the carrier of U, the carrier of Us |, Opers(Uy, Us)).

Let A, B be non-empty set. The functor Inv(A, B) yielding a function from

[ A, B]into [ B, A{]is defined as follows:

. (Def.6) For every element a of [ A, B] holds (Inv(A4, B))(a) = (a2, a1).
One can prove the following propositions:
(3) For all non-empty set A, B holds rngInv(A, B) = [ B, A.
(4) For all non-empty set A, B-holds Inv(A, B) is one-to-one.
(5) Suppose U; and U, are similar. Then Inv(the carrier of Uy, the carrier
of Us) is a function from the carrier of [: Uy, Uz ] into the carrier of [ Uy,
Uy
(6) Suppose U; and U, are similar. Let o; be a operation of Uy, and let o,
be a operation of Uz, and let o be a operation of [ Uy, Uz |, and let n be a
natural number. Suppose 0y = (Opers Uy )(n) and o, = (Opers U )(n) and
o = (Opers[ Uy, Uz ])(n) and n € dom Opers U;. Then arity o = arityo;
and arity o = arity o, and o =J|oy, 02[[.
(7) If Uy and U, are similar, then [ Uy, Us ] and Uy are similar.
(8) Let Uy, Uy, Us, Us be universal algebras. Suppose U; is a subalgebra
" of Uz and Us is a subalgebra of Uy and Uy and Uy are similar. Then [ Uy,
Us ] is a subalgebra of [ Uy, Us 1.
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2. TRIVIAL ALGEBRA

Let k£ be a natural number. The functor TrivOp(k) yields a homogeneous
quasi total non-empty partial function from {#}* to {#} and is defined as follows:

(Def.7)  dom TrivOp(k) = {k — 0} and rng TrivOp(k) = {0}.

The following proposition is true

(9) arity TrivOp(k) =

Let f be a finite sequence of elements of N. The functor TrivOps( f) yielding
a finite sequence of elements of {}}*-> {0} is defined as follows:

(Def.8)  len TrivOps(f) = len f and for every n such that n € dom TrivOps(f)
and for every m such that m = f(n) holds (TrivOps(f))(n) = TrivOp(m).

We now state two propositions:

(10)  For every finite sequence f of elements of N holds TrivOps( f) is homo-
geneous quasi total and non-empty.

(11)  For every finite sequence f of elements of N such that f # ¢ holds ({0},
TrivOps(f)) is a strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of
elements of D which is non empty and there exists an element of D* which is
non empty.

Let f be a non empty finite sequence of elements of N. The trivial algebra
of f yielding a strict universal algebra is defined as follows:

(Def.9)  The trivial algebra of f = ({0}, TrivOps(f)).

3. ProDUCT OF UNIVERSAL ALGEBRAS

A function is universal algebra yielding if:
(Def.10)  For every z such that z € domit holds it(z) is a universal algebra.
A function is 1-sorted yielding if:
(Def.11)  For every z such that z € domit holds it(z) is a 1-sorted structure.
One can check that there exists a function which is universal algebra yielding.
One can verify that every function which is universal algebra yielding is also
1-sorted yielding.
Let I be a set. Observe that there exists a many sorted set of I which is
1-sorted yielding.
A function is equal signature if:
(Def.12)  For all z, y such that z € domit and y € dom it and for all Uy, U2 such
that Uy = it(z) and U, = it(y) holds signature U; = signature U,.
“Let J be a non-empty set. One can check that there exists a many sorted
set of J which is equal signature and universal algebra yielding. .
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Let J be a non empty set, let A be a universal algebra yielding many sorted
set of J, and let j be an element of J. Then A(j) is a universal algebra. .
Let J be a non-empty set and let A be a universal algebra yielding many
sorted set of J. The functor support A yields a non-empty many sorted set of
J and is defined as follows:
N (Def.13)  For every element j of J holds (support A)(j) = the carrier of A(j).
“ Let J be a non-empty set and let A be an equal signature universal algebra
-1 yielding many sorted set of J. The functor ComSign(A) yields a finite sequence
' of elements of N and is defined as follows:

(Def.14)  For every element j of J holds ComSign(A4) = signaturé A(4).
_ A function is function yielding if:
- (Def.15) For every z such that z € dom it holds it(z) is a function.

Let us note that there exists a function which is function yielding.

Let I be a set. Note that there exists a many sorted set of 1 which is function
yielding.

