Product of Family of Universal Algebras

Beata Madras Warsaw University Białystok

Summary. The product of two algebras, trivial algebra determined by an empty set and product of a family of algebras are defined. Some basic properties are shown.

MML Identifier: PRALG_1.

The terminology and notation used in this paper have been introduced in the following articles: [14], [6], [3], [7], [11], [15], [12], [9], [5], [8], [1], [2], [10], [4], and [13].

1. PRODUCT OF TWO ALGEBRAS

The following proposition is true

(1) For all non-empty set D_1 , D_2 and for all natural numbers n, m such that $D_1^n = D_2^m$ holds n = m.

For simplicity we follow a convention: U_1 , U_2 , U_3 denote universal algebras, k, m, i denote natural numbers, z is arbitrary, and h_1 , h_2 denote finite sequences of elements of [A, B].

Let us consider A, B and let us consider h_1 . The functor $\pi_1(h_1)$ yielding a finite sequence of elements of A is defined as follows:

(Def.1) $\operatorname{len} \pi_1(h_1) = \operatorname{len} h_1$ and for every n such that $n \in \operatorname{dom} \pi_1(h_1)$ holds $(\pi_1(h_1))(n) = h_1(n)_1$.

The functor $\pi_2(h_1)$ yielding a finite sequence of elements of B is defined as follows:

(Def.2) len $\pi_2(h_1) = \text{len } h_1$ and for every n such that $n \in \text{dom } \pi_2(h_1)$ holds $(\pi_2(h_1))(n) = h_1(n)_2$.

Let us consider A, B, let f_1 be a homogeneous quasi total non-empty partial function from A^* to A, and let f_2 be a homogeneous quasi total non-empty partial function from B^* to B. Let us assume that arity $f_1 = \text{arity } f_2$. The functor $||f_1, f_2||$ yielding a homogeneous quasi total non-empty partial function from $[A, B]^*$ to [A, B] is defined by the conditions (Def.3).

(Def.3) (i) dom $||f_1, f_2|| = [:A, B:]^{arity f_1}$, and

(ii) for every finite sequence h of elements of [A, B] such that $h \in \text{dom}[f_1, f_2[] \text{ holds } [f_1, f_2[](h) = \langle f_1(\pi_1(h)), f_2(\pi_2(h)) \rangle$.

In the sequel h_1 will denote a homogeneous quasi total non-empty partial function from (the carrier of U_1)* to the carrier of U_1 .

Let us consider U_1 , U_2 . Let us assume that U_1 and U_2 are similar. The functor $Opers(U_1, U_2)$ yielding a finite sequence of elements of [the carrier of U_1 , the carrier of U_2]* \rightarrow [the carrier of U_1 , the carrier of U_2] is defined as follows:

(Def.4) len Opers (U_1, U_2) = len Opers U_1 and for every n such that $n \in$ dom Opers (U_1, U_2) and for all h_1 , h_2 such that $h_1 = (\text{Opers } U_1)(n)$ and $h_2 = (\text{Opers } U_2)(n)$ holds $(\text{Opers}(U_1, U_2))(n) = ||h_1, h_2||$.

The following proposition is true

(2) If U_1 and U_2 are similar, then $\langle [$: the carrier of U_1 , the carrier of U_2 :], Opers $(U_1, U_2) \rangle$ is a strict universal algebra.

Let us consider U_1 , U_2 . Let us assume that U_1 and U_2 are similar. The functor $[U_1, U_2]$ yielding a strict universal algebra is defined as follows:

(Def.5) $[:U_1, U_2:] = \langle [:the carrier of U_1, the carrier of U_2:], Opers(U_1, U_2) \rangle$.

Let A, B be non-empty set. The functor Inv(A, B) yielding a function from [:A, B:] into [:B, A:] is defined as follows:

(Def.6) For every element a of [A, B] holds $(Inv(A, B))(a) = \langle a_2, a_1 \rangle$.

