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Summary. We prove the correctness of two short programs for the
SCM machine: one computes Fibonacci numbers and the other computes
the fusc function of Dijkstra [11]. The formal definitions of these functions
can be found in [5]. We prove the total correctness of the programs in
two ways: by conducting inductions on computations and inductions on
input data. In addition we characterize the concrete complexity of the
programs as defined in [4].

MML Identifier: FIB_FUSC.

The papers [17], [1], [20], [13], [18], [10], [16], [12], [7], [8], [2], [3], [6], [21], [9],
[14], [15], [4], [19], and [5] provide the terminology and notation for this paper.
The program computing Fib is a finite sequence of elements of the instruc-
tions of SCM and is defined as follows:
(Def.1) The program computing Fib = (if d; > 0 goto i) ~ (haltgcpm) ~
- {d3:=do)~(SubFrom(d;,do))~(if d1 = 0 goto i;)~(ds:=d2)"~(da:=d3)"
(AddTO(d3, d4)> - <g0t0 (ig))
The following proposition is true ‘
(1) Let NV be a natural number and let s be a state with instruction counter
on 0, with the program computing Fib located from 0, and (+1)~ {(+N)~
(+0) = {(+0) from 0. Then
- (i) sis halting, _
_(ii)  if N =0, then the complexity of s = 1,
(i) if N > 0, then the complexity of s = 6 - N — 2, and
(iv)  (Result(s))(ds) = Fib(N). S
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Let ¢ be an integer. The functor Fusc(:) yields a natural number and is
defined as follows:

(Def.2)  There exists a natural number n such that ¢ = n and Fusc(i) = Fusc(n)
or ¢ is not a natural number and Fusc(s) = 0.

Let a, n be natural numbers. Then a” is an integer. :
o The program computing Fusc is a finite sequence of elements of the instruc-
O tions of SCM and is defined by: v
4" (Def.3) The program computing Fusc = (if d; = 0 goto ig) ~ (d4:=do) ~
E (DIVIde(dl,d4)) - (if d; =0 goto i6> - <AddT0(d3,d2)> - (gOtO (io)) -
(AddTo(ds, ds)) ~ (goto (io)) ~ (haltgcnm).
We now state several propositions:

(2) Let N be a natural number. Suppose N > 0. Let s be a state
with instruction counter on 0, with the program computing Fusc located
from 0, and (+2) ~ (+N)~ (+1) ~ (+0) from 0. Then s is halting and
(Result(s))(d3) = Fusc(N) and the complexity of s = 6-([logy N |+1)+1.

(3) Let N be a natural number, and let k, F;, F; be natural numbers, and
let s be a state with instruction counter on 3, with the program computing
Fib located from 0, and (+1) ~ (+N) "~ (+F1) ~ (+F3) from 0. Suppose
N >0 and Fy = Fib(k) and F; = Fib(k +1). Then

(i) s is halting, '
(i) the complexity of s =6-N —4, and

(iii)  there exists a natural number m such that m = (k+ N) - 1 and
(Result(s))(dz) = Fib(m) and (Result(s))(ds) = Fib(m + 1).

(4) Let N be anatural number and let s be a state with instruction counter
on 0, with the program computing Fib located from 0, and (+1)~ (+N)~
(+0) ~ (40) from 0. Then

(i) s is halting,
(ii) if N =0, then the complexity of s = 1,
(iii) if N > 0, then the complexity of s =6- N — 2, and
! (iv) (Result(s))(d3) = Fib(NV).
(5) Let n be anatural number, and let N, A, B be natural numbers, and let
s be a state with instruction counter on 0, with the program computing
Fusc located from 0, and (+2) ~ (+n) ~ (+A) ~ (+B) from 0. Suppose
: N > 0 and Fusc(N) = A - Fusc(n) + B - Fusc(n + 1). Then
| (i) s is halting,
(i) - (Result(s))(ds) = Fusc(N),
. (iii) if n = 0, then the complexity of s = 1, and
(iv) if n > 0, then the complexity of s = 6 - ([logyn} + 1)+ 1.
(6) Let N be a natural number. Suppose N > 0. Let s be a state with
instruction counter on 0, with the program computing Fusc located from
0, and (+2) ~ (+N) ~ (+1)2 (4+0) from 0. Then
(i) s is halting,
(ii) - (Result(s))(d3) = Fusc(N),
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(iii) if N =0, then the complexity of s = 1, and
(iv) if N >0, then the complexity of s = 6 - (|log, N| + 1) + 1.
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