Let I be a set. A many sorted function of I is a function yielding many
sorted set of I.

Let J be a non-empty set, let B be a many sorted function of J, and let 7
be an element of J. Then B(j) is a function.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let j be an element of J. Then B(j) is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J.
Then [] B is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J.
A many sorted function of J is said to be a many sorted operation of B if:

(Def.16)  For every element j of J holds it(5) is a homogeneous quasi total non-
empty partial function from B(5)* to B(j)-
Let J be a non-empty set, let B be a non-empty many sorted set of J, let O
be a many sorted operation of B, and let j be an element of J. Then O(j) is a
homogeneous quasi total non-empty partial function from B(j)* to B(j).
A function is equal arity if satisfies the condition (Def.17).

(Def.17) Let z, y be arbitrary. Suppose z € domit and y € domit. Let f, g be
functions. Suppose it(z) = f and it(y) = g. Let n, m be natural numbers
and let X, Y be non-empty set. Suppose dom f = X™ and domg = Y™.
Let 0; be a homogeneous quasi total non-empty partial function from X*
to X and let 0, be a homogeneous quasi total non-empty partial function

CfromY*toY. I f=o0, and g = og, then arity o3 = arity oa.
Let J be a non-empty set and let B be a non-empty many sorted set of J.
One can verify that there exists a many sorted operation of B which is equal
arity. S

The following proposition'is true

(12) Let J be a non-empty set, and let B be a non-empty many sorted set

of J, and let O be a many sorted operation of B. Then O is equal arity

il
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if and only if for all elements 4, j of J holds arity O(¢) = arity O(j).
Let I be a set, let f be a many sorted function of I, and let z be a many
sorted set of I. The functor f «f z yields a many sorted set of I and is defined
as follows:

(Def.18)  For arbitrary ¢ such that ¢ € I and for every function g such that
9= £() holds (f «¢ 2)(3) = g(a(7)).

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let p be a finite sequence of elements of [ B. Then uncurry p is a many sorted
set of [ dom p, J 1.

Let I, J be sets and let X be a many sorted set of [ I, J]. Then »X is a
many sorted set of [ J, I].

Let X be a set, let Y be a non-empty set, and let f be a many sorted set of
[X,Y J. Then curry f is a many sorted set of X.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let O be an equal arity many sorted operation of B. The functor ComAr(0O)
yielding a natural number is defined as follows:

(Def.19)  For every element j of J holds ComAr(O) = arity O(j).

Let I be a set and let A be a many sorted set of I. The functor ¢4 yielding
a many sorted set of I is defined as follows:

(Def.20)  For arbitrary i such that ¢ € T holds £4(¢) = €4(5).

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let O be an equal arity many sorted operation of B. The functor J|O[[ yielding
a homogeneous quasi total non-empty partial function from ([T B)* to [[ B is
defined by the conditions (Def.21).

(Def.21) (i)  dom]]O[[= (I] B)ComAr(©), and
(ii) for every element p of ([] B)* such that p € dom]]O[[ holds if dom p =
0, then T|O[[(p) = O «f (ep) and if domp # 0, then for every non-empty
set Z and for every many sorted set w of [ J, Z ] such that Z = domp
and w = ~uncurry p holds J|O[[(p) = O « curry w.

Let J be a non-empty set, let A be an equal signature universal algebra
yielding many sorted set of J, and let n be a natural number. Let us assume
that n € Seglen ComSign(A). The functor ProdOp(A4, n) yielding an equal arity
many sorted operation of support A is defined by:

(Def.22)  For every element j of J and for every operation o of A(j) such that
(Opers A(7))(n) = o holds (ProdOp(4,n))(j) = o.

Let J be a non-empty set and let A be an equal signature universal algebra
yielding many sorted set of J. The functor ProdOpSeq(A) yielding a finite
sequence of elements of ([]support A)*~> [ support A is defined as follows:

(Def.23)  lenProdOpSeq(A) = len ComSign(A) and for every n such that n €
dom ProdOpSeq(A) holds (ProdOpSeq(A))(n) =]] ProdOp(4,n)[[.

Let J be a non-empty set and let A be an equal signature universal algebra
yielding many sorted set of J. The functor ProdUnivAlg(A) yields a strict
universal algebra and is defined as follows:
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(Def.24) ProdUnivAlg(A) = ([] support A, ProdOpSeq(4)).
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