One can prove the following propositions:

- (3) For all non-empty set A, B holds rng Inv(A, B) = [:B, A:].
- (4) For all non-empty set A, B holds Inv(A, B) is one-to-one.
- (5) Suppose U_1 and U_2 are similar. Then Inv(the carrier of U_1 , the carrier of U_2) is a function from the carrier of $[:U_1, U_2:]$ into the carrier of $[:U_2, U_1:]$.
- (6) Suppose U_1 and U_2 are similar. Let o_1 be a operation of U_1 , and let o_2 be a operation of U_2 , and let o_1 be a operation of $[U_1, U_2]$, and let o_2 has a natural number. Suppose $o_1 = (\operatorname{Opers} U_1)(n)$ and $o_2 = (\operatorname{Opers} U_2)(n)$ and $o_3 = (\operatorname{Opers} [U_1, U_2])(n)$ and $o_4 = (\operatorname{Opers} [U_1, U_2])(n)$ and o_4
- (7) If U_1 and U_2 are similar, then $[:U_1, U_2:]$ and U_1 are similar.
- (8) Let U_1 , U_2 , U_3 , U_4 be universal algebras. Suppose U_1 is a subalgebra of U_2 and U_3 is a subalgebra of U_4 and U_2 and U_4 are similar. Then $[:U_1, U_3:]$ is a subalgebra of $[:U_2, U_4:]$.

2. TRIVIAL ALGEBRA

Let k be a natural number. The functor TrivOp(k) yields a homogeneous quasi total non-empty partial function from $\{\emptyset\}^*$ to $\{\emptyset\}$ and is defined as follows:

(Def.7) dom TrivOp $(k) = \{k \mapsto \emptyset\}$ and rng TrivOp $(k) = \{\emptyset\}$.

The following proposition is true

(9) $\operatorname{arity} \operatorname{TrivOp}(k) = k$.

Let f be a finite sequence of elements of \mathbb{N} . The functor $\operatorname{TrivOps}(f)$ yielding a finite sequence of elements of $\{\emptyset\}^* \rightarrow \{\emptyset\}$ is defined as follows:

- (Def.8) len TrivOps(f) = len f and for every n such that $n \in \text{dom TrivOps}(f)$ and for every m such that m = f(n) holds (TrivOps(f))(n) = TrivOp(m). We now state two propositions:
 - (10) For every finite sequence f of elements of \mathbb{N} holds TrivOps(f) is homogeneous quasi total and non-empty.
 - (11) For every finite sequence f of elements of \mathbb{N} such that $f \neq \varepsilon$ holds $\langle \{\emptyset\}, \text{TrivOps}(f) \rangle$ is a strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of elements of D which is non empty and there exists an element of D^* which is non empty.

Let f be a non empty finite sequence of elements of \mathbb{N} . The trivial algebra of f yielding a strict universal algebra is defined as follows:

(Def.9) The trivial algebra of $f = \langle \{\emptyset\}, \text{TrivOps}(f) \rangle$.

3. PRODUCT OF UNIVERSAL ALGEBRAS

A function is universal algebra yielding if:

(Def.10) For every x such that $x \in \text{dom it holds it}(x)$ is a universal algebra. A function is 1-sorted yielding if:

(Def.11) For every x such that $x \in \text{dom it holds it}(x)$ is a 1-sorted structure.

One can check that there exists a function which is universal algebra yielding. One can verify that every function which is universal algebra yielding is also 1-sorted yielding.

Let I be a set. Observe that there exists a many sorted set of I which is 1-sorted yielding.

A function is equal signature if:

(Def.12) For all x, y such that $x \in \text{dom it and } y \in \text{dom it and for all } U_1, U_2$ such that $U_1 = \text{it}(x)$ and $U_2 = \text{it}(y)$ holds signature $U_1 = \text{signature } U_2$.

Let J be a non-empty set. One can check that there exists a many sorted set of J which is equal signature and universal algebra yielding.

Let J be a non empty set, let A be a universal algebra yielding many sorted set of J, and let j be an element of J. Then A(j) is a universal algebra.

Let J be a non-empty set and let A be a universal algebra yielding many sorted set of J. The functor support A yields a non-empty many sorted set of J and is defined as follows:

(Def.13) For every element j of J holds (support A)(j) = the carrier of A(j).

Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor ComSign(A) yields a finite sequence of elements of $\mathbb N$ and is defined as follows:

(Def.14) For every element j of J holds ComSign(A) = signature <math>A(j).

A function is function yielding if:

(Def.15) For every x such that $x \in \text{dom it holds it}(x)$ is a function.

Let us note that there exists a function which is function yielding.

Let I be a set. Note that there exists a many sorted set of I which is function yielding.

Let I be a set. A many sorted function of I is a function yielding many

sorted set of I.

Let J be a non-empty set, let B be a many sorted function of J, and let j be an element of J. Then B(j) is a function.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let j be an element of J. Then B(j) is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J.

Then $\prod B$ is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J. A many sorted function of J is said to be a many sorted operation of B if:

(Def.16) For every element j of J holds it(j) is a homogeneous quasi total non-empty partial function from $B(j)^*$ to B(j).

Let J be a non-empty set, let B be a non-empty many sorted set of J, let O be a many sorted operation of B, and let j be an element of J. Then O(j) is a homogeneous quasi total non-empty partial function from $B(j)^*$ to B(j).

A function is equal arity if satisfies the condition (Def.17).

(Def.17) Let x, y be arbitrary. Suppose $x \in \text{dom it}$ and $y \in \text{dom it}$. Let f, g be functions. Suppose it(x) = f and it(y) = g. Let n, m be natural numbers and let X, Y be non-empty set. Suppose $\text{dom } f = X^n$ and $\text{dom } g = Y^m$. Let o_1 be a homogeneous quasi total non-empty partial function from X^* to X and let o_2 be a homogeneous quasi total non-empty partial function from Y^* to Y. If $f = o_1$ and $g = o_2$, then arity $o_1 = \text{arity } o_2$.

Let J be a non-empty set and let B be a non-empty many sorted set of J. One can verify that there exists a many sorted operation of B which is equal arity.

The following proposition is true

(12) Let J be a non-empty set, and let B be a non-empty many sorted set of J, and let O be a many sorted operation of B. Then O is equal arity

if and only if for all elements i, j of J holds arity O(i) = arity O(j).

Let I be a set, let f be a many sorted function of I, and let x be a many sorted set of I. The functor $f \leftrightarrow x$ yields a many sorted set of I and is defined as follows:

(Def.18) For arbitrary i such that $i \in I$ and for every function g such that g = f(i) holds $(f \leftrightarrow x)(i) = g(x(i))$.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let p be a finite sequence of elements of $\prod B$. Then uncurry p is a many sorted set of $[\operatorname{dom} p, J]$.

Let I, J be sets and let X be a many sorted set of [:I, J:]. Then $\cap X$ is a many sorted set of [:J, I:].

Let X be a set, let Y be a non-empty set, and let f be a many sorted set of [X, Y]. Then curry f is a many sorted set of X.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let O be an equal arity many sorted operation of B. The functor ComAr(O) yielding a natural number is defined as follows:

(Def.19) For every element j of J holds ComAr(O) = arity <math>O(j).

Let I be a set and let A be a many sorted set of I. The functor ε_A yielding a many sorted set of I is defined as follows:

(Def.20) For arbitrary i such that $i \in I$ holds $\varepsilon_A(i) = \varepsilon_{A(i)}$.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let O be an equal arity many sorted operation of B. The functor ||O|| yielding a homogeneous quasi total non-empty partial function from $(\prod B)^*$ to $\prod B$ is defined by the conditions (Def.21).

(Def.21) (i) $\operatorname{dom} O = (\prod B)^{\operatorname{ComAr}(O)}$, and

(ii) for every element p of $(\prod B)^*$ such that $p \in \text{dom} [O]$ holds if $\text{dom } p = \emptyset$, then [O] $[(p) = O \leftrightarrow (\varepsilon_B)$ and if $\text{dom } p \neq \emptyset$, then for every non-empty set Z and for every many sorted set w of [J, Z] such that Z = dom p and w = suncurry p holds [O] $[(p) = O \leftrightarrow \text{curry } w$.

Let J be a non-empty set, let A be an equal signature universal algebra yielding many sorted set of J, and let n be a natural number. Let us assume that $n \in \text{Seg len ComSign}(A)$. The functor ProdOp(A, n) yielding an equal arity many sorted operation of support A is defined by:

(Def.22) For every element j of J and for every operation o of A(j) such that $(\operatorname{Opers} A(j))(n) = o$ holds $(\operatorname{ProdOp}(A, n))(j) = o$.

Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor ProdOpSeq(A) yielding a finite sequence of elements of $(\prod support A)^* \rightarrow \prod support A$ is defined as follows:

(Def.23) len $\operatorname{ProdOpSeq}(A) = \operatorname{len ComSign}(A)$ and for every n such that $n \in \operatorname{dom}\operatorname{ProdOpSeq}(A)$ holds $(\operatorname{ProdOpSeq}(A))(n) = []\operatorname{ProdOp}(A, n)[[$.

Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor $\operatorname{ProdUnivAlg}(A)$ yields a strict universal algebra and is defined as follows:

(Def.24) $\operatorname{ProdUnivAlg}(A) = \langle \prod \operatorname{support} A, \operatorname{ProdOpSeq}(A) \rangle.$

REFERENCES

- [1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [6] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
- [11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [12] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received October 12, 1993